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Abstract

Neural information retrieval (IR) systems have
progressed rapidly in recent years, in large
part due to the release of publicly available
benchmarking tasks. Unfortunately, some di-
mensions of this progress are illusory: the ma-
jority of the popular IR benchmarks today fo-
cus exclusively on downstream task accuracy
and thus conceal the costs incurred by systems
that trade away efficiency for quality. Latency,
hardware cost, and other efficiency considera-
tions are paramount to the deployment of IR
systems in user-facing settings. We propose
that IR benchmarks structure their evaluation
methodology to include not only metrics of ac-
curacy, but also efficiency considerations such
as a query latency and the corresponding cost
budget for a reproducible hardware setting. For
the popular IR benchmarks MS MARCO and
XOR-TyDi, we show how the best choice of IR
system varies according to how these efficiency
considerations are chosen and weighed. We
hope that future benchmarks will adopt these
guidelines toward more holistic IR evaluation.

1 Introduction

Benchmark datasets have helped to drive rapid
progress in neural information retrieval (IR). When
the MS MARCO (Nguyen et al., 2016) Passage
Ranking leaderboard began in 2018, the best per-
forming systems had MRR@10 scores around 0.20;
the latest entries have since increased accuracy past
0.44. Similarly, the XOR TyDi multilingual ques-
tion answering (QA) dataset (Asai et al., 2020) was
released in 2021 and has seen improvements in
recall scores from 0.45 to well past 0.70.

The leaderboards for these datasets are defined
by a particular set of accuracy-based metrics, and
progress on these metrics can easily become syn-
onymous in people’s minds with progress in gen-

∗ Data and code are provided as PrimeQA extensions:
https://github.com/primeqa/primeqa.

†Equal contribution.
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Figure 1: Selected MS MARCO Passage Ranking sub-
missions assessed on both cost and accuracy, with the
Pareto frontier marked by a dotted line. The trade-offs
evident here are common in real-world applications of
IR technologies. These submissions do not represent
“optimal” implementations of each respective approach,
but rather reflect existing reported implementations and
hardware configurations in the literature. Including cost
and other efficiency considerations on our leaderboards
would lead to more thorough exploration of possible sys-
tem designs and, in turn, to more meaningful progress.

eral. However, IR and QA systems deployed in pro-
duction environments must not only deliver high
accuracy but also operate within strict resource re-
quirements, including tight bounds on per-query
latency, constraints on disk and RAM capacity, and
fixed cost budgets for hardware. Within the bound-
aries of these constraints, the optimal solution for
a downstream task may no longer be the system
which simply achieves the highest task accuracy.

Figure 1 shows how significant these trade-
offs can be. The figure tracks a selection of
MS MARCO Passage Ranking submissions, with
cost on the x-axis and accuracy (MRR@10) on the
y-axis. At one extreme, the BM25 model costs
just US$0.04 per million queries,1 but it is far be-
hind the other models in accuracy. For very similar

1Estimated by mapping the minimum necessary hardware
to an AWS instance and taking the per-hour on-demand rental
cost; see Table 2 for details.
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Hardware Performance

GPU CPU
RAM
(GiB) MRR@10

Query
Latency (ms)

Index Size
(GiB)

BM25 (Mackenzie et al., 2021) 0 32 512 18.7 8 1
BM25 (Lassance and Clinchant, 2022) 0 64 - 19.7 4 1
SPLADEv2-distil (Mackenzie et al., 2021) 0 32 512 36.9 220 4
SPLADEv2-distil (Lassance and Clinchant, 2022) 0 64 - 36.8 691 4
BT-SPLADE-S (Lassance and Clinchant, 2022) 0 64 - 35.8 7 1
BT-SPLADE-M (Lassance and Clinchant, 2022) 0 64 - 37.6 13 2
BT-SPLADE-L (Lassance and Clinchant, 2022) 0 64 - 38.0 32 4
ANCE (Xiong et al., 2020) 1 48 650 33.0 12 -
RocketQAv2 (Ren et al., 2021) - - - 37.0 - -
coCondenser (Gao and Callan, 2021) - - - 38.2 - -
CoT-MAE (Wu et al., 2022) - - - 39.4 - -
ColBERTv1 (Khattab and Zaharia, 2020) 4 56 469 36.1 54 154
PLAID ColBERTv2 (Santhanam et al., 2022a) 4 56 503 39.4 32 22
PLAID ColBERTv2 (Santhanam et al., 2022a) 4 56 503 39.4 12 22
DESSERT (Engels et al., 2022) 0 24 235 37.2 16 -

Table 1: Post-hoc leaderboard of MS MARCO v1 dev performance using results reported in corresponding papers.
For hardware specifications, we show the precise resources given as the running environment in the paper, even if
not all resources were available to the model or the resources were over-provisioned for the particular task. Table 2
provides our estimates of minimum hardware requirements for a subset of these systems. Note that the first PLAID
ColBERTv2 result listed was run on a server which includes 4 GPUs but no GPU was actually used for measurement,
thereby resulting in a larger latency than the second listed result which does measure GPU execution.

costs to BM25, one can use BT-SPLADE-S and
achieve much better performance. On the other
hand, the SPLADE-v2-distil model outperforms
BT-SPLADE-S by about 1 point, but at a sub-
stantially higher cost. Unfortunately, these trade-
offs would not be reflected on the MS MARCO
leaderboard. Similarly, the top two systems of the
XOR TyDi leaderboard as of October 2022 were
separated by only 0.1 points in Recall@5000 to-
kens, but the gap in resource efficiency between
these two approaches is entirely unclear.

In this work, we contribute to the growing litera-
ture advocating for multidimensional leaderboards
that can inform different values and goals (Cole-
man et al., 2017; Mattson et al., 2020a,b; Baidu Re-
search, 2016; Ma et al., 2021; Liu et al., 2021a;
Liang et al., 2022). Our proposal is that researchers
should report orthogonal dimensions of perfor-
mance such as query latency and overall cost, in
addition to accuracy-based metrics. Our argument
has two main parts.

In part 1 (§2), we create a post-hoc MS MARCO
leaderboard from published papers (Table 1). This
reveals that systems with similar accuracy often
differ substantially along other dimensions, and
also that techniques for improving latency and re-
ducing memory and hardware costs are currently

being explored only very sporadically. However, a
few of the contributions (Santhanam et al., 2022a;
Lassance and Clinchant, 2022; Engels et al., 2022;
Li et al., 2022) exemplify the kind of thorough
investigation of accuracy and efficiency that we
are advocating for, and we believe that improved
multidimensional leaderboards could spur further
innovation in these areas.

In part 2 (§3), we systematically explore
four prominent systems: BM25, Dense Pas-
sage Retriever (DPR; Karpukhin et al. 2020),
BT-SPLADE-L (Formal et al., 2021; Lassance and
Clinchant, 2022), and PLAID ColBERTv2 (Khat-
tab and Zaharia, 2020; Santhanam et al., 2022a,b).
These experiments begin to provide a fuller picture
of the overall performance of these systems.

We close by discussing practical considerations
relating to the multidimensional leaderboards that
the field requires. Here, we argue that the Dy-
nascore metric developed by Ma et al. (2021) is
a promising basis for leaderboards that aim to (1)
measure systems along multiple dimensions and
(2) provide a single full ranking of systems. Dy-
nascores allow the leaderboard creator to weight
different assessment dimensions (e.g., to make cost
more important than latency). These weightings
transparently reflect a particular set of values, and

11614



GPU CPU RAM Instance Cost

BM25 0 1 4 m6g.med $0.04
SPLADEv2-distil 0 1 8 r6g.med $3.08
BT-SPLADE-S 0 1 8 m6g.med $0.07
BT-SPLADE-M 0 1 8 m6g.med $0.14
BT-SPLADE-L 0 1 8 r6g.med $0.45
ANCE 1 8 64 p3.2xl $10.20
ColBERTv1 1 16 256 p3.8xl $183.60
PLAID ColBERTv2 0 8 32 r6a.2xl $4.03
PLAID ColBERTv2 1 8 64 p3.2xl $10.20
DESSERT 0 8 32 m6g.2xl $1.37

Table 2: Estimated minimum viable AWS instance type
necessary to run each model. RAM is in GiB; Cost is
per 1M queries.

we show that they give rise to leaderboards that
are likely to incentivize different research ques-
tions and system development choices than current
leaderboards do.

2 A Post-hoc Leaderboard

While existing IR benchmarks facilitate progress
on accuracy metrics, the lack of a unified method-
ology for measuring latency, memory usage, and
hardware cost makes it challenging to understand
the trade-offs between systems. To illustrate this
challenge, we constructed a post-hoc leaderboard
for the MS MARCO Passage Ranking benchmark
(Table 1). We include the MRR@10 values re-
ported in prior work and, when available, copy the
average per-query latency, index size, and hardware
configurations reported in the respective papers.2

We highlight the following key takeaways.

2.1 Hardware Provisioning

The hardware configurations in Table 1 are the
specific compute environments listed in the corre-
sponding papers rather than the minimum viable
hardware necessary to achieve the reported latency.
In Table 2, we have sought to specify the minimal
configuration that would be needed to run each sys-
tem. (This may result in an overly optimistic assess-
ment of latency; see §3). The hardware differences
between Table 1 and Table 2 reveal that researchers
are often using vastly over-provisioned hardware
for their experiments. Our proposed leaderboards
would create a pressure to be more deliberative
about the costs of hardware used when reporting
efficiency metrics.

2We plan to expand our analysis to include the recently
released CITADEL model (Li et al., 2022), first uploaded to
arXiv on 11/18/22)

2.2 Variation in Methodology

Table 1 shows that both the quality metrics and
the hardware used for evaluation across different
models vary significantly. Many papers exclusively
report accuracy, which precludes any quantitative
understanding of efficiency implications (Ren et al.,
2021; Gao and Callan, 2021; Wu et al., 2022).
For papers that do report efficiency-oriented met-
rics, the evaluation environment and methodology
are often different; for example, the results from
Mackenzie et al. 2021 and Lassance and Clinchant
2022 are measured on a single CPU thread whereas
Khattab and Zaharia 2020 and Santhanam et al.
2022a leverage multiple CPU threads for intra-
query parallelism, and even a GPU for certain set-
tings. We also observe performance variability
even for the same model, with Mackenzie et al.
2021 (220 ms) and Lassance and Clinchant 2022
(691 ms) reporting SPLADEv2 latency numbers
which are 3× apart. Similarly, the BM25 latencies
reported by these papers differ by a factor of 2×.

2.3 Multidimensional Evaluation Criteria

The optimal model choice for MS MARCO is
heavily dependent on how we weight the differ-
ent evaluation metrics. Based purely on accuracy,
CoT-MAE and PLAID ColBERTv2 are the top-
performers in Table 1, with an MRR@10 score of
39.4 for both. However, we do not have all the
information we need to compare them along other
dimensions. On the other hand, BM25 is the fastest
model, with a per-query latency of only 4 ms as
measured by Lassance and Clinchant (2022), and
its space footprint is also small. The trade-off is that
it has the lowest accuracy in the cohort. Compared
to BM25, one of the highly optimized BT-SPLADE
models may be a better choice. Figure 1 begins to
suggest how we might reason about these often
opposing pressures.

3 Experiments with Representative
Retrievers

As Table 1 makes clear, the existing literature does
not include systematic, multidimensional compar-
isons of models. In this section, we report on ex-
periments that allow us to make these comparisons.
We focus on four models:

BM25 (Robertson et al., 1995) A sparse, term-
based IR model. BM25 remains a strong baseline in
many IR contexts and is notable for its low latency
and low costs. We assess a basic implementation.
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Hardware Performance
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BM25 0 1 4 m6gd.med 11 $0.14

BM25

0 1 32 x2gd.lrg

10 $0.48
DPR 146 $6.78
ColBERTv2-S 206 $9.58
ColBERTv2-M 321 $14.90
ColBERTv2-L 459 $21.30
BT-SPLADE-L 46 $2.15

BM25 0 16 4 c7g.4xl 9 $1.48

BM25

0 16 32 c7g.4xl

9 $1.43
DPR 19 $2.97
ColBERTv2 51 $8.19
ColBERTv2-M 63 $10.09
ColBERTv2-L 86 $13.88
BT-SPLADE-L 33 $5.38

BM25 1 1 4 p3.2xl 11 $9.09

BM25

1 1 32 p3.2xl

10 $8.46
DPR 19 $15.73
ColBERTv2-S 36 $30.46
ColBERTv2-M 52 $44.54
ColBERTv2-L 99 $83.97
BT-SPLADE-L 42 $35.86

BM25 1 16 4 p3.8xl 9 $30.51

BM25

1 16 32 p3.8xl

9 $29.94
DPR 18 $61.06
ColBERTv2-S 27 $90.41
ColBERTv2-M 36 $123.35
ColBERTv2-L 55 $187.24
BT-SPLADE-L 33 $112.87

(a) MS MARCO efficiency results.
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BM25

0 1 64 x2gd.xlrg

37 $3.45
DPR 208 $19.29
ColBERTv2-S 343 $31.84
ColBERTv2-M 771 $71.56
ColBERTv2-L 1107 $102.74
BT-SPLADE-L 70 $6.49

BM25

0 16 64 m6g.4xlrg

36 $6.11
DPR 84 $14.38
ColBERTv2-S 83 $14.17
ColBERTv2-M 110 $18.83
ColBERTv2-L 165 $28.26
BT-SPLADE-L 43 $7.41

BM25

1 1 64 p3.8xl

36 $123.69
DPR 26 $89.91
ColBERTv2-S 57 $194.81
ColBERTv2-M 74 $251.76
ColBERTv2-L 121 $411.62
BT-SPLADE-L 63 $213.17

BM25

1 16 64 p3.8xl

35 $118.12
DPR 28 $95.23
ColBERTv2-S 46 $155.10
ColBERTv2-M 65 $219.84
ColBERTv2-L 106 $359.65
BT-SPLADE-L 43 $147.53

(b) XOR-TyDi efficiency results.

MS MARCO XOR-TyDi
MRR@10 Success@10 MRR@10 Success@10

BM25 18.7 38.6 26.3 44.5
DPR 31.7 52.1 16.9 32.4
ColBERTv2-S 39.4 68.8 41.8 57.5
ColBERTv2-M 39.7 69.6 45.4 63.0
ColBERTv2-L 39.7 69.7 47.4 66.0
BT-SPLADE-L 38.0 66.3 43.5 65.4

(c) Accuracy.

Table 3: Experimental results. Latency is average per-query latency (ms), and Cost is per 1M queries.

More sophisticated versions may achieve better ac-
curacy (Berger and Lafferty, 1999; Boytsov, 2020),
though often with trade-offs along other dimen-
sions (Lin et al., 2016). For evidence that simple
BM25 models often perform best in their class, see
Thakur et al. 2021.

DPR (Karpukhin et al., 2020) A dense single-
vector neural IR model. DPR separately encodes
queries and documents into vectors and scores them
using fast dot-product-based comparisons.

BT-SPLADE-L (Lassance and Clinchant,
2022) SPLADE (Formal et al., 2021) is a sparse
neural model. The BT-SPLADE variants are
highly optimized versions of this model designed to
achieve low latency and reduce the overall compu-
tational demands of the original model. To the best
of our knowledge, only the Large configuration,
BT-SPLADE-L, is publicly available.

PLAID ColBERTv2 (Santhanam et al., 2022a)
The ColBERT retrieval model (Khattab and Za-
haria, 2020) encodes queries and documents into
sequences of output states, one per input token,
and scoring is done based on the maximum simi-
larity values obtained for each query token. Col-
BERTv2 (Santhanam et al., 2022b) improves su-
pervision and reduces the space footprint of the
index, and the PLAID engine focuses on achieving
low latency. The parameter k to the model dictates
the initial candidate passages that are scored by
the model. Larger k thus leads to higher latency
but generally more accurate search. In our initial
experiments, we noticed that higher k led to better
out-of-domain performance, and thus we evalu-
ated the recommended settings from Santhanam
et al. (2022a), namely, k ∈ {10, 100, 1000}. To
distinguish these configurations from the number
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of passages evaluated by the MRR or Success met-
ric (also referred to as k), we refer to these con-
figurations as the ‘-S’, ‘-M’, and ‘-L’ variants of
ColBERTv2, respectively.

We chose these models as representatives of
key IR model archetypes: lexical models (BM25),
dense single-vector models (DPR), sparse neural
models (SPLADE), and late-interaction models
(ColBERT). The three ColBERT variants provide
a glimpse of how model configuration choices can
interact with our metrics.

We use two retrieval datasets: MS MARCO
(Nguyen et al., 2016) and XOR-TyDi (Asai et al.,
2020). All neural models in our analysis are trained
on MS MARCO data. We evaluate on XOR-TyDi
without further fine-tuning to test out-of-domain
evaluation (see Appendix A for more details).

Our goal is to understand how the relative per-
formance of these models changes depending on
the available resources and evaluation criteria. Our
approach differs from the post-hoc leaderboard de-
tailed in §2 in two key ways: (1) we fix the underly-
ing hardware platform across all models, and (2) we
evaluate each model across a broad range of hard-
ware configurations (AWS instance types), ensur-
ing that we capture an extensive space of compute
environments. Furthermore, in addition to quality,
we also report the average per-query latency and
the corresponding cost of running 1 million queries
given the latency and the choice of instance type.
This approach therefore enables a more principled
and holistic comparison between the models.

We use the open-source PrimeQA framework,3

which provides a uniform interface to implemen-
tations of BM25, DPR, and PLAID ColBERTv2.
For SPLADE, we use the open-source implemen-
tation maintained by the paper authors.4 For each
model we retrieve the top 10 most relevant pas-
sages. We report the average latency of running
a fixed sample of 1000 queries from each dataset
as measured across 5 trials. See Appendix A for
more details about the evaluation environments and
model configurations.

Table 3 summarizes our experiments. Tables 3a
and 3b report efficiency numbers, with costs es-
timated according to the same hardware pricing
used for Table 2. Table 3c gives accuracy results
(MRR@10 and Success@10).

Overall, BM25 is the least expensive model

3https://github.com/primeqa/primeqa
4https://github.com/naver/splade

when selecting the minimum viable instance type:
only BM25 is able to run with 4 GB memory. How-
ever, its accuracy scores are low enough to essen-
tially remove it from contention.

On both datasets, we find that BT-SPLADE-L
and the PLAID ColBERTv2 variants are the most
accurate models by considerable margins. On MS
MARCO, all the ColBERTv2 variants outperform
BT-SPLADE-L in MRR@10 and Success@10 re-
spectively, while BT-SPLADE-L offers faster and
cheaper scenarios than ColBERTv2 for applica-
tions that permit a moderate loss in quality.

In the out-of-domain XOR-TyDi evaluation, BT-
SPLADE-L outperforms the ColBERTv2-S vari-
ant, which sets k = 10 (the least computationally-
intensive configuration). We hypothesize this loss
in quality is an artifact of the approximations em-
ployed by the default configuration. Hence, we also
test the more computationally-intensive configura-
tions mentioned above: ColBERTv2-M (k = 100)
and ColBERTv2-L (k = 1000). These tests re-
veals that ColBERTv2-L solidly outperforms BT-
SPLADE-L in MRR@10 and Success@10, while
allowing BT-SPLADE-L to expand its edge in la-
tency and cost.

Interestingly, despite per-instance costs being
higher for certain instances, selecting the more ex-
pensive instance can actually reduce cost depend-
ing on the model. For example, the c7g.4xlarge
instance is 3.5× more expensive than x2gd.large,
but ColBERTv2-S runs 4× faster with 16 CPU
threads and therefore is cheaper to execute on the
c7g.4xlarge. These findings further reveal the
rich space of trade-offs when it comes to model
configurations, efficiency, and accuracy.

4 Discussion and Recommendations

In this section, we highlight several considerations
for future IR leaderboards and offer recommenda-
tions for key design decisions.

4.1 Evaluation Platform

A critical design goal for IR leaderboards should be
to encourage transparent, reproducible submissions.
However, as we see in Table 1, many existing sub-
missions are performed using custom—and likely
private—hardware configurations and are therefore
difficult to replicate.

Instead, we strongly recommend all submissions
be tied to a particular public cloud instance type.5

5In principle, any public cloud provider (e.g., AWS EC2,
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In particular, leaderboards should require that the
specific evaluation environment associated with
each submission (at inference time) can be easily
reproduced. This encourages submissions to find
realistic and transparent ways to use public cloud
resources that minimize the cost of their submis-
sions in practice, subject to their own goals for
latency and quality. We note that our inclusion of
“cost” subsumes many individual tradeoffs that sys-
tems may consider, like the amount of RAM (or, in
principle, storage) required by the index and model,
or the number of CPUs, GPUs, or TPUs.

In principle, leaderboards could report the con-
stituent resources instead of reporting a specific
reproducible hardware platform. For example, a
leaderboard could simply report the number of
CPU threads and GPUs per submission. This of-
fers the benefit of decoupling submissions from
the offerings available on public cloud providers.
However, this approach fails to account for the
ever-growing space of hardware resources or their
variable (and changing) pricing. For instance, it is
likely unrealistic to expect leaderboard builders to
quantify the difference in cost between a V100 and
a more recent A100 GPU—or newer generations,
like H100, let alone FPGAs or other heterogeneous
choices. We argue that allowing submissions to se-
lect their own public cloud instance (including its
capabilities and pricing) reflects a realistic, market-
driven, up-to-date strategy for estimating dollar
costs. In practice, the leaderboard creators need
to set a policy for dealing with changing prices
over time. They may, for instance, opt to use the
latest pricing at all times. This may lead to shifts
in the leaderboard rankings over time, reflecting
the changing tradeoffs between cost and the other
dimensions evaluated.

4.2 Scoring
Efficiency-aware IR leaderboards have several op-
tions for scoring and ranking submissions. We
enumerate three such strategies here:

1. Fix a latency or cost threshold (for example)
and rank eligible systems by accuracy. Many
different thresholds could be chosen to facili-
tate competition in different resource regimes
(e.g., mobile phones vs. data centers).

2. Fix an accuracy threshold and rank eligible
systems by latency or cost (or other aspects).

Google Cloud, or Azure) is acceptable as long as they offer a
transparent way to estimate costs.

The accuracy threshold could be set to the
state-of-the-art result from prior years.

3. Weight the different assessment dimensions
and distill them into a single score, possibly
after filtering systems based on thresholds on
accuracy, latency, and/or cost.

Of these approaches, the third is the most flexi-
ble and is the only one that can provide a complete
ranking of systems. The Dynascores of Ma et al.
(2021) seem particularly well-suited to IR leader-
boards, since they allow the leaderboard creator to
assign weights to each of the dimensions included
in the assessment, reflecting the relative importance
assigned to each. The Dynascore itself is a utility-
theoretic aggregation of all the measurements and
yields a ranking of the systems under consideration.

Following Ma et al., we define Dynascores as fol-
lows. For a set of models M = {Mi, . . . ,MN}
and assessment metrics µ = {µ1, . . . , µk}, the Dy-
nascore for a model Mi ∈ M is defined as

k∑

j=1

wµj

µj(Mi)

AMRS(M, acc, µj)
(1)

where wµj is the weight assigned to µj (we en-
sure that the sum of all the weights is equal to 1),
and acc is an appropriate notion of accuracy (e.g.,
MRR@10). The AMRS (average marginal rate of
substitution) is defined as

1

N

N∑

i

∣∣∣∣
µ(Mi)− µ(Mi+1)

acc(Mi)− acc(Mi+1)

∣∣∣∣ (2)

for models Mi, . . . ,MN organized from worst to
best performing according to acc. In our experi-
ments, we use the negative of Cost and Latency, so
that all the metrics are oriented in such a way that
larger values are better. If a model cannot be run
for a given hardware configuration, it is excluded.

For a default weighting, Ma et al. suggest assign-
ing half of the weight to the performance metric
and spreading the other half evenly over the other
metrics. For our experiments, this leads to

{MRR@10: 0.5, Cost: 0.25, Latency: 0.25}

In Table 4, we show what the MS MARCO and
XOR-TyDi leaderboards would look like if they
were driven by this Dynascore weighting. In both
leaderboards, ColBERTv2 variants are the winning
systems. This is very decisive for XOR-TyDi. For
MS MARCO, ColBERTv2 and SPLADE are much
closer overall.
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System Hardware Dynascore

1 ColBERTv2-M 16 CPU, 32 GB memory 19.127
2 ColBERTv2-S 16 CPU, 32 GB memory 19.118
3 ColBERTv2-L 16 CPU, 32 GB memory 18.857
4 ColBERTv2-S 1 GPU, 1 CPU, 32 GB memory 18.698
5 BT-SPLADE-L 16 CPU, 32 GB memory 18.637
6 BT-SPLADE-L 1 CPU, 32 GB memory 18.616
7 ColBERTv2-M 1 GPU, 1 CPU, 32 GB memory 18.385
8 ColBERTv2-S 1 CPU, 32 GB memory 17.912
9 BT-SPLADE-L 1 GPU, 1 CPU, 32 GB memory 17.839
10 ColBERTv2-S 1 GPU, 16 CPU, 32 GB memory 17.331
11 ColBERTv2-L 1 GPU, 1 CPU, 32 GB memory 17.080
12 ColBERTv2-M 1 CPU, 32 GB memory 17.060
13 ColBERTv2-M 1 GPU, 16 CPU, 32 GB memory 16.619
14 BT-SPLADE-L 1 GPU, 16 CPU, 32 GB memory 16.062
15 ColBERTv2-L 1 CPU, 32 GB memory 15.858
16 DPR 16 CPU, 32 GB memory 15.635
17 DPR 1 GPU, 1 CPU, 32 GB memory 15.330
18 ColBERTv2-L 1 GPU, 16 CPU, 32 GB memory 14.940
19 DPR 1 CPU, 32 GB memory 14.583
20 DPR 1 GPU, 16 CPU, 32 GB memory 14.252
21 BM25 1 CPU, 4 GB memory 9.263
22 BM25 1 CPU, 32 GB memory 9.263
23 BM25 16 CPU, 32 GB memory 9.248
24 BM25 16 CPU, 4 GB memory 9.246
25 BM25 1 GPU, 1 CPU, 32 GB memory 9.072
26 BM25 1 GPU, 1 CPU, 4 GB memory 9.049
27 BM25 1 GPU, 16 CPU, 32 GB memory 8.565
28 BM25 1 GPU, 16 CPU, 4 GB memory 8.551

(a) MS MARCO.

System Hardware Dynascore

1 ColBERTv2-L 16 CPU, 64 GB memory 21.241
2 BT-SPLADE-L 16 CPU, 64 GB memory 21.119
3 ColBERTv2-M 16 CPU, 64 GB memory 21.063
4 BT-SPLADE-L 1 CPU, 64 GB memory 20.753
5 ColBERTv2-M 1 GPU, 16 CPU, 64 GB memory 20.255
6 BT-SPLADE-L 1 GPU, 16 CPU, 64 GB memory 20.123
7 ColBERTv2-M 1 GPU, 1 CPU, 64 GB memory 19.904
8 ColBERTv2-L 1 GPU, 16 CPU, 64 GB memory 19.700
9 ColBERTv2-S 16 CPU, 64 GB memory 19.649
10 BT-SPLADE-L 1 GPU, 1 CPU, 64 GB memory 19.380
11 ColBERTv2-S 1 GPU, 16 CPU, 64 GB memory 19.157
12 ColBERTv2-L 1 GPU, 1 CPU, 64 GB memory 19.123
13 ColBERTv2-S 1 GPU, 1 CPU, 64 GB memory 18.723
14 ColBERTv2-S 1 CPU, 64 GB memory 15.934
15 BM25 1 CPU, 64 GB memory 12.635
16 BM25 16 CPU, 64 GB memory 12.630
17 BM25 1 GPU, 16 CPU, 64 GB memory 11.847
18 BM25 1 GPU, 1 CPU, 64 GB memory 11.794
19 ColBERTv2-M 1 CPU, 64 GB memory 11.563
20 ColBERTv2-L 1 CPU, 64 GB memory 7.708
21 DPR 1 GPU, 1 CPU, 64 GB memory 7.452
22 DPR 1 GPU, 16 CPU, 64 GB memory 7.386
23 DPR 16 CPU, 64 GB memory 7.188
24 DPR 1 CPU, 64 GB memory 5.442

(b) XOR-TyDi.

Table 4: Dynascores for the default weighting scheme {Accuracy: 0.5, Cost: 0.25, Latency: 0.25}.

However, this weighting scheme is not the only
reasonable choice one could make. Appendix B
presents a range of different leaderboards captur-
ing different relative values. Here, we mention a
few highlights. First, if accuracy is very important
(e.g., MRR@10: 0.9), then all the ColBERTv2 sys-
tems dominate all the others. Second, if we are
very cost sensitive, then we could use a weight-
ing {MRR@10: 0.4, Cost: 0.4, Latency: 0.2}. In
this setting, ColBERTv2-S rises to the top of the
leaderboard for MS MARCO and BT-SPLADE-L
is more of a contender. Third, on the other hand, if
money is no object, we could use a weighting like
{MRR@10: 0.75, Cost: 0.01, Latency: 0.24}. This
setting justifies using a GPU with COlBERTv2,
whereas most other settings do not justify the ex-
pense of a GPU for this system. In contrast, a GPU
is never justified for BT-SPLADE-L.

To get a holistic picture of how different weight-
ings affect these leaderboards, we conducted a sys-
tematic exploration of different weighting vectors.
Figure 2a summarizes these findings in terms of the
winning system for each setting. The plots depict
Latency on the x-axis and Accuracy on the y-axis.
The three weights always sum to 1 (Dynascores are
normalized), so the Cost value is determined by the
other two, as 1.0 – Accuracy – Latency.

The overall picture is clear. For MS MARCO,
a ColBERTv2-M or ColBERTvs-S system is gen-
erally the best choice overall assuming Accuracy
is the most important value, and ColBERTv2-L is
never a winner. In contrast, a BT-SPLADE-L sys-
tem is generally the best choice where Cost and
Latency are much more important than Accuracy.
DPR is a winner only where Accuracy is relatively
unimportant, and BM25 is a winner only where
Accuracy is assigned essentially zero importance.
For the out-of-domain XOR-TyDi test, the picture
is somewhat different: now ColBERTv2-L is the
dominant system, followed by BT-SPLADE-L.

4.3 Metrics

Here we briefly explore various metrics and their
potential role in leaderboard design, beginning with
the two that we focused on in our experiments:

Latency Latency measures the time for a single
query to be executed and a result to be returned to
the user. Some existing work has measured latency
on a single CPU thread to isolate the system per-
formance from potential noise (Mackenzie et al.,
2021; Lassance and Clinchant, 2022). While this
approach ensures a level playing field for different
systems, it fails to reward systems which do benefit
from accelerated computation (e.g., on GPUs) or
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Figure 2: Exploration of Dynascore weighting schemes. Marker sizes are proportional to Cost weights (large dots
represent more-cost-sensitive weightings and thus the most expensive systems are along the diagonal).

intra-query parallelism such as DPR and PLAID
ColBERTv2. Therefore, for leaderboards with raw
latency as a primary objective, we recommend al-
lowing flexibility in the evaluation hardware to en-
able the fastest possible submissions. Such flexibil-
ity is then subsumed in the dollar cost below.

Dollar cost Measuring the financial overhead of
deploying IR systems is key for production settings.
One way to measure cost is to select a particular
public cloud instance type and simply multiply the
instance rental rate by the time to execute some
fixed number of queries, as in Table 2.

Throughput Throughput measures the total
number of queries which can be executed over a
fixed time period. Maximizing throughput could
entail compromising the average per-query latency
in favor of completing a larger volume of queries
concurrently. It is important that leaderboards ex-
plicitly define the methodology for measuring la-
tency and/or throughput in practice (e.g., in terms
of average time to complete one query at a time or
average time to complete a batch of 16 queries).

FLOPs The number of floating point operations
(FLOPs) executed by a particular model gives a
hardware-agnostic metric for assessing computa-
tional complexity. While this metric is meaningful
in the context of compute-bound operations such as
language modeling (Liu et al., 2021b), IR systems
are often comprised of heterogeneous pipelines
where the bottleneck operation may instead be
bandwidth-bound (Santhanam et al., 2022a). There-

fore we discourage FLOPs as a metric to compete
on for IR leaderboards.

Memory usage IR systems often pre-compute
large indexes and load them into memory (Johnson
et al., 2019; Khattab and Zaharia, 2020), meaning
memory usage is an important consideration for
determining the minimal hardware necessary to
run a given system. In particular, we recommend
leaderboard submissions report the index size at
minimum as well as the dynamic peak memory
usage if possible. The reporting of the dollar cost
of each system (i.e., which accounts for the total
RAM made available for each system) allows us to
quantify the effect of this dimension in practice.

5 Related Work

Many benchmarks holistically evaluate the accu-
racy of IR systems on dimensions such as out-of-
domain robustness (Thakur et al., 2021; Santhanam
et al., 2022b) and multilingual capabilities (Zhang
et al., 2021, 2022). While these benchmarks are key
for measuring retrieval effectiveness, they do not
incorporate analysis of resource efficiency or cost.
The MLPerf benchmark does include such analysis
but is focused on vision and NLP tasks rather than
retrieval (Mattson et al., 2020a). Several retrieval
papers offer exemplar efficiency studies (Macken-
zie et al., 2021; Santhanam et al., 2022a; Engels
et al., 2022; Li et al., 2022); we advocate in this
work for more widespread adoption as well as stan-
dardization around the evaluation procedure.
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6 Conclusion

We argued that current benchmarks for informa-
tion retrieval should adopt multidimensional leader-
boards that assess systems based on latency and
cost as well as standard accuracy-style metrics.
Such leaderboards would likely have the effect of
spurring innovation, and lead to more thorough
experimentation and more detailed reporting of re-
sults in the literature. As a proof of concept, we
conducted experiments with four representative IR
systems, measuring latency, cost, and accuracy,
and showed that this reveals important differences
between these systems that are hidden if only accu-
racy is reported. Finally, we tentatively proposed
Dynascoring as a simple, flexible method for creat-
ing multidimensional leaderboards in this space.

7 Limitations

We identify two sources of limitations in our work:
the range of metrics we consider, and the range of
models we explore in our experiments.

Our paper advocates for multidimensional
leaderboards. In the interest of concision, we fo-
cused on cost and latency as well as system quality.
These choices reflect a particular set of values when
it comes to developing retrieval models. In §4.3,
we briefly consider a wider range of metrics and
highlight some of the values they encode. Even
this list is not exhaustive, however. In general, we
hope that our work leads to more discussion of the
values that should be captured in the leaderboards
in this space, and so we do not intend our choices
to limit exploration here.

For our post-hoc leaderboard (Table 1), we sur-
veyed the literature to find representative systems.
We cannot claim that we have exhaustively listed all
systems, and any omissions should count as limita-
tions of our work. In particular, we note that we did
not consider any re-ranking models, which would
consume the top-k results from any of the retrievers
we test and produce a re-arranged list. Such models
would only add weight to our argument of diverse
cost-quality tradeoffs, as re-ranking systems must
determine which retriever to re-rank, how many
passages to re-rank per query (i.e., setting k), and
what hardware to use for re-ranking models, which
are typically especially accelerator-intensive (i.e.,
require GPUs or TPUs).

For our experimental comparisons, we chose
four models that we take to be representative of
broad approaches in this area. However, different

choices from within the space of all possibilities
might have led to different conclusions. In addition,
our experimental protocols may interact with our
model choices in important ways. For example,
the literature on SPLADE suggests that it may be
able to fit its index on machines with 8 or 16 GB of
RAM, but our experiments used 32 GB of RAM.

Our hope is merely that our results help encour-
age the development of leaderboards that offer nu-
merous, fine-grained comparisons from many mem-
bers of the scientific community, and that these
leaderboards come to reflect different values for
scoring and ranking such systems as well.

Acknowledgements

This work was partially supported by IBM as
a founding member of the Stanford Institute
for Human-Centered Artificial Intelligence (HAI).
This research was supported in part by affiliate
members and other supporters of the Stanford
DAWN project—Ant Financial, Facebook, Google,
and VMware—as well as Toyota Research Insti-
tute, Cisco, SAP, and the NSF under CAREER
grant CNS-1651570. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not nec-
essarily reflect the views of the National Science
Foundation. Toyota Research Institute ("TRI") pro-
vided funds to assist the authors with their research
but this article solely reflects the opinions and con-
clusions of its authors and not TRI or any other
Toyota entity. Omar Khattab is supported by the
Apple Scholars in AI/ML fellowship.

References

Akari Asai, Jungo Kasai, Jonathan H Clark, Kenton
Lee, Eunsol Choi, and Hannaneh Hajishirzi. 2020.
XOR QA: Cross-lingual Open-Retrieval Question
Answering. arXiv preprint arXiv:2010.11856.

Baidu Research. 2016. DeepBench: Benchmarking
deep learning operations on different hardware. Elec-
tronic resource.

Adam Berger and John Lafferty. 1999. Information re-
trieval as statistical translation. In Proceedings of the
22nd annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 222–229.

Leonid Boytsov. 2020. Traditional IR rivals neural mod-
els on the MS MARCO document ranking leader-
board. arXiv preprint arXiv:2012.08020.

11621

https://arxiv.org/abs/2010.11856
https://arxiv.org/abs/2010.11856
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://arxiv.org/pdf/2012.08020
https://arxiv.org/pdf/2012.08020
https://arxiv.org/pdf/2012.08020


Cody Coleman, Deepak Narayanan, Daniel Kang, Tian
Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. 2017. Dawn-
bench: An end-to-end deep learning benchmark and
competition. Training, 100(101):102.

Joshua Engels, Benjamin Coleman, Vihan Lakshman,
and Anshumali Shrivastava. 2022. DESSERT: An
Efficient Algorithm for Vector Set Search with Vector
Set Queries. arXiv preprint arXiv:2210.15748.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. Splade: Sparse lexical and expan-
sion model for first stage ranking. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2288–2292.

Luyu Gao and Jamie Callan. 2021. Unsupervised Cor-
pus aware Language Model Pre-training for Dense
Passage Retrieval. arXiv preprint arXiv:2108.05540.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-Scale Similarity Search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and effective passage search via contextu-
alized late interaction over BERT. In Proceedings
of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39–48.

Carlos Lassance and Stéphane Clinchant. 2022. An Ef-
ficiency Study for SPLADE Models. In Proceedings
of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2220–2226.

Minghan Li, Sheng-Chieh Lin, Barlas Oguz, Asish
Ghoshal, Jimmy Lin, Yashar Mehdad, Wen-tau Yih,
and Xilun Chen. 2022. CITADEL: Conditional To-
ken Interaction via Dynamic Lexical Routing for Ef-
ficient and Effective Multi-Vector Retrieval. arXiv
preprint arXiv:2211.10411.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher R’e, Diana Acosta-Navas, Drew A.
Hudson, E. Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan S. Kim,
Neel Guha, Niladri S. Chatterji, O. Khattab, Peter

Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas F. Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holis-
tic evaluation of language models. arXiv preprint
arXiv:2211.09110.

Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan,
Ishan Chattopadhyaya, John Foley, Grant Ingersoll,
Craig Macdonald, and Sebastiano Vigna. 2016. To-
ward reproducible baselines: The open-source IR
reproducibility challenge. In European Conference
on Information Retrieval, pages 408–420. Springer.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaichen Chang, Junqi Dai, Yixin Liu, Zihuiwen Ye,
and Graham Neubig. 2021a. ExplainaBoard: An ex-
plainable leaderboard for NLP. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, pages 280–289, Online. Association
for Computational Linguistics.

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling
Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing
Huang, and Xipeng Qiu. 2021b. Towards efficient
NLP: A standard evaluation and a strong baseline.
arXiv preprint arXiv:2110.07038.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya
Jain, Ledell Wu, Robin Jia, Christopher Potts, Ad-
ina Williams, and Douwe Kiela. 2021. Dynaboard:
An evaluation-as-a-service platform for holistic next-
generation benchmarking. In Advances in Neural
Information Processing Systems, volume 34, pages
10351–10367.

Joel Mackenzie, Andrew Trotman, and Jimmy Lin.
2021. Wacky weights in learned sparse represen-
tations and the revenge of score-at-a-time query eval-
uation. arXiv preprint arXiv:2110.11540.

Peter Mattson, Christine Cheng, Gregory Diamos, Cody
Coleman, Paulius Micikevicius, David Patterson,
Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor
Bittorf, David Brooks, Dehao Chen, Debo Dutta,
Udit Gupta, Kim Hazelwood, Andy Hock, Xinyuan
Huang, Daniel Kang, David Kanter, Naveen Ku-
mar, Jeffery Liao, Deepak Narayanan, Tayo Ogun-
tebi, Gennady Pekhimenko, Lillian Pentecost, Vijay
Janapa Reddi, Taylor Robie, Tom St John, Carole-
Jean Wu, Lingjie Xu, Cliff Young, and Matei Zaharia.
2020a. Mlperf training benchmark. In Proceedings
of Machine Learning and Systems, volume 2, pages
336–349.

Peter Mattson, Vijay Janapa Reddi, Christine Cheng,
Cody Coleman, Greg Diamos, David Kanter,
Paulius Micikevicius, David Patterson, Guenther
Schmuelling, Hanlin Tang, Gu-Yeon Wei, and Carole-
Jean Wu. 2020b. MLPerf: An industry standard
benchmark suite for machine learning performance.
IEEE Micro, 40(2):8–16.

11622

https://arxiv.org/abs/2210.15748
https://arxiv.org/abs/2210.15748
https://arxiv.org/abs/2210.15748
https://arxiv.org/abs/2108.05540
https://arxiv.org/abs/2108.05540
https://arxiv.org/abs/2108.05540
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.48550/ARXIV.2211.10411
https://doi.org/10.48550/ARXIV.2211.10411
https://doi.org/10.48550/ARXIV.2211.10411
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2211.09110
https://doi.org/10.18653/v1/2021.acl-demo.34
https://doi.org/10.18653/v1/2021.acl-demo.34
https://arxiv.org/abs/2110.07038
https://arxiv.org/abs/2110.07038
https://papers.nips.cc/paper/2021/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://papers.nips.cc/paper/2021/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://papers.nips.cc/paper/2021/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://arxiv.org/abs/2110.11540
https://arxiv.org/abs/2110.11540
https://arxiv.org/abs/2110.11540
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1109/MM.2020.2974843
https://doi.org/10.1109/MM.2020.2974843


Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated MAchine
Reading COmprehension dataset. In CoCo@ NIPs.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021. RocketQv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking.
arXiv preprint arXiv:2110.07367.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline M. Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at TREC-3. NIST Special Publication
Sp, 109:109.

Keshav Santhanam, Omar Khattab, Christopher Potts,
and Matei Zaharia. 2022a. PLAID: An efficient en-
gine for late interaction retrieval. In Proceedings of
the 31st ACM International Conference on Informa-
tion & Knowledge Management, page 1747–1756,
New York, NY, USA. Association for Computing
Machinery.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022b. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3715–3734, Seat-
tle, United States. Association for Computational
Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Proceedings of
the Neural Information Processing Systems Track on
Datasets and Benchmarks, volume 1.

Xing Wu, Guangyuan Ma, Meng Lin, Zijia Lin,
Zhongyuan Wang, and Songlin Hu. 2022. Contex-
tual Mask Auto-Encoder for dense passage retrieval.
arXiv preprint arXiv:2208.07670.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Re-
trieval. arXiv preprint arXiv:2007.00808.

Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin.
2021. Mr. tydi: A multi-lingual benchmark for dense
retrieval. arXiv preprint arXiv:2108.08787.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo,
Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and
Jimmy Lin. 2022. Making a miracl: Multilingual in-
formation retrieval across a continuum of languages.
arXiv preprint arXiv:2210.09984.

11623

https://arxiv.org/abs/2110.07367
https://arxiv.org/abs/2110.07367
https://doi.org/10.1145/3511808.3557325
https://doi.org/10.1145/3511808.3557325
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper-round2.pdf
https://arxiv.org/abs/2208.07670
https://arxiv.org/abs/2208.07670
https://arxiv.org/abs/2007.00808
https://arxiv.org/abs/2007.00808
https://arxiv.org/abs/2007.00808


Supplementary Materials

A Experiment Details

This section provides additional detail for the experiments presented in §3.
Datasets We use the MS MARCO Passage Ranking task unmodified. We use the data from the

XOR-Retrieve task (part of XOR-TyDi benchmark), but pre-translate all queries to English. All systems
use the same set of pre-translated queries. Table 5 lists the number of training and dev examples for each
dataset. We refer to the original papers for details on filters for personally identifiable information and
offensive content, as well as domain coverage. We believe we have used all datasets in accordance with
their licensing terms.6

Dataset Training Dev

MS MARCO 808731 6980
XOR-TyDi 15250 2113

Table 5: Example Counts for Training and Dev Sets in MS MARCO and XOR-TyDi

Software We use commit 7b5aa6c of PrimeQA and commit d96f5f1 of SPLADE. We use the provided
pip environment files provided by PrimeQA (shared across BM25, DPR, and PLAID ColBERTv2) and
SPLADE. The only modification we made to the respective environments was upgrading the PyTorch
version in both cases to 1.13. We use Python version 3.9.13 for all experiments. We believe we have used
all software in accordance with their licensing terms.7

Hyperparameters Table 6 lists the maximum query and passage lengths used for each neural model:

Model |Q| |D|

DPR 32 128
PLAID ColBERTv2 32 300
BT-SPLADE-Large 256 256

Table 6: Maximum query and passage lengths used for each neural model as measured in number of tokens.

Methodology We run 10 warm-up iterations for each system to mitigate noise from the initial ramp-up
phase. We used Docker containers to ensure precise resource allocations across CPU threads, GPUs, and
memory. Our experiments are conducted on AWS instances. The times to instantiate the instance and load
model environments are not included in latency calculations.

Model Pre-training and Finetuning The BM25 model used in our experiments was not pretrained or
finetuned for either MSMARCO or XOR-TyDi. Our DPR model used the facebook/dpr-question_encoder-
multiset-base and facebook/dpr-ctx_encoder-multiset-base pretrained models and finetunes them on the
MSMARCO training set; for XOR-TyDi, our DPR model is not finetuned beyond the original configuration.
For BT-SPLADE-Large, we use the naver/efficient-splade-VI-BT-large-doc and naver/efficient-splade-
VI-BT-large-query pretrained models and finetune them on the MSMARCO training set; for XOR-TyDi,
we do not finetune them. For PLAID, we use the original model given in Santhanam et al. (2022a) and
finetune it using the MSMARCO training set; for XOR-TyDi, we do not finetune the model. When
finetuning for MS MARCO or XOR-TyDi, we finetuned for three epochs.

B Additional Dynascore-Based Leaderboards

6MS MARCO is available without license for non-commercial use. XOR-TyDi is distributed under the CC BY-SA 4.0
license.

7PrimeQA is distributed under the Apache 2.0 license. ColBERTv2 is distributed under the MIT license.
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System Hardware Dynascore

1 ColBERTv2-M 16 CPU, 32 GB memory 19.127
2 ColBERTv2-S 16 CPU, 32 GB memory 19.118
3 ColBERTv2-L 16 CPU, 32 GB memory 18.857
4 ColBERTv2-S 1 GPU, 1 CPU, 32 GB memory 18.698
5 BT-SPLADE-L 16 CPU, 32 GB memory 18.637
6 BT-SPLADE-L 1 CPU, 32 GB memory 18.616
7 ColBERTv2-M 1 GPU, 1 CPU, 32 GB memory 18.385
8 ColBERTv2-S 1 CPU, 32 GB memory 17.912
9 BT-SPLADE-L 1 GPU, 1 CPU, 32 GB memory 17.839
10 ColBERTv2-S 1 GPU, 16 CPU, 32 GB memory 17.331
11 ColBERTv2-L 1 GPU, 1 CPU, 32 GB memory 17.080
12 ColBERTv2-M 1 CPU, 32 GB memory 17.060
13 ColBERTv2-M 1 GPU, 16 CPU, 32 GB memory 16.619
14 BT-SPLADE-L 1 GPU, 16 CPU, 32 GB memory 16.062
15 ColBERTv2-L 1 CPU, 32 GB memory 15.858
16 DPR 16 CPU, 32 GB memory 15.635
17 DPR 1 GPU, 1 CPU, 32 GB memory 15.330
18 ColBERTv2-L 1 GPU, 16 CPU, 32 GB memory 14.940
19 DPR 1 CPU, 32 GB memory 14.583
20 DPR 1 GPU, 16 CPU, 32 GB memory 14.252
21 BM25 1 CPU, 4 GB memory 9.263
22 BM25 1 CPU, 32 GB memory 9.263
23 BM25 16 CPU, 32 GB memory 9.248
24 BM25 16 CPU, 4 GB memory 9.246
25 BM25 1 GPU, 1 CPU, 32 GB memory 9.072
26 BM25 1 GPU, 1 CPU, 4 GB memory 9.049
27 BM25 1 GPU, 16 CPU, 32 GB memory 8.565
28 BM25 1 GPU, 16 CPU, 4 GB memory 8.551

(a) Default weighting per Ma et al. 2021:
{Accuracy: 0.5, Cost: 0.25, Latency: 0.25}.

System Hardware Dynascore

1 ColBERTv2-M 16 CPU, 32 GB memory 35.577
2 ColBERTv2-L 16 CPU, 32 GB memory 35.515
3 ColBERTv2-M 1 GPU, 1 CPU, 32 GB memory 35.429
4 ColBERTv2-S 16 CPU, 32 GB memory 35.344
5 ColBERTv2-S 1 GPU, 1 CPU, 32 GB memory 35.260
6 ColBERTv2-M 1 CPU, 32 GB memory 35.164
7 ColBERTv2-L 1 GPU, 1 CPU, 32 GB memory 35.160
8 ColBERTv2-S 1 CPU, 32 GB memory 35.102
9 ColBERTv2-M 1 GPU, 16 CPU, 32 GB memory 35.076
10 ColBERTv2-S 1 GPU, 16 CPU, 32 GB memory 34.986
11 ColBERTv2-L 1 CPU, 32 GB memory 34.916
12 ColBERTv2-L 1 GPU, 16 CPU, 32 GB memory 34.732
13 BT-SPLADE-L 16 CPU, 32 GB memory 34.151
14 BT-SPLADE-L 1 CPU, 32 GB memory 34.147
15 BT-SPLADE-L 1 GPU, 1 CPU, 32 GB memory 33.992
16 BT-SPLADE-L 1 GPU, 16 CPU, 32 GB memory 33.636
17 DPR 16 CPU, 32 GB memory 28.487
18 DPR 1 GPU, 1 CPU, 32 GB memory 28.426
19 DPR 1 CPU, 32 GB memory 28.277
20 DPR 1 GPU, 16 CPU, 32 GB memory 28.210
21 BM25 1 CPU, 4 GB memory 16.813
22 BM25 1 CPU, 32 GB memory 16.813
23 BM25 16 CPU, 32 GB memory 16.810
24 BM25 16 CPU, 4 GB memory 16.809
25 BM25 1 GPU, 1 CPU, 32 GB memory 16.774
26 BM25 1 GPU, 1 CPU, 4 GB memory 16.770
27 BM25 1 GPU, 16 CPU, 32 GB memory 16.673
28 BM25 1 GPU, 16 CPU, 4 GB memory 16.670

(b) Heavy emphasis on quality:
{Accuracy: 0.9, Cost: 0.05, Latency: 0.05}.

System Hardware Dynascore

1 ColBERTv2-M 1 GPU, 16 CPU, 32 GB memory 29.388
2 ColBERTv2-M 1 GPU, 1 CPU, 32 GB memory 29.347
3 ColBERTv2-M 16 CPU, 32 GB memory 29.300
4 ColBERTv2-S 1 GPU, 16 CPU, 32 GB memory 29.267
5 ColBERTv2-S 1 GPU, 1 CPU, 32 GB memory 29.259
6 ColBERTv2-L 1 GPU, 16 CPU, 32 GB memory 29.181
7 ColBERTv2-S 16 CPU, 32 GB memory 29.172
8 ColBERTv2-L 16 CPU, 32 GB memory 29.122
9 ColBERTv2-L 1 GPU, 1 CPU, 32 GB memory 28.961
10 BT-SPLADE-L 16 CPU, 32 GB memory 28.278
11 BT-SPLADE-L 1 CPU, 32 GB memory 28.186
12 BT-SPLADE-L 1 GPU, 1 CPU, 32 GB memory 28.183
13 BT-SPLADE-L 1 GPU, 16 CPU, 32 GB memory 28.175
14 ColBERTv2-S 1 CPU, 32 GB memory 28.045
15 ColBERTv2-M 1 CPU, 32 GB memory 27.422
16 ColBERTv2-L 1 CPU, 32 GB memory 26.407
17 DPR 16 CPU, 32 GB memory 23.634
18 DPR 1 GPU, 1 CPU, 32 GB memory 23.622
19 DPR 1 GPU, 16 CPU, 32 GB memory 23.586
20 DPR 1 CPU, 32 GB memory 22.708
21 BM25 16 CPU, 32 GB memory 13.958
22 BM25 16 CPU, 4 GB memory 13.958
23 BM25 1 CPU, 32 GB memory 13.952
24 BM25 1 CPU, 4 GB memory 13.945
25 BM25 1 GPU, 1 CPU, 32 GB memory 13.944
26 BM25 1 GPU, 1 CPU, 4 GB memory 13.936
27 BM25 1 GPU, 16 CPU, 32 GB memory 13.931
28 BM25 1 GPU, 16 CPU, 4 GB memory 13.930

(c) Cost is not a concern, and low latency is key:
{Accuracy: 0.75, Cost: 0.01, Latency: 0.24}.

System Hardware Dynascore

1 ColBERTv2-S 16 CPU, 32 GB memory 15.138
2 ColBERTv2-M 16 CPU, 32 GB memory 15.108
3 BT-SPLADE-L 1 CPU, 32 GB memory 14.851
4 ColBERTv2-L 16 CPU, 32 GB memory 14.820
5 BT-SPLADE-L 16 CPU, 32 GB memory 14.806
6 ColBERTv2-S 1 GPU, 1 CPU, 32 GB memory 14.375
7 ColBERTv2-S 1 CPU, 32 GB memory 14.146
8 ColBERTv2-M 1 GPU, 1 CPU, 32 GB memory 13.855
9 BT-SPLADE-L 1 GPU, 1 CPU, 32 GB memory 13.584
10 ColBERTv2-M 1 CPU, 32 GB memory 13.363
11 DPR 16 CPU, 32 GB memory 12.451
12 ColBERTv2-L 1 CPU, 32 GB memory 12.278
13 ColBERTv2-S 1 GPU, 16 CPU, 32 GB memory 12.132
14 ColBERTv2-L 1 GPU, 1 CPU, 32 GB memory 12.055
15 DPR 1 GPU, 1 CPU, 32 GB memory 11.962
16 DPR 1 CPU, 32 GB memory 11.537
17 ColBERTv2-M 1 GPU, 16 CPU, 32 GB memory 10.932
18 BT-SPLADE-L 1 GPU, 16 CPU, 32 GB memory 10.687
19 DPR 1 GPU, 16 CPU, 32 GB memory 10.231
20 ColBERTv2-L 1 GPU, 16 CPU, 32 GB memory 8.365
21 BM25 1 CPU, 4 GB memory 7.408
22 BM25 1 CPU, 32 GB memory 7.401
23 BM25 16 CPU, 32 GB memory 7.371
24 BM25 16 CPU, 4 GB memory 7.369
25 BM25 1 GPU, 1 CPU, 32 GB memory 7.095
26 BM25 1 GPU, 1 CPU, 4 GB memory 7.065
27 BM25 1 GPU, 16 CPU, 32 GB memory 6.278
28 BM25 1 GPU, 16 CPU, 4 GB memory 6.256

(d) Cost is a very significant concern:
{Accuracy: 0.4, Cost: 0.4, Latency: 0.2}.

Table 7: Dynascores for MS MARCO, for different weightings of the metrics.
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System Hardware Dynascore

1 ColBERTv2-L 16 CPU, 64 GB memory 21.241
2 BT-SPLADE-L 16 CPU, 64 GB memory 21.119
3 ColBERTv2-M 16 CPU, 64 GB memory 21.063
4 BT-SPLADE-L 1 CPU, 64 GB memory 20.753
5 ColBERTv2-M 1 GPU, 16 CPU, 64 GB memory 20.255
6 BT-SPLADE-L 1 GPU, 16 CPU, 64 GB memory 20.123
7 ColBERTv2-M 1 GPU, 1 CPU, 64 GB memory 19.904
8 ColBERTv2-L 1 GPU, 16 CPU, 64 GB memory 19.700
9 ColBERTv2-S 16 CPU, 64 GB memory 19.649
10 BT-SPLADE-L 1 GPU, 1 CPU, 64 GB memory 19.380
11 ColBERTv2-S 1 GPU, 16 CPU, 64 GB memory 19.157
12 ColBERTv2-L 1 GPU, 1 CPU, 64 GB memory 19.123
13 ColBERTv2-S 1 GPU, 1 CPU, 64 GB memory 18.723
14 ColBERTv2-S 1 CPU, 64 GB memory 15.934
15 BM25 1 CPU, 64 GB memory 12.635
16 BM25 16 CPU, 64 GB memory 12.630
17 BM25 1 GPU, 16 CPU, 64 GB memory 11.847
18 BM25 1 GPU, 1 CPU, 64 GB memory 11.794
19 ColBERTv2-M 1 CPU, 64 GB memory 11.563
20 ColBERTv2-L 1 CPU, 64 GB memory 7.708
21 DPR 1 GPU, 1 CPU, 64 GB memory 7.452
22 DPR 1 GPU, 16 CPU, 64 GB memory 7.386
23 DPR 16 CPU, 64 GB memory 7.188
24 DPR 1 CPU, 64 GB memory 5.442

(a) Default weighting per Ma et al. 2021:
{Accuracy: 0.5, Cost: 0.25, Latency: 0.25}.

System Hardware Dynascore

1 ColBERTv2-L 16 CPU, 64 GB memory 42.200
2 ColBERTv2-L 1 GPU, 16 CPU, 64 GB memory 41.892
3 ColBERTv2-L 1 GPU, 1 CPU, 64 GB memory 41.777
4 ColBERTv2-M 16 CPU, 64 GB memory 40.557
5 ColBERTv2-M 1 GPU, 16 CPU, 64 GB memory 40.395
6 ColBERTv2-M 1 GPU, 1 CPU, 64 GB memory 40.325
7 ColBERTv2-L 1 CPU, 64 GB memory 39.494
8 BT-SPLADE-L 16 CPU, 64 GB memory 39.048
9 BT-SPLADE-L 1 CPU, 64 GB memory 38.975
10 BT-SPLADE-L 1 GPU, 16 CPU, 64 GB memory 38.849
11 BT-SPLADE-L 1 GPU, 1 CPU, 64 GB memory 38.700
12 ColBERTv2-M 1 CPU, 64 GB memory 38.657
13 ColBERTv2-S 16 CPU, 64 GB memory 37.362
14 ColBERTv2-S 1 GPU, 16 CPU, 64 GB memory 37.263
15 ColBERTv2-S 1 GPU, 1 CPU, 64 GB memory 37.177
16 ColBERTv2-S 1 CPU, 64 GB memory 36.619
17 BM25 1 CPU, 64 GB memory 23.599
18 BM25 16 CPU, 64 GB memory 23.598
19 BM25 1 GPU, 16 CPU, 64 GB memory 23.441
20 BM25 1 GPU, 1 CPU, 64 GB memory 23.431
21 DPR 1 GPU, 1 CPU, 64 GB memory 15.010
22 DPR 1 GPU, 16 CPU, 64 GB memory 14.997
23 DPR 16 CPU, 64 GB memory 14.958
24 DPR 1 CPU, 64 GB memory 14.608

(b) Heavy emphasis on quality:
{Accuracy: 0.9, Cost: 0.05, Latency: 0.05}.

System Hardware Dynascore

1 ColBERTv2-L 1 GPU, 16 CPU, 64 GB memory 34.073
2 ColBERTv2-L 1 GPU, 1 CPU, 64 GB memory 33.859
3 ColBERTv2-L 16 CPU, 64 GB memory 33.385
4 ColBERTv2-M 1 GPU, 16 CPU, 64 GB memory 33.149
5 ColBERTv2-M 1 GPU, 1 CPU, 64 GB memory 33.020
6 ColBERTv2-M 16 CPU, 64 GB memory 32.609
7 BT-SPLADE-L 16 CPU, 64 GB memory 32.076
8 BT-SPLADE-L 1 GPU, 16 CPU, 64 GB memory 32.036
9 BT-SPLADE-L 1 GPU, 1 CPU, 64 GB memory 31.752
10 BT-SPLADE-L 1 CPU, 64 GB memory 31.718
11 ColBERTv2-S 1 GPU, 16 CPU, 64 GB memory 30.689
12 ColBERTv2-S 1 GPU, 1 CPU, 64 GB memory 30.532
13 ColBERTv2-S 16 CPU, 64 GB memory 30.239
14 ColBERTv2-S 1 CPU, 64 GB memory 26.788
15 ColBERTv2-M 1 CPU, 64 GB memory 23.835
16 ColBERTv2-L 1 CPU, 64 GB memory 20.881
17 BM25 16 CPU, 64 GB memory 19.276
18 BM25 1 CPU, 64 GB memory 19.264
19 BM25 1 GPU, 16 CPU, 64 GB memory 19.258
20 BM25 1 GPU, 1 CPU, 64 GB memory 19.243
21 DPR 1 GPU, 1 CPU, 64 GB memory 12.305
22 DPR 1 GPU, 16 CPU, 64 GB memory 12.277
23 DPR 16 CPU, 64 GB memory 11.558
24 DPR 1 CPU, 64 GB memory 9.913

(c) Cost is not a concern, and low latency is key:
{Accuracy: 0.75, Cost: 0.01, Latency: 0.24}.

System Hardware Dynascore

1 BT-SPLADE-L 16 CPU, 64 GB memory 16.853
2 ColBERTv2-L 16 CPU, 64 GB memory 16.832
3 ColBERTv2-M 16 CPU, 64 GB memory 16.743
4 BT-SPLADE-L 1 CPU, 64 GB memory 16.565
5 ColBERTv2-S 16 CPU, 64 GB memory 15.638
6 BT-SPLADE-L 1 GPU, 16 CPU, 64 GB memory 15.259
7 ColBERTv2-M 1 GPU, 16 CPU, 64 GB memory 14.954
8 ColBERTv2-M 1 GPU, 1 CPU, 64 GB memory 14.491
9 ColBERTv2-S 1 GPU, 16 CPU, 64 GB memory 14.444
10 BT-SPLADE-L 1 GPU, 1 CPU, 64 GB memory 14.291
11 ColBERTv2-S 1 GPU, 1 CPU, 64 GB memory 13.871
12 ColBERTv2-L 1 GPU, 16 CPU, 64 GB memory 13.714
13 ColBERTv2-L 1 GPU, 1 CPU, 64 GB memory 12.958
14 ColBERTv2-S 1 CPU, 64 GB memory 12.566
15 BM25 1 CPU, 64 GB memory 10.088
16 BM25 16 CPU, 64 GB memory 10.069
17 ColBERTv2-M 1 CPU, 64 GB memory 8.843
18 BM25 1 GPU, 16 CPU, 64 GB memory 8.806
19 BM25 1 GPU, 1 CPU, 64 GB memory 8.731
20 DPR 16 CPU, 64 GB memory 5.669
21 ColBERTv2-L 1 CPU, 64 GB memory 5.582
22 DPR 1 GPU, 1 CPU, 64 GB memory 5.450
23 DPR 1 GPU, 16 CPU, 64 GB memory 5.368
24 DPR 1 CPU, 64 GB memory 4.244

(d) Cost is a very significant concern:
{Accuracy: 0.4, Cost: 0.4, Latency: 0.2}.

Table 8: Dynascores for XOR-TyDi, for different weightings of the metrics.
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