Know Where You’re Going:
Meta-Learning for Parameter-Efficient Fine-Tuning

Mozhdeh Gheini, Xuezhe Ma, Jonathan May
Information Sciences Institute
University of Southern California
{gheini, xuezhema, jonmay}@isi.edu

Abstract

A recent family of techniques, dubbed
lightweight fine-tuning methods, facilitates
parameter-efficient transfer by updating only a
small set of additional parameters while keep-
ing the parameters of the original model frozen.
While proven to be an effective approach, there
are no existing studies on if and how such
knowledge of the downstream fine-tuning ap-
proach calls for complementary measures af-
ter pre-training and before fine-tuning. In this
work, we show that taking the ultimate choice
of fine-tuning into consideration boosts the per-
formance of parameter-efficient fine-tuning. By
relying on optimization-based meta-learning
using MAML with certain modifications for
our distinct purpose, we prime the pre-trained
model specifically for parameter-efficient fine-
tuning, resulting in gains of up to 4.96 points
on cross-lingual NER fine-tuning. Our abla-
tion settings and analyses further reveal that the
specific approach we take to meta-learning is
crucial for the attained gains.'

1 Introduction

The pre-training — fine-tuning paradigm is the
dominant practice in natural language processing,
owing to state-of-the-art performance on a wide
variety of tasks (Qiu et al., 2020). The impres-
sive effectiveness of this approach does not come
at a low price. It requires iterative adjustment of
anywhere between millions (Devlin et al., 2019) to
staggering billions of parameters (Chowdhery et al.,
2022). With this many parameters, fine-tuning all
parameters, as is common, becomes exceedingly
computationally expensive: where many models
need to be fine-tuned, serving a separate copy of
all a model’s parameters for each instance is costly
in terms of storage.

Recent works on parameter-efficient (PE)? fine-

'0ur code is available at https://github.com/
MGheini/meta-learning-for-peft.

*We use descriptors “parameter-efficient” and
“lightweight” interchangeably.

tuning address this issue by introducing methods
that alternatively rely on only changing a tiny set
of extra parameters (Houlsby et al., 2019; Li and
Liang, 2021; Hambardzumyan et al., 2021; Lester
et al., 2021; Hu et al., 2022; He et al., 2022) or a
small fraction of the existing model’s parameters
(Gheini et al., 2021; Ben Zaken et al., 2022). These
methods have been shown to be competitive with
full fine-tuning despite modifying only as little as
0.01% of all the parameters (Liu et al., 2022).

With this shift towards lightweight fine-tuning,
we ask if the pre-training needs to be comple-
mented in any way as well. Ought we further
modify the pre-trained model, knowing that we
are going to opt for PE fine-tuning? Specifically,
can we extend pre-training in a way that leads to
parameter initializations that better suit PE fine-
tuning than the initializations coming outright from
the pre-trained language model (PLM) and used by
full fine-tuning?

In this work, we show that, in fact, we can use
optimization-based meta-learning to further mod-
ify the parameters from a PLM so that they are
more beneficial for PE fine-tuning and result in im-
proved performance on the target task after transfer.
We term this step, which sits between conventional
pre-training and fine-tuning, “priming.” Specifi-
cally, as we describe in §3.2, we tweak the popular
meta-learning approach MAML (Finn et al., 2017)
for priming and crucially simulate the actual PE
fine-tuning procedure in the inner loop of the algo-
rithm. This means that instead of including all the
parameters in the inner loop gradient update, we
only consider those that will be updated by the PE
fine-tuning method. Thus, during the meta-gradient
update in the outer loop of the algorithm, this in-
formation about the ultimate fine-tuning approach
will be incorporated into the pre-trained values.

We choose cross-lingual transfer for named en-
tity recognition (NER) as the testbed to show the
effectiveness of priming stage. We show that prim-

11602

Findings of the Association for Computational Linguistics: ACL 2023, pages 11602-11612
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/MGheini/meta-learning-for-peft
https://github.com/MGheini/meta-learning-for-peft

ing a PLM boosts the performance of cross-lingual
PE fine-tuning for NER by up to 4.96 F1 points. We
provide the details of our lightweight fine-tuning
setup in §4. Our ablation study in §5.1 reveals
that simulating the fine-tuning procedure is indis-
pensable to the observed improvements: it is not
meta-learning in general, but how we formulate the
meta-learning setup that leads to observed gains.

Our contributions are: 1) We propose a meta-
learning based mechanism termed “priming” to
further update the parameters of a PLM in a way
that improves the final PE transfer performance;
2) We show the effectiveness of priming for cross-
lingual transfer for NER as an exhibit; 3) We justify
and shed more light on the importance of the de-
sign elements in the priming algorithm through an
ablation analysis.

2 Meta-Learning Background

The meta-learning problem can be viewed as ac-
quiring meta-parameters 0 using meta-training data
Dineta-train Such that 6, when used for adaptation,
improves performance on a new task with training
data Dyain (Finn, 2019). Optimization-based meta-
learning algorithms formulate adaptation as an op-
timization procedure during which task parameters
¢ are obtained by fine-tuning meta-parameters 6:

¢ =0 av¢9£(9, Dtrain) (1)

where L is the task-dependent loss function.

Under this model of adaptation, meta-learning
becomes a search for meta-parameters 6 such that
when used as initialization, optimal ¢ may be found
via fine-tuning over many tasks. During meta-
training, a “task” is modeled as a tuple of a train-
ing (support) set D" and a testing (query) set D,
Hence, Dmeta-train = {(DY, DY), -, (DX, DY)}
Specifically, MAML (Finn et al., 2017), which we
take inspiration from, moves towards solution 6*
for meta-parameters 6 through a bi-level optimiza-
tion procedure:

inner optimization loop
0* =argmin Y L(6 — aVeL(0, D), DY)

0
(D}, Dy)

€ Dmeta-lmin

outer optimization loop
2
where the inner loop takes gradient steps with re-
spect to 6 using the support set of each task to
obtain task parameters ¢; for each one. The outer
loop optimization process then takes meta-gradient

steps with respect to 6 by evaluating post-inner-
update performance on the query set of each task,
modifying 6 to be a better initialization.

3 Priming for Parameter-Efficient
Fine-Tuning through Meta-Learning

3.1 Problem Formulation

Provided with a PLM parameterized by parame-
ters ¢, and a dataset D for a target task, conven-
tional fine-tuning practice adds a task-specific head
parameterized by parameters 6} (initialized ran-
domly) to the PLM and updates all parameters
0, U 0p,. To avoid such expensive updates with
all parameters, PE fine-tuning designates an addi-
tional set of parameters (initialized randomly) as
0, as the only parameters to be updated along 65,
while keeping 6, frozen. Note that ¢, is deliber-
ately added in such a way that |0}, + 04| < |60,

With this alteration, perhaps prior to fine-tuning,
0, can first be further updated to reach 675, which,
if transferred specifically under the parameter-
efficient setting, results in better performance. We
call this extra step between pre-training and fine-
tuning and the problem of finding such parameters
“priming.” As an additional benefit, during priming
we can also learn parameters ¢ to be used instead
of random initializations #,. Priming does not take
away the benefits of PE fine-tuning: ultimately fine-
tuning still relies on changing (and hence storing)
the same number of parameters that would change
without priming (|0| + |0}|); it just starts from
more suitable initializations ¢ and ;.

3.2 Priming Algorithm

We model priming as an optimization-based meta-
learning problem. However, we refrain from di-
rectly applying MAML to it. This is due to the key
observation that under PE fine-tuning, the adap-
tation procedure, as shown in Equation 1, has
changed: only a subset of parameters are updated
during adaptation. Hence, it should be properly
simulated in the inner loop in Equation 2. So dur-
ing priming, we only include 6, and 6}, in the inner
loop, mimicking PE fine-tuning and do not include
tp. 0, and 0, then receive the meta-gradients in the
outer loop and change accordingly.

Algorithm 1 outlines the adaptations used for
priming. The inner loop (lines 3-8) simulates ex-
actly how we are going to ultimately fine-tune in
a lightweight fashion by only updating 6, and 6;,.
The statement marked as red and without a line

11603

Algorithm 1 Priming for Lightweight Fine-Tuning (PE FT)

Require:
Require: Dmeta—train = {(Dtlra Dtls)a Tty (ng Dﬁf)}
Require:

Require:
Require: S: number of inner gradient steps

«, [3: learning rates

1: while not converged do
2: Sample a batch of tasks 7
3: forall 7, € 7 do
4: 9 =6
5 fors<«<1,...,5do
6
0;, = 0}, — (kv%ﬁﬁ(fgf,l)%)

7: end for
end for

model fo—g,06, U6, pre-trained params 6, task head params 6y, and PE FT params 6,

L ={L4,...,L:}: setof loss functions corresponding to all potential different tasks

0l = 6. — Oév‘g(ilﬁ’]’i(fgi,p%); (92 = 62 — av%ﬁﬁ(fgi,l?%)
> In MAML, but not here as we are simulating PE FT.

9: Meta-gradient steps 6, = 0, — 8V, X7, L7, (foi, DY)s
Op = 0p — BV, 27, L7, (foi, D)

10: Op, = 0;
11: end while
12: return 6, 0,

number, which additionally updates pre-trained pa-
rameters 0, would be executed by MAML. But we
crucially omit it in our proposed priming algorithm.
At the end of the outer loop (line 9), we take meta-
gradient steps with respect to the parameters the
initializations of which we are trying to enhance,
0, and 0. As 0}, will be initialized from scratch for
each new task at the time of fine-tuning, we do not
compute meta-gradients for it, and simply assign it
to one of the calculated sets in the inner loop, e.g.,
the first set corresponding to the first task in the
sampled batch of tasks (0, = H}L on line 10).

4 Experimental Setup

While our proposed priming algorithm is model-
agnostic, we need a concrete PE fine-tuning and
meta-training setup for empirical evaluation.

For lightweight fine-tuning, we choose adapters
(Houlsby et al., 2019). In our experiments, we
add a single adapter after the last layer of the pre-
trained Transformer. Our model then computes the
logits for input as: h(g(f(z;6p);04);60r), Where
f is the pre-trained model, g is the single adapter
layer at the top, and A is the task-specific head.

As a testbed, we experiment with cross-lingual
NER. For this case, we can design the priming
(meta-learning) and fine-tuning stages as such:
Meta-Learning: Using one or more source lan-

guages, we construct the meta dataset and run prim-
ing. Per our problem formulation, ¢, and 60, are
shared among languages, but each source language
[has a separate head, parameterized by 0y, .
Fine-Tuning: For each desired target language, we
use the pre-trained and adapter parameter initial-
izations acquired during meta-learning along with
randomly initialized new head parameters as the
model’s starting point. We then fine-tune only the
adapter parameters and the head parameters. In our
single adapter layer setup, this means only updating
fewer than 0.4% of all the parameters.

4.1 Data Details

We use the WikiAnn multilingual NER dataset (Pan
et al., 2017), which is available from the Datasets
Python library (Lhoest et al., 2021). The train, vali-
dation, and test splits, as provided by Rahimi et al.
(2019), range from 100 to 20k instances. In our ex-
periments, we use the English and Spanish sets as
source languages, each with 20k instances during
the priming stage. At fine-tuning, we evaluate the
quality of transfer for six target languages: Hindi
(5k instances), Afrikaans (5k), Azerbaijani (10k),
Lithuanian (10k), Estonian (15k), and Dutch (20k).

11604

Hindi Afrikaans Azerbaijani Lithuanian Estonian Dutch

‘g‘ &0 1/Full FT (100%) 86.73 91.29 87.70 89.43 90.88 9147
= g 2/HT (3e-3%) 72.71 79.11 74.24 78.34 81.23 78.90
= & 3/AT (0.4%) 77.76 84.10 81.08 83.00 85.13 83.89
o, 4/Meta Priming — AT 81.30 87.76 82.98 86.03 86.73 88.85

< £ S/FT Priming — AT 80.34 87.70 81.74 85.84 86.43 88.61
= § 6/MP [MAML Loop] — AT 80.15 86.10 81.54 85.66 86.06 88.15
~ 7mp [1 Inner Step] — AT 80.54 86.48 80.74 84.87 86.43 88.72

Table 1: Entity-level micro F1 under each of the fine-tuning settings for NER across six languages. Bold numbers
indicate top-scoring methods in each category. Percentages next to each setting are the fraction of parameters that
are updated (all AT settings have the same percentage). Priming as described in this work is most effective in
improving PE fine-tuning performance and closing the gap with Full FT. All priming experiments are run twice
(including the priming stage), and we report the average score over two runs.

4.2 Implementation Details

We use mBERTgasg as the PLM. The meta-
gradient in the outer loop relies on second-order
gradients, which are expensive to compute. Thus,
following Finn et al. (2017), we use a first-order
approximation in our implementation. For the in-
ner loop, we take five steps of stochastic gradient
descent with a learning rate of 0.03. For the outer
loop, we use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of Se-5 and
a linear learning rate scheduler. We provide addi-
tional details on implementation and frameworks
used in Appendix B.

4.3 Baselines and Method Evaluation Settings

To assess the effectiveness of priming, we run two
categories of experiments as listed in Table 1. The
setting numbers in the table match those used below
(e.g., 1/Full FT < 1/Full fine-tuning baseline).
The first category includes no priming:
1/Full fine-tuning baseline corresponds to fine-
tuning 6, U 0, where 0}, is initialized randomly. It
provides an upper bound for PE fine-tuning, and
notably is not parameter-efficient.
2/Head tuning (HT) baseline corresponds to freez-
ing 0, (treating the PLM as a feature extractor) and
fine-tuning 0, where 60}, is initialized randomly. It
provides a lower bound for PE fine-tuning.
3/Adapter tuning (AT) baseline corresponds to
fine-tuning 6, U0}, It is the baseline PE fine-tuning,
and we investigate if priming improves upon it.
We also experiment with a second category,
which incorporates priming:
4/Adapter tuning after priming as proposed cor-
responds to fine-tuning ¢, U 05, where 0,, (frozen)
and 6, are acquired through priming, and 6}, is ini-

tialized randomly. Compared to the adapter tuning
baseline (3), it measures how much priming can
improve PE fine-tuning.

5/Adapter tuning after priming through fine-
tuning is the same as setting 4 except that in-
stead of priming as proposed, we simply fine-tune
0, U 0, U 8, on the same data that would have con-
structed the meta dataset before proceeding with
PE fine-tuning just as in setting 4. This is to illus-
trate that mere exposure to data during priming is
not enough, and treating it as an optimization-based
meta-learning problem is beneficial.

Additionally, we have two ablation settings to
study the effect of simulating PE fine-tuning in the
inner loop and the number of inner steps in priming
algorithm, which we will discuss in §5.1 and §5.2.

5 Results and Analysis

Per Table 1, among all PE fine-tuning settings with-
out any priming and those with priming, 4/Meta
Priming — AT, which is the materialization of
our priming algorithm, is the best-performing. In
comparison with baseline PE fine-tuning (3/AT),
our approach results in gains of up to 4.96 points,
indicating that priming with the knowledge of the
ultimate transfer process is substantially helpful.
Additionally, the approach results in gains of up to
1.24 points compared to fine-tuning-based priming
(5/FT Priming — AT), signifying that it is not just
a matter of exposure to more data, but a matter of
appropriately using the extra exposure to simulate
the eventual fine-tuning approach.

5.1 Ablation 1: Substitute MAML Inner Loop

To highlight the importance of the change we intro-
duce in MAML, we run the ablation setting 6/MP

11605

B Meta-Learn w/ PE FT inner loop simulation -> Full FT I Meta-Learn w/ Full FT inner loop simulation -> Full FT Full FT
94
92.46 92.59
91.96 91.82 92 0147

= 9175 91.29 90,68 90.88 91.15 -
)
3 89.49 89.52 .
2 g9s 89.25 89.43
S 88.37
g 87.38 87.7
= 87.25 86.73

85

Hindi Afrikaans Azerbaijani Lithuanian Estonian Dutch

Figure 1: Comparison between different priming strategies for downstream full fine-tuning. In this case, as opposed
to parameter-efficient fine-tuning, it is usually beneficial to use full fine-tuning in the inner loop.

[MAML Loop] — AT (MP stands for Meta Prim-
ing). This is essentially 4/Meta Priming — AT
where we update all parameters, and not only those
involved in PE fine-tuning, in the inner loop. It
can be observed across the board that, in fact, sim-
ulating the downstream PE fine-tuning setting is
essential for superior performance.

We can also generalize the question at the core
of this work: Can we expect gains by using
optimization-based meta-learning and simulating
the eventual transfer method, whatever it might be?

To determine the answer, we repeat the settings
in this section (4/Meta Priming — AT and 6/MP
[MAML Loop] — AT), but replace adapter tun-
ing (AT) with full fine-tuning. As shown in Fig-
ure 1, in most cases, matching downstream full
fine-tuning with a parameter-dense MAML inner
loop (green bar in the middle in each series) is supe-
rior to mixing it with PE optimization in the inner
loop. We hypothesize that the discrepancy in the
case of Lithuanian and Estonian is due to the fact
that full fine-tuning is powerful, and potentially
more robust to heterogeneous priming conditions.

5.2 Ablation 2: Number of Inner Steps

We find that under first-order MAML, the num-
ber of inner steps is critical for reaching better ini-
tialization. The ablation setting 7/MP [1 Inner
Step] — AT, which is identical to 4/Meta Prim-
ing — AT with only one inner step, highlights this.
4/Meta Priming — AT with five inner steps, al-
ways performs better.

To provide an intuition as to why that is, a visu-
alization of how parameters receive updates under
first-order MAML by Wild (2020) is provided in
Figure 2. Meta-parameters 6 are updated in the
direction of the gradient of the query set loss cal-
culated at the value reached at the end of the inner
loop. Hence, the fewer the number of inner steps,

| 4

v

6

Figure 2: First-order approximation of meta-gradient
update. Illustration courtesy of Wild (2020). After three
steps of inner updates (§ ——— ¢), 8 is updated by the
gradient of the query set loss evaluated at ¢ (the green
dashed arrow).

the more the updates will be similar to those under
regular fine-tuning (in the limit of zero inner steps,
it will be equivalent to conventional fine-tuning).
So additional inner steps are beneficial.

6 Conclusion

We propose to add “priming” between the con-
ventional pre-training and parameter-efficient fine-
tuning to incorporate awareness of the transfer pro-
cedure in the PLM. We model this as optimization-
based meta-learning, which integrates such knowl-
edge by updating pre-trained parameters under PE
fine-tuning simulation. We show the effectiveness
of priming in improving baseline PE fine-tuning
on cross-lingual transfer for NER. Further analysis
reveals that our decisions to 1) model priming with
meta-learning instead of simple fine-tuning and
2) simulate the actual PE fine-tuning in the meta-
learning instead of using it unadjusted contribute
to the effectiveness of priming.

11606

Limitations

We would like to acknowledge three categories of
limitation that we recognize in this work:

* We evaluate the effectiveness of priming in a
setting where the tasks used during the prim-
ing stage and the fine-tuning stage offer no
additional disparity besides being different in
language, i.e., they are all NER tasks coming
from the same domain. While this degree of
variation is consistent with the application of
meta-learning in other modalities, e.g., vision
(Finn et al., 2017), whether or not the gains we
report here remain at the same strength when
we introduce diverse tasks during priming and
fine-tuning still needs to be tested. Examples
of such diversity include strong domain shift
or using one task, e.g., POS, for priming and
another, e.g., NER, during fine-tuning.

* It’s not clear how the size of the pre-trained
model affects the necessity of priming. Prim-
ing might consistently result in gains, or its
benefits might fade away with larger PLMs
encoding stronger language capabilities. This
also needs to be evaluated.

* Finally, our work does not implement higher-
order gradient calculation and does not evalu-
ate and discuss the potential additional gains
that might come as a result. That opportunity
can be further explored as well.

Acknowledgements

The authors would like to thank their colleagues
at CUTELABNAME and USC NLP at large for
their support and feedback. The authors also thank
anonymous reviewers for their feedback and sug-
gestions, which helped improve this draft. This
work is based in part on research sponsored by Air
Force Research Laboratory (AFRL) under agree-
ment number FA8750-19-1-1000.

References

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1-9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William Falcon and The PyTorch Lightning team. 2019.
PyTorch Lightning.

Chelsea Finn. 2019. Meta-learning recipe, black-box
adaptation, optimization-based approaches. Last ac-
cessed 14 May 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages
1126-1135. PMLR.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. 2021.
Cross-attention is all you need: Adapting pretrained

11607

https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.3828935
http://cs330.stanford.edu/fall2019/slides/cs330_lecture3.pdf
http://cs330.stanford.edu/fall2019/slides/cs330_lecture3.pdf
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.18653/v1/2021.emnlp-main.132

Transformers for machine translation. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 1754-1765,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4921-4933, Online. Association for
Computational Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Khurram Javed and Martha White. 2019. Meta-learning
representations for continual learning. In Advances
in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario gaéko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175—184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. In
Advances in Neural Information Processing Systems,
volume 35, pages 1950-1965. Curran Associates,
Inc.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022. MetalCL: Learning to learn
in context. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2791-2809, Seattle, United States.
Association for Computational Linguistics.

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes
Bjerva, and Isabelle Augenstein. 2020. Zero-shot
cross-lingual transfer with meta learning. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
45474562, Online. Association for Computational
Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual
name tagging and linking for 282 languages. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1946—1958, Vancouver, Canada. As-
sociation for Computational Linguistics.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
CoRR, abs/2003.08271.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively multilingual transfer for NER. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 151-164, Florence,
Italy. Association for Computational Linguistics.

Cody Marie Wild. 2020. A search for efficient meta-
learning: Mamls, reptiles, and related species. Last
accessed 16 May 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

11608

https://doi.org/10.18653/v1/2021.emnlp-main.132
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
http://arxiv.org/abs/2003.08271
http://arxiv.org/abs/2003.08271
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015
https://towardsdatascience.com/a-search-for-efficient-meta-learning-mamls-reptiles-and-related-species-e47b8fc454f2
https://towardsdatascience.com/a-search-for-efficient-meta-learning-mamls-reptiles-and-related-species-e47b8fc454f2

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Guoqing Zheng, Subhabrata Mukherjee,
Milad Shokouhi, Graham Neubig, and Ahmed Has-
san Awadallah. 2021. MetaXL: Meta representa-
tion transformation for low-resource cross-lingual
learning. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 499-511, Online. Association
for Computational Linguistics.

11609

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.42
https://doi.org/10.18653/v1/2021.naacl-main.42
https://doi.org/10.18653/v1/2021.naacl-main.42

A Related Work

Our work takes inspiration from and can be con-
textualized within both the existing lightweight
fine-tuning literature and meta-training literature.
Lightweight fine-tuning methods are a response to
the ever-growing size of the PLMs, which makes
full fine-tuning prohibitively expensive. Recently,
different flavors of PE fine-tuning have been ex-
plored. One category includes methods that add
and solely update a new set of parameters; like
adapters (Houlsby et al., 2019), prefix tuning (Li
and Liang, 2021), and LoRA (Hu et al., 2022), to
name a few. Another category of methods does not
add any additional parameters and instead relies on
updating a small subset of existing parameters of
the pre-trained model; for instance, BitFit (Ben Za-
ken et al., 2022) and exclusive cross-attention fine-
tuning (Gheini et al., 2021).

Despite the rich literature on different parameter-
efficient transfer approaches, to the best of our
knowledge, no existing study investigates whether
in response pre-training practices need to be up-
dated in any way. In this work, we attempt to
address that void. He et al. (2022) provide a uni-
fied framework within which several flavors of
lightweight fine-tuning can be interpreted. There-
fore we, while studying an adapter-based approach
in this work, expect priming to be fundamentally
applicable and useful to other flavors too.

We are also inspired by the body of work
that takes advantage of optimization-based meta-
learning to come by initializations that would be
better suited for a specific objective. Xia et al.
(2021) use meta-learning to learn representation
transformations that transform representations of
a high-resource language in a way that they be-
come more beneficial for effective transfer to low-
resource languages. Nooralahzadeh et al. (2020)
effectively use meta-learning to leverage training
data for zero-shot and few-shot cross-lingual trans-
fer on Question Answering and Natural Language
Inference. Javed and White (2019) use a meta-
objective to optimize representations for continual
learning.

Perhaps closest in spirit to our objective and try-
ing to bring these two lines of work together, Min
et al. (2022) offer a meta-learning-like solution to
“learn to learn in context’: using our terminology,
while we address priming for PE fine-tuning, they
address priming for in-context learning (Brown
et al., 2020). In-context learning is a few-shot

learning technique with no additional training re-
quired, where an LM is used to label new instances
after conditioning on only a few supervised exam-
ples. Min et al. (2022) propose to better prepare
the model for such an inference process on a new
unseen task by including a tuning stage where the
model is trained to do the same on simulated in-
put sequences from a set of available tasks. The
extra training stage that they include can be seen
as equivalent to our priming stage, where in both
cases, the goal is to prepare the model for what is
subsequently coming.

B Additional Implementation Details

Our implementation is based off of the Transform-
ers (Wolf et al., 2020) and Lightning (Falcon and
The PyTorch Lightning team, 2019) libraries. For
our pre-trained model, we use multilingual BERT
(mBERT, bert-base-multilingual-cased)
(Devlin et al., 2019). For the adapter layer, we set
the bottleneck dimension as 64 in our experiments.
Our experiments (both priming and fine-tuning
stages) are each run on one NVIDIA Quadro RTX
8000 GPU, taking a maximum of twelve hours.

C Licenses of Artifacts Used

We use the following artifacts in compliance with
their terms of use:

* WikiAnn dataset by Pan et al. (2017) with
splits as provided by Rahimi et al. (2019) un-
der Apache License 2.0

e Transformers (Wolf et al., 2020) under
Apache License 2.0

* Lightning (Falcon and The PyTorch Lightning
team, 2019) under Apache License 2.0

11610

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section "Limitations" after "Conclusion”

[0 A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?
Sections 4.1 and 4.2

¥/ B1. Did you cite the creators of artifacts you used?
Sections 4.1 and 4.2 and Appendix C

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix C

vf B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix C

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4.1

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.1

C ¥ Dpid you run computational experiments?
Section 5
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Table 1 and Appendix B

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

11611

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.2 and Appendix B

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Table 1

O C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Not applicable. Left blank.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

11612

