
Findings of the Association for Computational Linguistics: ACL 2023, pages 11560–11574
July 9-14, 2023 ©2023 Association for Computational Linguistics

Structure-Aware Language Model Pretraining Improves Dense Retrieval
on Structured Data

Xinze Li1, Zhenghao Liu1∗, Chenyan Xiong2, Shi Yu3, Yu Gu1, Zhiyuan Liu3 and Ge Yu1

1Department of Computer Science and Technology, Northeastern University, China
2Microsoft Research, United States

3Department of Computer Science and Technology, Institute for AI, Tsinghua University, China
Beijing National Research Center for Information Science and Technology, China

Abstract
This paper presents Structure Aware DeNse
ReTrievAl (SANTA) model, which encodes
user queries and structured data in one uni-
versal embedding space for retrieving struc-
tured data. SANTA proposes two pretraining
methods to make language models structure-
aware and learn effective representations for
structured data: 1) Structured Data Align-
ment, which utilizes the natural alignment re-
lations between structured data and unstruc-
tured data for structure-aware pretraining. It
contrastively trains language models to repre-
sent multi-modal text data and teaches models
to distinguish matched structured data for un-
structured texts. 2) Masked Entity Prediction,
which designs an entity-oriented mask strategy
and asks language models to fill in the masked
entities. Our experiments show that SANTA
achieves state-of-the-art on code search and
product search and conducts convincing re-
sults in the zero-shot setting. SANTA learns
tailored representations for multi-modal text
data by aligning structured and unstructured
data pairs and capturing structural semantics
by masking and predicting entities in the struc-
tured data. All codes are available at https:
//github.com/OpenMatch/OpenMatch.

1 Introduction

Dense retrieval has shown strong effectiveness in
lots of NLP applications, such as open domain
question answering (Chen et al., 2017), conversa-
tional search (Qu et al., 2020; Yu et al., 2021), and
fact verification (Thorne et al., 2018). It employs
pretrained language models (PLMs) to encode un-
structured data as high-dimensional embeddings,
conduct text matching in an embedding space and
return candidates to satisfy user needs (Xiong et al.,
2021b; Karpukhin et al., 2020).

Besides unstructured data, structured data, such
as codes, HTML documents and product descrip-
tions, is ubiquitous in articles, books, and Web

∗indicates corresponding author.

Figure 1: Dense Retrieval Pipeline on Structured Data.

pages, and plays the same important roles in un-
derstanding text data. Learning the semantics be-
hind text structures to represent structured data is
crucial to building a more self-contained retrieval
system. The structured data modeling stimulates
researchers to build several benchmarks to evalu-
ate model performance, such as code search and
product search (Husain et al., 2019; Reddy et al.,
2022). The structured data retrieval tasks require
models to retrieve structured data according to user
queries. Dense retrieval (Karpukhin et al., 2020; Li
et al., 2022) shows a promising way to build a re-
trieval system on structured data by encoding user
queries and structured data in an embedding space
and conducting text matching using the embedding
similarity. Nevertheless, without structure-aware
pretraining, most PLMs lack the necessary knowl-
edge to understand structured data and conduct
effective representations for retrieval (Feng et al.,

11560

https://github.com/OpenMatch/OpenMatch
https://github.com/OpenMatch/OpenMatch

2020; Hu et al., 2022; Gururangan et al., 2020).

Lots of structure-aware pretraining methods
are proposed to continuously train PLMs to be
structure-aware and better represent structured
data (Wang et al., 2021; Feng et al., 2020). They de-
sign task-specific masking strategies and pretrain
PLMs with mask language modeling. Neverthe-
less, only using mask language modeling may not
sufficiently train PLMs to conduct effective rep-
resentations for structured data (Li et al., 2020;
Fang et al., 2020). Some natural alignment sig-
nals between structured and unstructured data, such
as code-description documentation and product
description-bullet points, provide an opportunity to
pretrain the structured data representations. Using
these alignment signals, PLMs can be contrastively
trained (Wu et al., 2020; Karpukhin et al., 2020) to
match the representations of aligned structured and
unstructured data and understand the semantics of
structured data with the help of natural language.

In this paper, we propose Structure Aware
DeNse ReTrievAl (SANTA), a dense retrieval
method on structured data. As shown in Figure 1,
SANTA encodes queries and structured data in an
embedding space for retrieval. SANTA designs
two pretraining tasks to continuously train PLMs
and make PLMs sensitive to structured data. The
Structured Data Alignment task contrastively trains
PLMs to align matched structured-unstructured
data pairs in the embedding space, which helps
to represent structured data by bridging the modal-
ity gap between structured and unstructured data.
The Masked Entity Prediction task masks entities
and trains PLMs to fill in the masked parts, which
helps to capture semantics from structured data.

Our experiments show that SANTA achieves
state-of-the-art in retrieving structured data, such
as codes and products. By aligning structured and
unstructured data, SANTA maps both structured
and unstructured data in one universal embedding
space and learns more tailored embeddings for
multi-modal text data matching. The masked entity
prediction task further guides SANTA to capture
more crucial information for retrieval and better
distinguish structured and unstructured data. De-
pending on these pretraining methods, SANTA can
even achieve comparable retrieval results with exist-
ing code retrieval models without finetuning, show-
ing that our structure-aware pretraining can benefit
structured data understanding, multi-modal text
data representation modeling and text data match-

ing between user queries and structured data.

2 Related Work

Dense retrieval (Yu et al., 2021; Karpukhin et al.,
2020; Xiong et al., 2021b; Li et al., 2021) encodes
queries and documents using pretrained language
model (PLM) (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020) and maps them in an embed-
ding space for retrieval. However, during retrieving
candidates, the documents can be passages in nat-
ural language (Nguyen et al., 2016; Kwiatkowski
et al., 2019), images (Chen et al., 2015), structured
data documents (Lu et al., 2021) or multi-modal
documents (Chang et al., 2021), which challenges
existing dense retrieval models to handle different
kinds of modalities of knowledge sources to build
a self-contained retrieval system.

Existing work (Guo et al., 2021) also builds
dense retrievers for retrieving structured data and
mainly focuses on learning representations for code
data. Leaning more effective representations with
PLMs is crucial for dense retrieval (Gao and Callan,
2021; Luan et al., 2021), thus several continuous
training models are proposed. They usually em-
ploy mask language modeling to train PLMs on
structured data and help to memorize the semantic
knowledge using model parameters (Wang et al.,
2021; Feng et al., 2020; Roziere et al., 2021).

CodeBERT uses replaced token detection (Clark
et al., 2020) and masked language modeling (De-
vlin et al., 2019) to learn the lexical semantics of
structured data (Lu et al., 2021). DOBF (Roziere
et al., 2021) further considers the characteristics of
code-related tasks and replaces class, function and
variable names with special tokens. CodeT5 (Wang
et al., 2021) not only employs the span mask strat-
egy (Raffel et al., 2020) but also masks the iden-
tifiers in codes to teach T5 (Raffel et al., 2020)
to generate these identifiers, which helps better
distinguish and comprehend the identifier informa-
tion in code-related tasks. Nevertheless, the mask
language modeling (Devlin et al., 2019) may not
sufficiently train PLMs to represent texts and show
less effectiveness in text matching tasks (Chen and
He, 2021; Gao et al., 2019; Li et al., 2020; Reimers
and Gurevych, 2019; Li et al., 2020).

The recent development of sentence represen-
tation learning methods has achieved convincing
results (Fang et al., 2020; Yan et al., 2021). The
work first constructs sentence pairs using back-
translation (Fang et al., 2020), some easy deforma-

11561

Figure 2: The Structure-Aware Pretraining Methods of SANTA. We use both Structured Data Alignment (SDA) and
Masked Entity Prediction (MEP) methods for pretraining.

tion operations (Wu et al., 2020), original sequence
cropping (Meng et al., 2021) or adding dropout
noise (Gao et al., 2021). Then they contrastively
train PLMs to learn sentence representations that
can be used to distinguish the matched sentence
pairs with similar semantics.

3 Methodology

In this section, we introduce our Structure Aware
DeNse ReTrievAl (SANTA) model. First, we intro-
duce the preliminary of dense retrieval (Sec. 3.1).
And then we describe our structure-aware pretrain-
ing method (Sec. 3.2).

3.1 Preliminary of Dense Retrieval

Given a query q and a structured data document
d, dense retriever (Karpukhin et al., 2020; Xiong
et al., 2021a) encodes queries and structured data
documents with pretrained language models (De-
vlin et al., 2019; Liu et al., 2019) and maps them
in an embedding space for retrieval.

Following previous work (Ni et al., 2022), we
can use T5 (Raffel et al., 2020) to encode the query
q and structured data document d as low dimen-
sional representations hq and hd, using the repre-
sentation of the first token from the decoder:

hq = T5(q);hd = T5(d). (1)

Then we can calculate the similarity score f(q, d)
between the representations of query hq and struc-

tured data document hd:

f(q, d) = sim(hq, hd), (2)

where sim is the dot product function to calculate
the relevance between query q and structured data
document d.

Finally, we can finetune the representations of
query and document by minimizing the loss LDR:

LDR = − log
ef(q,d

+)

ef(q,d+) +
∑

d−∈D− ef(q,d−)
, (3)

where d+ is relevant to the given query q. D−

is the collection of irrelevant structured data doc-
uments, which are sampled from inbatch neg-
atives (Karpukhin et al., 2020) or hard nega-
tives (Xiong et al., 2021a).

3.2 Structure Aware Pretraining
Existing language models are usually pretrained
on unstructured natural languages with masked lan-
guage modeling (Devlin et al., 2019; Liu et al.,
2019). Nevertheless, these models struggle to bet-
ter understand the semantics represented by data
structures, which limits the effectiveness of lan-
guage models in representing structured data for
retrieval (Feng et al., 2020; Wang et al., 2021).

To get more effective representations for struc-
tured data, we come up with structure-aware pre-
training methods, aiming to help language models
better capture the semantics behind the text struc-
tures. As shown in Figure 2, we continuously fine-

11562

tune T5 using two pretraining tasks by minimizing
the following loss function L:

L = LSDA + LMEP, (4)

where LSDA and LMEP are two loss functions from
structured data alignment (SDA) (Sec. 3.2.1) and
masked entity prediction (MEP) (Sec. 3.2.2), which
are two subtasks of our structure-aware language
model pretraining method.

3.2.1 Structured Data Alignment

The structured data alignment task teaches lan-
guage models to optimize the embedding space
by aligning structured data with unstructured data.

For the structured data document d, there are
usually some natural language passages that share
the same semantics with d, e.g. the descriptions
of codes and bullet points of products. With the
help of these text passages p in natural language,
we can enhance the model’s ability in representing
structured data by continuously training language
models to align the semantics between structured
and unstructured data. Through text data alignment,
the representations of structured data are benefited
from the intrinsic natural language knowledge of
pretrained language models.

Specifically, we can use T5 to encode the text
passage and structured data document as hp and hd,
respectively, calculate the similarity score f(p, d)
between text passage p and structured data docu-
ment d, and then continuously train language mod-
els using the contrastive loss LSDA:

LSDA = − log
ef(p,d

+)

ef(p,d+) +
∑

d−∈D− ef(p,d−)

= −f(p, d+) + log(ef(p,d
+) +

∑

d−∈D−
ef(p,d

−)),
(5)

where D− consists of the irrelevant structured data
sampled from in-batch negatives.

As shown in Eq. 5, the structured data alignment
training task helps to optimize the pretrained lan-
guage models to assign similar embedding features
to < p, d+ > pairs and pull d− away from p in the
embedding space (Wang and Isola, 2020). Such a
contrastive training method can bridge the seman-
tic gap between structured and unstructured data
and map them in one universal embedding space,
benefiting learning representations of multi-modal
text data (Liu et al., 2023).

3.2.2 Masked Entity Prediction
The masked entity prediction guides the language
models to better understand the semantics of struc-
tured data by recovering masked entities. SANTA
masks entities for continuous training instead of
using the random masking in mask language mod-
eling (Devlin et al., 2019; Raffel et al., 2020).

As shown in previous work (Sciavolino et al.,
2021; Zhang et al., 2019), entity semantics show
strong effectiveness in learning text data represen-
tations during retrieval. Thus, we first recognize
mentioned entities that appeared in the structured
data document Xd = {x1, ent1, x2, ent2, ..., entn}
and mask them as the input for T5 encoder module:

Xmask
d = {x1, <mask>1, x2, <mask>2, ..., xn}, (6)

where <mask>i is a special token to denote the i-th
masked span. We replace the same entity with the
same special token. Then we continuously train T5
to recover these masked entities using the following
loss function:

LMEP =
k∑

j=1

− logP (Yd(tj)|Xmask
d , Yd(t1,...,j−1)), (7)

where Yd(tj) denotes the j-th to-
ken in the sequence Yd. And Yd =
{<mask>1, ent1, ...,<mask>n, entn} denotes
the ground truth sequence that contains masked
entities. During training, we optimize the language
model to fill up masked spans and better capture
entity semantics by picking up the necessary
information from contexts to recover the masked
entities, understanding the structure semantics
of text data, and aligning coherent entities in the
structured data (Ye et al., 2020).

4 Experimental Methodology

In this section, we describe the datasets, evaluation
metrics, baselines, and implementation details in
our experiments.

Dataset. The datasets in our experiments consist
of two parts, which are used for continuous training
and finetuning, respectively.

Continuous Training. During continuous train-
ing, two datasets, CodeSearchNet (Husain et al.,
2019) and ESCI (large) (Reddy et al., 2022), are
employed to continuously train PLMs to conduct
structure-aware text representations for codes and
shopping products. In our experiments, we regard
code documentation descriptions and product bullet

11563

Split Code Search Product Search
Query-Code Pair Query Product

Train 251,820 18,277 367,946
Dev 9,604 2,611 51,706
Test 19,210 8,956 181,701

Table 1: Data Statistics of Model Finetuning.

points as unstructured data for aligning structured
data, codes and product descriptions, during train-
ing. More details of pretraining data processing are
shown in Appendix A.2.

Finetuning. For downstream retrieval tasks on
structured data, we use Adv (Lu et al., 2021), and
ESCI (small) (Reddy et al., 2022) to finetune mod-
els for code search and product search, respectively.
All data statistics are shown in Table 1. Each query
in ESCI (small) has 20 products on average, which
are annotated with four-class relevance labels: Ex-
act, Substitute, Complement, and Irrelevant. We
also establish a two-class testing scenario by only
regarding the products that are annotated with the
Exact label as relevant ones.

Evaluation Metrics. We use MRR@100
and NDCG@100 to evaluate model performance,
which is the same as the previous work (Lu et al.,
2021; Reddy et al., 2022; Feng et al., 2020).

Baselines. We compare SANTA with several
dense retrieval models on code search and product
search tasks.

We first employ three pretrained language mod-
els to build dense retrievers for structured data
retrieval, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and T5 (Raffel et al.,
2020), which are widely used in existing dense re-
trieval models (Karpukhin et al., 2020; Xiong et al.,
2021a; Ni et al., 2022). All these models are trained
with in-batch negatives (Karpukhin et al., 2020).

For the code search task, we also compare
SANTA with three typical and task-specific mod-
els, CodeBERT (Feng et al., 2020), CodeT5 (Wang
et al., 2021) and CodeRetriever (Li et al., 2022).
CodeBERT inherits the BERT architecture and is
trained on code corpus using both mask language
modeling and replaced token detection. CodeT5
employs the encoder-decoder architecture for mod-
eling different code-related tasks and teaches the
model to focus more on code identifiers. CodeRe-
triever is the state-of-the-art, which continuously
trains GraphCodeBERT (Guo et al., 2021) with
unimodal and bimodal contrastive training losses.

Implementation Details. This part describes

the experiment details of SANTA.
We initialize SANTA with T5-base and CodeT5-

base for product search and code search. For
masked entity prediction, we regard code identi-
fiers and some noun phrases as entities in codes
and product descriptions, respectively. More de-
tails about identifying entities are shown in Ap-
pendix A.3.

During continuous training, we set the learning
rate as 1e-4 and 5e-5 for product search and code
search, and the training epoch as 6. During finetun-
ing, we conduct experiments by training SANTA
using inbatch negatives and hard negatives. we
set the training epoch to 60 and learning rate to
5e-5 for product search, while the training epoch
and learning rate are 6 and 1e-5 for code search.
And we follow ANCE (Xiong et al., 2021a), start
from inbatch finetuned SANTA (Inbatch) model
and continuously finetune it with hard negatives to
conduct the SANTA (Hard Negative) model. The
learning rates are set to 1e-5 and 1e-6 for product
search and code search. These hard negatives are
randomly sampled from the top 100 retrieved nega-
tive codes/product descriptions from the SANTA
(Inbatch) model.

All models are implemented with PyTorch, Hug-
gingface transformers (Wolf et al., 2019) and Open-
Match (Yu et al., 2023). We use Adam optimizer to
optimize SANTA, set the batch size to 16 and set
the warmup proportion to 0.1 in our experiments.

5 Evaluation Results

In this section, we focus on exploring the per-
formance of SANTA on code search and product
search tasks, the advantages of SANTA in repre-
senting structured data, and the effectiveness of
proposed pretraining methods.

5.1 Overall Performance

The performance of SANTA on structured data
retrieval is shown in Table 2.

SANTA shows strong zero-shot ability by com-
paring its performance with finetuned models
and achieving 6.8% improvements over finetuned
CodeT5 on code search. Such impressive improve-
ments demonstrate that our pretrained strategies
have the ability to enable the advantages of PLMs
in representing structured data without finetuning.

After finetuning, SANTA maintains its advan-
tages by achieving about 8% and 2% improve-
ments over CodeT5 and T5 on code search and

11564

Model
Code Product

MRR
NDCG

Two-C Four-C
Zero-Shot
BERT (Devlin et al., 2019) 0.20 71.46 72.45
RoBERTa (Liu et al., 2019) 0.03 71.25 72.24
CodeBERT (Feng et al., 2020) 0.03 - -
CodeRetriever (Li et al., 2022) 34.7 - -
T5 (Raffel et al., 2020) 0.03 70.21 71.25
CodeT5 (Wang et al., 2021) 0.03 - -
SANTA 46.1 76.38 77.14
Fine-Tuning
BERT (Devlin et al., 2019) 16.7 78.29 79.06
RoBERTa (Liu et al., 2019) 18.3 79.59 80.29
CodeBERT (Feng et al., 2020) 27.2 - -
CodeRetriever 43.0 - -
CodeRetriever (AR2) (Li et al., 2022) 46.9 - -
T5 (Raffel et al., 2020) 23.8 79.77 80.46
CodeT5 (Wang et al., 2021) 39.3 - -
SANTA (Inbatch) 47.3 80.76 81.41
SANTA (Hard Negative) 47.5 82.59 83.15

Table 2: Retrieval Effectiveness of Different Models
on Structured Data. For product search, there are two
ways to evaluate model performance. Two-C regards
the query-product relevance as two classes, Relevant (1)
and Irrelevant (0). Four-C is consistent with the ESCI
dataset (Reddy et al., 2022) and sets the relevance labels
with the following four classes: Exact (1), Substitute
(0.1), Complement (0.01), and Irrelevant (0).

product search, respectively. It shows the critical
role of structure-aware pretraining, which makes
language models sensitive to text data structures
and better represents structured data. On code re-
trieval, SANTA outperforms the state-of-the-art
code retrieval model CodeRetriever with 4.3% im-
provements under the same inbatch training setting.
SANTA also beats CodeRetriever (AR2), which is
finetuned with more sophisticated training strate-
gies (Zhang et al., 2022) and the larger batch size.

Besides, we show the retrieval performance of
SANTA on CodeSearch dataset in Appendix A.4.

5.2 Ablation Study

In this subsection, we conduct ablation studies to
further explore the roles of different components in
SANTA on retrieving structured data.

We start from CodeT5/T5 models and continu-
ously train CodeT5/T5 using two proposed training
tasks, Masked Entity Prediction (MEP) and Struc-
tured Data Alignment (SDA) to show their effec-
tiveness in teaching models to better learn seman-
tics from structured data. Meanwhile, we compare
MEP with the random span masking strategy (Raf-
fel et al., 2020; Wang et al., 2021) to evaluate the
effectiveness of different masking strategies. The

Model
Code Product

MRR NDCG
Two-C Four-C

Zero-Shot
T5 (Baseline) 0.03 70.21 71.25
T5 (w/ MEP) 0.03 70.56 71.58
T5 (w/ SDA) 45.01 76.64 77.40
SANTA (Span Mask) 35.88 77.37 78.11
SANTA (Entity Mask) 46.08 76.38 77.14
Fine-Tuning
T5 (Baseline) 39.30 79.77 80.46
T5 (w/ MEP) 38.46 79.50 80.29
T5 (w/ SDA) 46.98 80.42 81.11
SANTA (Span Mask) 42.11 80.31 80.99
SANTA (Entity Mask) 47.28 80.76 81.41

Table 3: The Retrieval Performance of Ablation Models
of SANTA on Structured Data Retrieval. Masked Entity
Prediction (MEP) and Structured Data Alignment (SDA)
are two pretrained tasks that are proposed by SANTA.

retrieval performance in both zero-shot and finetun-
ing settings is shown in Table 3.

Compared with our baseline model, MEP and
SDA show distinct performance in structured data
retrieval. As expected, MEP shows almost the same
performance as the baseline model. It shows that
only mask language modeling usually shows less
effectiveness in learning representations for struc-
tured data, even using different masking strategies.
Different from MEP, SDA shows significant im-
provements in both structured data retrieval tasks,
especially the code retrieval task. Our SDA train-
ing method contrastively trains T5 models using
the alignment relations between structured data
and unstructured data, which helps to bridge the
modality gap between structured and unstructured
data, maps structured and unstructured data in one
universal embedding space, and learns more ef-
fective representations for retrieval. When adding
additional task MEP to T5 (w/ SDA), the retrieval
performance of SANTA is consistently improved.
This phenomenon shows that mask language mod-
eling is still effective to teach T5 to better capture
the structure semantics and conduct more effective
text representations for structured data by filling up
the masked entities of structured data.

We also compare different masking strategies
that are used during mask language modeling. Our
entity masking strategy usually outperforms the
random span masking strategy, showing the crucial
role of entities in structured data understanding.
With the masked entity prediction task, SANTA
achieves comparable ranking performance with
finetuned models, which illustrates that structure-

11565

(a) Ranking Probability of
Matched Text Data Pairs.

(b) Embedding Distribution of
Structured Data.

Figure 3: Retrieval Effectiveness on Code Search. We
sample several query-code pairs from the test split of
code search data and show the ranking probability dis-
tribution of query-related codes in Figure 3(a). Then
Figure 3(b) presents the learned embedding space of
structured data of codes.

aware pretraining is starting to benefit downstream
tasks, such as structured data retrieval. The next
experiment further explores how these pretraining
strategies guide models to learn representations of
structured/unstructured data.

5.3 Embedding Visualization of Structured
and Unstructured Data

This section further explores the characteristics of
embedding distributions of structured and unstruc-
tured data learned by SANTA.

As shown in Figure 3, we first conduct experi-
ments to show the retrieval effectiveness of CodeT5
and SANTA under the zero-shot setting. The rank-
ing probability distribution of relevant query-code
pairs is shown in Figure 3(a). Even though CodeT5
is pretrained with code text data, it seems that
CodeT5 learns ineffective representations for struc-
tured data, assigns a uniform ranking probability
distribution for all testing examples and fails to
pick up the related structured data for the given
queries. On the contrary, SANTA assigns much
higher ranking probabilities to matched structured
documents, demonstrating that our structured data
alignment task has the ability to guide the model
to conduct more effective text data representations
to align queries with its relevant structured docu-
ments. Then we plot the embedding distribution
of structured data in Figure 3(b). Distinct from
the embedding distribution of CodeT5, the embed-
dings learned by SANTA, are more distinguishable
and uniform, which are two criteria of learning
more effective embedding space under contrastive
training (Li et al., 2021; Wang and Isola, 2020).

Then we present the embedding distribution of
documentation texts and their corresponding codes

(a) CodeT5. (b) CodeT5 (w/ SDA).

(c) CodeT5 (w/ MEP). (d) SANTA.

Figure 4: Embedding Visualization of Different Models
using T-SNE. We randomly sample 32 codes and 32
code documentation texts from the testing set of code
retrieval and plot their embedding distribution.

in Figure 4. Overall, depending on our structure-
aware pretraining methods, SANTA conducts a
more uniform embedding space than CodeT5 and
makes the representations of structured and un-
structured data more distinguished in the embed-
ding space. Then we analyze the effectiveness
of our continuous training methods, Masked En-
tity Prediction (MEP) and Structured Data Align-
ment (SDA). By comparing Figure 4(b) with Fig-
ure 4(a), our structured data alignment task indeed
helps PLMs to align the representations of code
and documentation, which reduces the distance be-
tween matched unstructured-structured data pairs
and mixes the multi-modal embeddings thoroughly
in the embedding space. After adding the masked
entity prediction training task to CodeT5 (w/ SDA)
(from Figure 4(b) to Figure 4(d)), the embedding
distributions of code and documentation become
distinguished again, demonstrating that masked en-
tity prediction can help models capture different
semantics from different data modalities to repre-
sent unstructured/structured data. Besides, by com-
paring Figure 4(d) with Figure 4(c), the structured
data alignment task also makes the boundary of
the embedding clusters of code and documentation
clearer. The main reason lies in that these em-
beddings are assigned to appropriate positions for
aligning matched code-documentation pairs with
the help of our structured data alignment task.

11566

Model SANTA CodeT5/T5
Query Construct the command to poll the driver status
Rank 1 1
Snippet ... arg_0 . _connection [’master’]] if arg_0

. _driver_id : arg_1 += ["–status" , arg_0 .
_driver_id] else : raise AirflowException ("–
Invalid status: attempted to poll driver ...

def Func (arg_0) : return os . path . join (
get_user_config_dir (arg_0 . app_name , arg_0
. app_author) , arg_0 . filename)

Query Attempt to copy path with storage.
Rank 1 1
Snippet ... if arg_2 in arg_0 . copied_files : return arg_0 .

log ("Skipping ’%s’ (already –copied earlier)" %
arg_1) if not arg_0 . delete_file (arg_1 , arg_2 ,
arg_3) : return arg_4 = arg_3 . –path (arg_1) ...

’... arg_0) : if arg_0 . _api_arg : arg_1 = str (arg_0
._api_arg) else : arg_1 = arg_0 . _name if arg_0 .
_parent : return ’/’ . join (filter (None , [arg_0 .
_parent . Func , arg_1])) ...’

Query #1 black natural hair dye without ammonia or peroxide
Rank 1 1
Snippet ... naturcolor Haircolor Hair Dye - Light Burdock,

4 Ounce (5N) naturcolor 5n light burdock perma-
nent herbal Ingredients: haircolor gel utilizes herbs
to cover grey as opposed to chemicals ...

... Naturtint Permanent Hair Color 5N Light Chest-
nut Brown (Pack of 1), Ammonia Free, Vegan, Cru-
elty Free, up to 100% Gray Coverage, Long Lasting
Results...

Query !qscreen fence without holes
Rank 2 2
Snippet ... Material: HDPE+Brass Color: Green Size(L x

W): About 6’x50” Package included: Garden fence
privacy screen*1 Straps*80 ...

... Windscreen Cover Fabric Shade Tarp Netting
Mesh Cloth - Commercial Grade 170 GSM - Cable
Zip Ties Included - We Make Custom Size..

Table 4: Case Studies. We sample four cases from the test datasets of code search and product search to show the
effectiveness of SANTA. The matched text phrases are highlighted.

(a) Code Search.

(b) Product Search.

Figure 5: Visualization of Attention Distribution of
SANTA. The cross attention weight distributions from
the decoder module to encoded token embeddings are
plotted. Darker blue indicates a higher attention weight.

5.4 Attention Mechanism of SANTA

This section presents the attention mechanism of
SANTA during encoding structured data. In Fig-
ure 5, we randomly sample a small piece of code
and a text sequence of product descriptions to plot
the attention distribution.

The attention weight distributions on code search
are shown in Figure 5(a). Compared with CodeT5,

CodeT5 (w/ SDA) and SANTA calibrate the atten-
tion weights from the “if” token to the “>” token.
The “>” token is a logical operation, which indi-
cates the usage of the code. SANTA thrives on the
structured data alignment task and captures these
important semantic clues to represent codes. Com-
pared with CodeT5 (w/ SDA), SANTA decreases
its attention weights on code identifiers, such as
“x” and “y”, and shares more attention weights to
“If” and “>”. These identifiers can be replaced with
attribute ones and are less important than these
logical operations to understand code semantics.
Thus, SANTA adjusts its attention weights to logi-
cal tokens to understand structured data, which is
benefited from pretraining with the masked entity
prediction task.

Figure 5(b) shows the attention distribution on
product search. T5 (w/ SDA) assigns more atten-
tion weights to the product attribute “Green” than
T5, as well as highlights the sequence boundary
tokens of product attributes. Nevertheless, for the
product “privacy fence screen”, “Large” is a more
important attribute than “Green”. SANTA cap-
tures such semantic relevance, which confirms that
our masked entity prediction task indeed helps to
improve the semantic understanding ability of lan-
guage models on structured data.

11567

5.5 Case Studies
Finally, we show several cases in Table 4 to analyze
the ranking effectiveness of SANTA.

In the first case, SANTA directly matches
queries and codes through the text snippet “poll
the driver status”. It demonstrates that SANTA has
the ability to distinguish the differences between
code and documentation and pick up the necessary
text clues for matching queries and codes. Then
the second case illustrates that SANTA is effec-
tive in understanding codes by capturing the struc-
ture semantics of codes and matching queries and
codes by capturing some keywords in codes, such
as “copied” and “path”. The last two cases are from
product search and the product description is more
like natural language. SANTA also shows its ef-
fectiveness on identifying some important entities,
such as “Hair Dye” and “fence screen”, to match
queries and products.

6 Conclusion

This paper proposes SANTA, which pretrains lan-
guage models to understand structure semantics of
text data and guides language models to map both
queries and structured texts in one universal em-
bedding space for retrieval. SANTA designs both
structured text alignment and masked entity predic-
tion tasks to continuously train pretrained language
models to learn the semantics behind data struc-
tures. Our experiments show that SANTA achieves
state-of-the-art on code and product search by learn-
ing more tailored representations for structured
data, capturing semantics from structured data and
bridging the modality gap between structured and
unstructured data.

Limitations

Even though SANTA shows strong effectiveness
on learning the representation of structured data, it
heavily depends on the alignment signals between
structured and unstructured data. Such alignment
relations can be witnessed everywhere, but the qual-
ity of constructed pairs of structured and unstruc-
tured data directly determines the effectiveness of
SANTA. Besides, we use the product bullet points
and code descriptions as the unstructured data in
our experiments, which is designed for specific
tasks and limits the model’s generalization abil-
ity. On the other hand, SANTA mainly focuses on
evaluating the structured data understanding ability
through text data representation and matching. It

is still unclear whether SANTA outperforms base-
line models in all downstream tasks, such as code
summarization and code generation.

Acknowledgments

This work is supported by the Natural Science
Foundation of China under Grant No. 62206042,
No. 62137001 and No. 62272093, the Fun-
damental Research Funds for the Central Uni-
versities under Grant No. N2216013 and No.
N2216017, China Postdoctoral Science Founda-
tion under Grant No. 2022M710022, and National
Science and Technology Major Project (J2019-IV-
0002-0069).

References
Yingshan Chang, Mridu Narang, Hisami Suzuki, Gui-

hong Cao, Jianfeng Gao, and Yonatan Bisk. 2021.
Webqa: Multihop and multimodal qa. In Proceed-
ings of CVPR.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of ACL, pages
1870–1879.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. CoRR.

Xinlei Chen and Kaiming He. 2021. Exploring simple
siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15750–15758.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In Proceedings of ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. Cert: Contrastive self-
supervised learning for language understanding.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547.

11568

https://openaccess.thecvf.com/content/CVPR2022/html/Chang_WebQA_Multihop_and_Multimodal_QA_CVPR_2022_paper.html
https://aclanthology.org/P17-1171
https://aclanthology.org/P17-1171
https://arxiv.org/abs/1504.00325
https://arxiv.org/abs/1504.00325
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Exploring_Simple_Siamese_Representation_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Exploring_Simple_Siamese_Representation_Learning_CVPR_2021_paper.html
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2005.12766
https://arxiv.org/abs/2005.12766
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-
Yan Liu. 2019. Representation degeneration problem
in training natural language generation models. In
Proceedings of ICLR.

Luyu Gao and Jamie Callan. 2021. Condenser: a pre-
training architecture for dense retrieval. In Proceed-
ings of EMNLP, pages 981–993.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of EMNLP, pages 6894–
6910.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In Proceedings of ICLR.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL, pages 8342–8360.

Xiaomeng Hu, Shi Yu, Chenyan Xiong, Zhenghao Liu,
Zhiyuan Liu, and Ge Yu. 2022. P3 ranker: Mitigating
the gaps between pre-training and ranking fine-tuning
with prompt-based learning and pre-finetuning. In
Proceedings of SIGIR, pages 1956–1962.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings
of EMNLP, pages 6769–6781.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, pages 452–466.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of EMNLP, pages 9119–9130.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2022. Coderetriever:
Unimodal and bimodal contrastive learning.

Yizhi Li, Zhenghao Liu, Chenyan Xiong, and Zhiyuan
Liu. 2021. More robust dense retrieval with con-
trastive dual learning. In Proceedings of the 2021
ACM SIGIR International Conference on Theory of
Information Retrieval, pages 287–296.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Zhenghao Liu, Chenyan Xiong, Yuanhuiyi Lv, Zhiyuan
Liu, and Ge Yu. 2023. Universal vision-language
dense retrieval: Learning a unified representation
space for multi-modal retrieval. In Proceedings of
ICLR.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In
Proceedings of NeurIPS.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of
the Association for Computational Linguistics, pages
329–345.

Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Ti-
wary, Paul Bennett, Jiawei Han, and Xia Song. 2021.
Coco-lm: Correcting and contrasting text sequences
for language model pretraining. In Proceedings of
NeurIPS.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human-generated machine read-
ing comprehension dataset. In CoCo@ NIPs.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,
Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang. 2022.
Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1864–1874.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval con-
versational question answering. In Proceedings of
SIGIR, pages 539–548.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., (140):1–67.

Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil
Rao, Hugo Zaragoza, Sambaran Bandyopadhyay,
Arnab Biswas, Anlu Xing, and Karthik Subbian.

11569

https://openreview.net/forum?id=SkEYojRqtm
https://openreview.net/forum?id=SkEYojRqtm
https://aclanthology.org/2021.emnlp-main.75
https://aclanthology.org/2021.emnlp-main.75
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://doi.org/10.1145/3477495.3531786
https://doi.org/10.1145/3477495.3531786
https://doi.org/10.1145/3477495.3531786
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://aclanthology.org/2020.emnlp-main.733
https://aclanthology.org/2020.emnlp-main.733
https://arxiv.org/abs/2201.10866
https://arxiv.org/abs/2201.10866
https://dl.acm.org/doi/10.1145/3471158.3472245
https://dl.acm.org/doi/10.1145/3471158.3472245
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/pdf?id=PQOlkgsBsik
https://openreview.net/pdf?id=PQOlkgsBsik
https://openreview.net/pdf?id=PQOlkgsBsik
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://aclanthology.org/2021.tacl-1.20
https://aclanthology.org/2021.tacl-1.20
https://proceedings.neurips.cc/paper/2021/hash/c2c2a04512b35d13102459f8784f1a2d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c2c2a04512b35d13102459f8784f1a2d-Abstract.html
https://openreview.net/forum?id=rJ-Qj8-_ZH
https://openreview.net/forum?id=rJ-Qj8-_ZH
https://aclanthology.org/2022.findings-acl.146
https://aclanthology.org/2022.findings-acl.146
https://doi.org/10.1145/3397271.3401110
https://doi.org/10.1145/3397271.3401110
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf?ref=https://githubhelp.com

2022. Shopping queries dataset: A large-scale ESCI
benchmark for improving product search. CoRR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of EMNLP, pages 3982–
3992.

Baptiste Roziere, Marie-Anne Lachaux, Marc
Szafraniec, and Guillaume Lample. 2021. Dobf: A
deobfuscation pre-training objective for program-
ming languages. In Proceedings of NeurIPS.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee,
and Danqi Chen. 2021. Simple entity-centric ques-
tions challenge dense retrievers. In Proceedings of
EMNLP, pages 6138–6148.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2018.
The fact extraction and VERification (FEVER)
shared task. In Proceedings of the First Workshop
on Fact Extraction and VERification (FEVER), pages
1–9.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In Proceedings
of ICML, pages 9929–9939.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of EMNLP, pages
8696–8708.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa,
Fei Sun, and Hao Ma. 2020. Clear: Contrastive
learning for sentence representation.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021a. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In Proceedings of ICLR.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei
Du, Patrick S. H. Lewis, William Yang Wang, Yashar
Mehdad, Scott Yih, Sebastian Riedel, Douwe Kiela,
and Barlas Oguz. 2021b. Answering complex open-
domain questions with multi-hop dense retrieval. In
Proceedings of ICLR.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. ConSERT: A con-
trastive framework for self-supervised sentence rep-
resentation transfer. In Proceedings of ACL, pages
5065–5075.

Deming Ye, Yankai Lin, Jiaju Du, Zhenghao Liu, Peng
Li, Maosong Sun, and Zhiyuan Liu. 2020. Corefer-
ential Reasoning Learning for Language Representa-
tion. In Proceedings of EMNLP, pages 7170–7186.

Shi Yu, Zhenghao Liu, Chenyan Xiong, Tao Feng, and
Zhiyuan Liu. 2021. Few-shot conversational dense
retrieval. In Proceedings of SIGIR.

Shi Yu, Zhenghao Liu, Chenyan Xiong, and Zhiyuan
Liu. 2023. Openmatch-v2: An all-in-one multi-
modality plm-based information retrieval toolkit. In
Proceedings of SIGIR.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv,
Nan Duan, and Weizhu Chen. 2022. Adversarial
retriever-ranker for dense text retrieval. In Proceed-
ings of ICLR.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of ACL, pages 1441–1451.

11570

https://doi.org/10.48550/arXiv.2206.06588
https://doi.org/10.48550/arXiv.2206.06588
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://proceedings.neurips.cc/paper/2021/hash/7d6548bdc0082aacc950ed35e91fcccb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7d6548bdc0082aacc950ed35e91fcccb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7d6548bdc0082aacc950ed35e91fcccb-Abstract.html
https://aclanthology.org/2021.emnlp-main.496
https://aclanthology.org/2021.emnlp-main.496
https://aclanthology.org/W18-5501
https://aclanthology.org/W18-5501
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2012.15466
https://arxiv.org/abs/2012.15466
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=EMHoBG0avc1
https://aclanthology.org/2021.acl-long.393
https://aclanthology.org/2021.acl-long.393
https://aclanthology.org/2021.acl-long.393
https://aclanthology.org/2020.emnlp-main.582
https://aclanthology.org/2020.emnlp-main.582
https://aclanthology.org/2020.emnlp-main.582
https://dl.acm.org/doi/10.1145/3404835.3462856
https://dl.acm.org/doi/10.1145/3404835.3462856
https://openreview.net/forum?id=MR7XubKUFB
https://openreview.net/forum?id=MR7XubKUFB
https://aclanthology.org/P19-1139
https://aclanthology.org/P19-1139
https://aclanthology.org/P19-1139

Figure 6: Examples of Positive and Negative Pairs of Pretraining Data.

Task Positive Pairs Entities
Python 429,596 28.6%
PHP 514,127 17.8%
Go 317,824 17.1%
Java 454,433 24.4%
JavaScript 122,682 15.4%
Ruby 487,90 28.8%
Product 331,590 20.1%

Table 5: Data Statistics of Pretraining Data. “Entities”
denotes the proportion of identified entities in the struc-
tured data.

A Appendix

A.1 License
For all datasets in our experiments, Adv and Code-
SearchNet use MIT License, while ESCI uses
Apache License 2.0. All of these licenses and agree-
ments allow their data for academic use.

A.2 Construction of Pretraining Data
In this subsection, we show how to process the pre-
training data and construct structured-unstructured
data for code/product search. During pretraining,
we use inbatch negatives to optimize SANTA and
all data statistics are shown in Table 5.

As shown in Figure 6, we show some examples
to show how to construct structured-unstructured
data pairs for pretraining. For code retrieval tasks,
code snippets have corresponding documentation
descriptions, which describe the purpose and func-
tion of these code snippets. Thus, the code docu-
mentation and its corresponding code snippet are
regarded as a positive training pair.

For product retrieval tasks, structured product de-
scriptions usually have corresponding unstructured
bullet points, which provide key points about the

(a) Code Search.

(b) Product Search.

Figure 7: The Illustration of Identified Entities in Struc-
tured Data. All entities of different functions are anno-
tated with different colors.

products. We randomly select one bullet point of
items and use its corresponding product description
to construct a positive training pair.

A.3 Additional Experimental Details of
Entities Identification on Structured Data

We show some examples of entity identifications
on structured data in Figure 7.

For codes, we follow Wang et al. (2021) and re-
gard code identifiers as entities such as variables,
function names, external libraries and methods.

11571

Model CodeSearch AdvRuby Javascript Go Python Java PHP Overall
Zero-Shot
GraphCodeBERT 1.5 0.4 0.2 0.4 0.7 2.1 0.88 0.5
CodeRetriever 68.7 63.7 87.6 67.7 69.0 62.8 69.1 34.7
SANTA 72.6 62.4 88.9 70.0 68.6 62.8 70.9 48.1
Fine-Tuning
CodeBERT 67.9 62.0 88.2 67.2 67.6 62.8 69.3 27.2
GraphCodeBERT 70.3 64.4 89.7 69.2 69.1 64.9 71.3 35.2
CodeT5 71.9 65.5 88.8 69.8 68.6 64.5 71.5 39.3
CodeRetriever (Inbatch) 75.3 69.5 91.6 73.3 74.0 68.2 75.3 43.0
CodeRetriever (Hard Negative) 75.1 69.8 92.3 74.0 74.9 69.1 75.9 45.1
SANTA (Hard Negative) 74.7 68.6 91.8 73.7 73.7 68.6 75.2 48.6

Table 6: Code Retrieval Evaluations of SANTA. Because of the GPU memory limitation, we set the batch size as
128 during pretraining and finetuning, which is different with Li et al. (2022). All models are evaluated using MRR.

Language Query DocumentTrain Dev Test
Python 251,820 13,914 14,918 43,827
PHP 241,241 12,982 14,014 52,660
Go 167,288 7,325 8,122 28,120
Java 164,923 5,183 10,955 40,347
JavaScript 58,025 3,885 3,291 13,981
Ruby 24,927 1,400 1,261 4,360

Table 7: Data Statistics of CodeSearch Dataset. The
document collections consist of candidate codes.

Specifically, we use BytesIO and tree_sitter1 to
identify entities in Python and other programming
languages, respectively. For product descriptions,
we use the NLTK tool2 to identify nouns and proper
nouns that appear in both product descriptions and
titles and regard them as entities.

In our experiments, we replace the same enti-
ties with the same special tokens and ask SANTA
to generate these masked entities (Eq. 7). These
special tokens come from the predefined vocabu-
lary of T5, such as {<extra_id_0>, <extra_id_1>,
..., <extra_id_99> }. The proportions of identified
entities in pretraining data are shown in Table 5.

A.4 Additional Evaluation Results of SANTA

In this experiment, we follow Li et al. (2022), keep
the same evaluation settings and evaluate the re-
trieval effectiveness of SANTA on CodeSearch
dataset. The dataset consists of code retrieval tasks
on six programming languages, including Ruby,
Javascript, Go, Python, Java, and PHP. We show
the data statistics of CodeSearch in Table 7. Since
CodeT5 and CodeRetriever don’t release their data
processing code for pretraining. We can only refer

1https://github.com/tree-sitter/tree-sitter
2https://www.nltk.org/

to the tutorial3 to process data. When we evaluate
SANTA on CodeSearch, the instances in testing
and development sets are filtered out from Code-
SearchNet dataset for pretraining. Some codes that
can not be parsed are also filtered out, because the
data processing details are not available4.

During continuous pretraining, we set the batch
size, learning rate and epoch as 128, 5e-5 and 10,
respectively. During finetuning, we set the learn-
ing rate as 2e-5 and 1e-5 for CodeSearch and Adv,
and set batch size and epoch as 128 and 12. We
use inbatch negatives with one hard negative for
finetuning and the hard negative is randomly sam-
pled from the top 100 retrieved negative codes by
pretrained SANTA. The warm-up ratio is 0.1.

The performance of SANTA on CodeSearch
and Adv is shown in Table 6. Under the zero-
shot setting, SANTA still outperforms CodeRe-
triever (Li et al., 2022) with about 2% improve-
ments, which shows that the advances of SANTA
can be generalized to different structured data re-
trieval tasks. Moreover, SANTA also shows strong
zero-shot ability by achieving comparable per-
formance with the finetuned CodeBERT, Graph-
CodeBERT and CodeT5 models. After finetun-
ing, SANTA achieves more than 3.7% improve-
ments over CodeT5 on CodeSearch. All these en-
couraged experiment results further demonstrate
that our structure-aware pretraining method indeed
helps language models to capture the structure se-
mantics behind the text data. The retrieval perfor-
mance on Adv dataset illustrates that the retrieval
effectiveness of SANTA can be further improved
by increasing the batch size from 16 to 128.

3https://github.com/github/CodeSearchNet/blob/
master/notebooks/ExploreData.ipynb

4https://github.com/salesforce/CodeT5/issues/
64

11572

https://github.com/tree-sitter/tree-sitter
https://www.nltk.org/
https://github.com/github/CodeSearchNet/blob/master/notebooks/ExploreData.ipynb
https://github.com/github/CodeSearchNet/blob/master/notebooks/ExploreData.ipynb
https://github.com/salesforce/CodeT5/issues/64
https://github.com/salesforce/CodeT5/issues/64

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

In the section of Limitations.

�7 A2. Did you discuss any potential risks of your work?
Our structure-aware language model uses public datasets and pretrained language model, so there
are no potential risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
In Section 4.

�3 B1. Did you cite the creators of artifacts you used?
In Section 4.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
In Appendix A.1.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In Section 4.

C �3 Did you run computational experiments?
In Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In Section 4.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11573

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In Section 4.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In Section 4.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In Section 4.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

11574

