
Findings of the Association for Computational Linguistics: ACL 2023, pages 11479–11488
July 9-14, 2023 ©2023 Association for Computational Linguistics

Disfluency Generation for More Robust Dialogue Systems

Benjamin Marie
4i Intelligent Insights

Tecnoincubadora Marie Curie,
Parque Científico y Tecnológico Cartuja

Leonardo da Vinci, 18, 41092 Sevilla, Spain
b.marie@4i.ai

Abstract

Disfluencies in user utterances can trigger a
chain of errors impacting all the modules of a
dialogue system: natural language understand-
ing, dialogue state tracking, and response gener-
ation. In this work, we first analyze existing di-
alogue datasets commonly used in research and
show that they only contain a marginal num-
ber of disfluent utterances. Due to this relative
absence of disfluencies in their training data,
dialogue systems may then critically fail when
exposed to disfluent utterances. Following this
observation, we propose to augment existing
datasets with disfluent user utterances by para-
phrasing fluent utterances into disfluent ones.
Relying on a pre-trained language model, our
few-shot disfluent paraphraser guided by a dis-
fluency classifier can generate useful disfluent
utterances for training better dialogue systems.
We report on improvements for both dialogue
state tracking and response generation when
the dialogue systems are trained on datasets
augmented with our disfluent utterances.

1 Introduction

Disfluencies are common interruptions in the flow
of speech. In English, it is estimated that disfluen-
cies account for 20% of the words (Tree, 1995) and
that there is a 50% probability that a sentence of
10-13 words will be disfluent (Shriberg, 1994). A
probability that increases for longer sentences.

Since disfluencies are ubiquitous, they can have
a significant impact on natural language processing
(NLP) tasks. Previous work has largely addressed
disfluency detection and studied the impact of dis-
fluencies in various NLP tasks (Johnson and Char-
niak, 2004; Wang et al., 2010). Disfluency detec-
tion is a critical component of any NLP framework
using speech transcriptions as input.

Disfluencies can mislead components of a di-
alogue system: natural language understanding
(NLU), dialogue state tracking (DST), and response
generation. On the other hand, disfluent utterances

are usually absent in the publicly available dialogue
datasets used for the research and development of
dialogue systems. They are either removed, after
disfluency detection or have never existed, for in-
stance, in dialogue datasets made from non-spoken
texts. The datasets on which dialog systems are
trained and evaluated are often heavily curated. The
dialogue systems trained on such datasets may then
not be robust enough in real-world applications for
which disfluent utterances are common.

In this paper, we propose to augment existing
training datasets with disfluent paraphrases to train
a more robust dialogue system. In contrast to pre-
vious work on disfluency generation, our disfluent
paraphraser only requires a very limited amount
of training data that makes it applicable to a wide
range of scenarios.

Our contributions are as follows:

• An analysis exposing the near absence of dis-
fluent utterances in dialogue datasets and their
impact on the robustness of dialogue systems.

• A framework to generate disfluent para-
phrases.

• More accurate and more robust dialogues en-
gines trained on our augmented datasets.

• A binary disfluency classifier, model1 and
code2, for dialogue utterances

2 Disfluency in Dialogue

Disfluencies are usually categorized as in Table 1.
We can assume that depending on its category, a
disfluency will not have the same impact on dia-
logue systems. For instance, “repair” and “restart”
categories have more potential to mislead a system
than “filled paused” since they may impact a large

1research.4i.ai/models/BERT_
disfluency_cls

2research.4i.ai/code/BERT_disfluency_
cls
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repair I’m watching the football... I
mean the basketball game

restart I would like... I can’t go there
filled pause It was uh 3 days ago
interjection Well I was there
repetition He read this this book

Table 1: Examples of different types of disfluencies.
Tokens in bold are disfluent.

portion of an utterance. The example in Table 2
illustrates how a “repair” disfluency can impact the
main modules of a dialogue system, with an error
made by the NLU module on the slot values that
propagates to the response generation.

To verify our assumption that most dialogue
datasets used for research are not disfluent, we
created a disfluency classifier (Section 3.2) applied
to publicly available dialogue datasets commonly
used for training and evaluating dialogue systems.
The classification results are presented in Table
3. We observe that disfluent utterances are much
more unlikely than in a normal English speech
flow. For instance, less than 4% of the utterances
in SIMMC2, often used to train and evaluate multi-
modal dialogue systems, are disfluent.

To train more robust dialogue systems, we aug-
ment their training data with synthetic disfluent
utterances. While disfluency correction is a com-
mon task, there are only a few attempts in previous
work for disfluency generation.

Yang et al. (2020) proposes to generate disflu-
ency with a neural model inserting n-grams at spe-
cific positions in fluent sentences. They focus on
two disfluency categories: “repair” and “repeti-
tion”. Their approach is able to generate natural
disfluent sentences with a model trained on 29k dis-
fluent sentences. In contrast, our approach relying
on a paraphraser is able to generate any kind of
disfluency but is not as conservative. Our approach
is not constrained to inserting tokens at specific
positions.

More recently, Gupta et al. (2021) and Passali
et al. (2022) proposed to generate disfluent sen-
tences using heuristics. While their approaches
are admittedly generating less natural disfluent sen-
tences than with a neural model, they do not require
to be trained and are able to generate disfluencies
from any category covered by the heuristics.

Utterance I would like to book a ticket for
Boston uh no sorry for Miami

NLU Intent: book_ticket, slots: {desti-
nation: Boston}

Response I booked your flight for Boston

Table 2: Example of dialogue engine failure due to a
disfluent utterance.

Dataset #Utter. %Disfluent

dailyDialog 141,864 8.52%
MultiWOZ2.2 56,776 6.25%
SIMMC2 38,127 3.29%

Table 3: Percentage of user utterances labeled disfluent
by a disfluency classifier in the train split of dailyDialog
(Li et al., 2017), MultiWOZ2.2 (Zang et al., 2020), and
SIMMC2 (Kottur et al., 2021) datasets.

3 Disfluency Generation

Our disfluent paraphraser is applied to fluent ut-
terances, identified by a disfluency classifier, from
dialogue datasets. Then, the disfluent utterances
generated are added to the dialogue datasets and
used to train more robust dialogue systems follow-
ing a standard training pipeline.

3.1 Disfluent Paraphraser
Pre-trained large language models (LLM) have
demonstrated impressive results in most natural lan-
guage generation tasks. Previous work proposed
to use and evaluate LLM for disfluency correc-
tion (Saini et al., 2021; Gupta et al., 2021; Passali
et al., 2022). We propose to also use LLM for dis-
fluency generation.3 As for the training data for
the paraphraser, we need disfluent dialogue utter-
ances paired with their fluent version, manually
created, so that the model can learn the sequence-
to-sequence task of generating a disfluent utterance
given a fluent one. Since we lack large training data
for these tasks for most languages and domains, we
propose to perform few-shot learning for disfluency
generation. Concretely, we fine-tune the LLM on
a few training examples. Since correcting a few
disfluent utterances by hand is rather cheap, we

3We consider the LLM itself as a hyperparameter of our
approach. For this paper, we use T5 (Raffel et al., 2020) due to
its good performance for natural language generation (NLG)
and relatively low computational cost, but other architectures
and larger models used in NLG, such as BART (Lewis et al.,
2020), OPT (Zhang et al., 2022), and BLOOM (Workshop
et al., 2022), could yield similar or better results.
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assume this scenario to be realistic and applicable
to most domains and languages.

In preliminary experiments, we observed beam
search to be very conservative at inference time
with our paraphraser, i.e., preserving the original
structure and vocabulary of the fluent utterances.
Since our goal is to augment datasets and gener-
ate diverse disfluencies, we propose to sample the
search space during decoding to generate more di-
verse sequences with less overlap with the source
utterance. This is particularly intuitive for generat-
ing disfluent utterances, for which a more aggres-
sive sampling, to some extent, will generate more
disfluent utterances. We found nucleus sampling
(Holtzman et al., 2020) to generate outputs diverse
enough with a top_p hyperparameter appropriately
optimized (see Section 3.2).

3.2 Disfluency Identification

The dialogue datasets often contain manual annota-
tions for NLU and DST for each user utterance. It
is critical that these annotations remain valid for the
generated disfluent utterances. If the paraphraser is
too aggressive, the utterance may change meaning
and will not match anymore the annotations.

We propose to use a disfluency classifier whose
objective is to identify whether a user utterance is
fluent or disfluent. If an utterance is classified as
disfluent, our paraphraser will not be applied to this
utterance. Moreover. we use the classifier decision
to tune the aggressiveness of our paraphraser. For
instance, if an utterance is identified as fluent but
with a low probability, according to the classifier,
we may only need to introduce a few modifications
to make it disfluent. If an utterance is clearly found
fluent by the classifier, a more aggressive disfluent
paraphrasing should be performed to ensure it is
disfluent enough.

In practice, this tunable aggressiveness is imple-
mented in our paraphraser at inference time, using
the probability α yielded by the classifier for an
utterance to be disfluent to set the top_p hyperpa-
rameter of nucleus sampling as follows:

top_p = min(α+ β, 1.0) (1)

where β is a constant between 0 and 1. In practice,
we found that β = 0.2 yields useful disfluent utter-
ances, but we argue that this may not be the case
for all use cases, such as applying the paraphraser
to datasets in a very different style and domain, and

that consequently, β should be tuned.4

As for the classifier itself, we propose to use
BERT (Devlin et al., 2019) for binary classifica-
tion. This is a simpler classification that the one
proposed by previous work (Yang et al., 2020) that
uses BERT to directly classify disfluency at token
level. The training data for our classifier is then
easier to create since we only need native speakers
to label whether a sentence is fluent or disfluent.

4 Experiments

4.1 Datasets

We trained our paraphraser and classifier on the
Fisher English corpus created by Post et al. (2013)5

which is a translation of the original Fisher Span-
ish corpus.6 We paired this corpus with its fluent
version (Salesky et al., 2018)7 in which the disflu-
encies have been manually corrected. Statistics of
the full parallel corpora used are given in Table 4.

We report on experiments with dialogue tasks
using SIMMC28 augmented with disfluencies for
DST and response generation.

4.2 Settings and Baseline Systems

We trained our model for disfluency generation us-
ing T5.9 We use the base version and acknowledge
that we may get better results with a larger model
but at a greater computational cost. The base ver-
sion is a Transformer (Vaswani et al., 2017) with
12 layers, 12 attention heads, a feed-forward dimen-
sion of 3072, and embeddings of 768 dimensions.

4One of the drawbacks of using a varying top_p is that
it complicates the implementation of batch decoding since
we have utterances that would be paraphrased with different
top_p in the same batch. Since we only paraphrase datasets
for training, the decoding time was not our main concern and
we simply paraphrase utterances one by one.

5github.com/joshua-decoder/
fisher-callhome-corpus

6catalog.ldc.upenn.edu/LDC2010S01
7github.com/isl-mt/fluent-fisher
8github.com/facebookresearch/simmc2
9huggingface.co/t5-base

Dataset #lines #tokens fluent-disfluent

train 138,719 1.18M-1.44M
dev (dev.en.0) 3,976 30.64k-39.99k
test (test.en.0) 3,640 30.15k-39.61k

Table 4: Statistics of the parallel fluent-disfluent Fisher
English corpus. We indicate between parentheses the
original names of the datasets we used for dev and test.
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System #Disfluent Dialogue state tracking Response generation
examples Joint Accuracy Slot F1 BLEURT

Original 0 48.8/49.1/38.5 83.9/84.1/77.0 39.3/39.2/39.8

LARD 0 48.9/49.0/41.5 84.0/84.1/80.0 39.5/38.4/40.1

Plan&Gen all 49.1/49.0/43.1 84.5/84.9/82.0 39.8/39.3/40.5

General Paraphraser 0 49.0/49.6/38.9 84.1/84.5/77.1 39.7/39.6/39.1

Disfluent Paraphraser

50 48.7/48.0/44.1 84.6/84.5/83.1 38.1/38.3/39.7
500 49.5/49.5/44.7 85.0/85.3/84.9 39.8/39.4/40.6

5000 49.6/50.0/44.9 85.3/85.5/85.1 39.9/39.6/40.5
all 49.6/50.1/44.9 85.4/85.4/85.2 40.0/39.6/40.7

Table 5: Results for SIMMC2. a/b/c are scores obtained on the devtest with all the utterances (a), only the fluent
utterances (b), and only the disfluent utterances (c), where fluent and disfluent utterances are identified by the
classifier. The second column indicates the number of training examples from the Fisher parallel corpus exploited to
train a disfluency generator. The highest numbers are in bold.

Since we aim at few-shot learning, we fine-tuned
T5 on subsamples of different sizes of the Fisher
train fluent-disfluent parallel data, containing 50,
500, 5,000, or all the available parallel utterances,
for 20 epochs with standard hyperparameters.10

We select the best model according to BLEURT
(Sellam et al., 2020) on the Fisher validation data.

We identified 36,873 fluent utterances in
SIMMC2 using our BERT classifier,11 trained on
the same data as the paraphraser, and paraphrase
them while keeping their annotations for DST the
same. The 1,254 remaining utterances identified as
disfluent are not paraphrased. The generated disflu-
ent utterances are added to the original SIMMC2
yielding a new total of exactly 75,000 utterances.

For evaluation in dialogue, we use the same
pipeline proposed by Kottur et al. (2021): GPT-
2 is fine-tuned on the augmented training data for
5 epochs and is prompted with user utterances. We
denote this configuration Disfluent Paraphraser.
For DST, we use the same evaluation script pro-
vided by the SIMMC2 repository. For response
generation, we use BLEURT. We compared our
approach with the following systems.

Original: This is the same baseline system pro-
posed by Kottur et al. (2021). GPT-2 is fine-tuned
on the original SIMMC2 for 10 epochs.

10Fine-tuning T5 on all these subsamples took less than a
day on an nVidia RTX3060 12Gb GPU.

11Our classifier was trained using the Hugging Face Trans-
formers default pipeline (Wolf et al., 2020). It reaches an F1
score of 81.4 on the Fisher test set. We released our model
and code (links in the introduction).

LARD: We used the LARD heuristic-based
framework,12 with default hyperparameters, to
make the fluent utterances disfluent. LARD is not
trainable and consequently cannot exploit the dis-
fluent training examples.

Plan&Gen: We used the framework proposed
by Yang et al. (2020) to insert disfluencies into the
fluent utterances. This system can be considered as
our baseline system.

General Paraphraser: We evaluate a standard
paraphraser, i.e., not trained to generate disfluen-
cies, using T5 fine-tuned on the “paranmt_filtered”
compiled by Krishna et al. (2020) containing 75k
paraphrases in mixed domains.

The only difference between LARD, Plan&Gen,
General Paraphraser, and our Disfluent Paraphraser
configurations is that they rewrite the same fluent
utterances but using different approaches.

4.3 Results
We evaluated dialogue models on the entire devtest
of SIMMC2, but also on the portions identified
as fluent (8,321 utterances) or disfluent (288 utter-
ances) to highlight where each model is the most
effective. Our proposed approach for disfluency
generation yields the most useful training data. Our
disfluent paraphraser outperforms all the other sys-
tems for both DST and response generation. While
LARD and Plan&Gen both improve the joint accu-
racy and slot F1 for the disfluent part of SIMMC2,
the scores remain similar for the fluent part of
SIMMC2. Interestingly, we observe the reverse
with the general paraphraser which yields better

12github.com/tatianapassali/
artificial-disfluency-generation
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results on the fluent part. Our disfluent paraphraser
is the only system that improves the results on both
fluent and disfluent utterances. Nonetheless, we
also observe that our system requires at least 500
training examples to avoid a drop in BLEURT and
joint accuracy on the fluent part. Indeed, we manu-
ally observed that when T5 is fine-tuned on only 50
fluent-disfluent utterance pairs, the generated disflu-
encies tend to be very noisy with many meaningless
utterances, e.g., empty or containing sequences of
many symbols. Those could be easily filtered with
heuristics to improve the quality of the generated
data.

5 Conclusion

We demonstrated that our disfluent paraphraser gen-
erates useful disfluent paraphrases to better train
dialogue models and especially improve their ro-
bustness to disfluent utterances. Our approach im-
proves dialogue state response and response gener-
ation for both fluent and disfluent user utterances.
As future work, we would like to address the limi-
tations discussed in Section 6.

6 Limitations

The main limit of our approach is that our para-
phraser may generate meaningless utterances as
we observed when trained on very few examples.
To quantify these instances, an intrinsic evaluation
of our paraphraser should be performed. Previous
work proposed automatic evaluation of the disflu-
ency generated using BLEU. We argue that the
number of valid disfluent paraphrases for a fluent
utterance is so large that BLEU cannot be a fair
metric for our approach since it would only reward
the specific utterances given as references. Only
a thorough human evaluation can provide the nec-
essary feedback on the naturalness, adequacy, and
overall quality of the disfluency generated. Then,
heuristics could be designed to filter out generated
utterances of poor quality.

SIMMC2 evaluation has also a very small num-
ber of disfluent utterances which only exhibit a few
instances of some of the disfluency categories pre-
sented in Section 2. Our results may not be as repre-
sentative as we would like of a real-world scenario.
Since all the publicly available dialogue datasets,
annotated with intents and slot values, are mainly
fluent, more representative evaluation datasets with
very diverse types of disfluencies should be created.

Finally, the parallel Fisher corpus is not ideal to

train an English paraphraser since it is a translation
from Spanish. We did observe some translation
errors and artifacts in the dataset, such as some
Spanish characters like “¿”, that may negatively
affect the performance of our paraphraser.

Ethical Considerations

Language models are biased by the data used to
train them. Our fine-tuning of BERT and T5 with
the Fisher corpus potentially created biases or am-
plified some of the biases inherited from these two
base models. We acknowledge that this work has
the potential to be used to harm minorities, for in-
stance, by unfairly classifying or amplifying disflu-
encies in utterances expressed by minority groups.

We decided to delay the public release of our
models, datasets, and code used for disfluency gen-
eration until our work has gone under an entire
peer-review cycle and publicly presented to receive
as much feedback as possible.

On the other hand, we are releasing our disflu-
ency classifier, in the form of fine-tuned BERT
models and code for fine-tuning and evaluation, as
we believe these resources can be useful for the
research community while posing a much lower
risk of harmful exploitation than our disfluent para-
phraser.
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