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Abstract
Relation Extraction (RE) is the task of iden-
tifying semantic relation between real-world
entities mentioned in text. Despite significant
progress in RE research, a remaining challenge
for RE concerns the lack of training data for
data-hungry deep learning models. Cost of an-
notation and difficulty of the task are among
hindrance to collect a large-scale RE dataset in
different domains. To address this limitation,
we propose a novel framework to automatically
generate labeled data for RE. Our framework
presents the pre-trained language model GPT-2
for data generation. In addition, to optimize
the generated samples for an RE model, we in-
troduce a meta learning approach to allow the
GPT-2 model to be updated during the train-
ing process for RE. In particular, to leverage
the feedback from the RE model to improve
the data generation from GPT-2, we propose
a novel reward function to update the GPT-2
model with REINFORCE, seeking to promote
the similarity of the RE loss function’s gradi-
ents computed for generated data and a meta
development set. We conduct extensive exper-
iments on two benchmark datasets to produce
state-of-the-art performance for RE.

1 Introduction

One of the fundamental tasks in Information Ex-
traction (IE) involves Relation Extraction (RE) that
aims to identify semantic relations between two
entities mentioned in textual data. For instance,
in the sentence “After XZY’s decision to move to
Europe, they selected Paris as the final location for
their headquarters.”, the semantic relation PART-
Whole between two entity mentions “Europe” and
“Paris” should be detected. An RE system can
be employed to populate a knowledge base with
relations among entities, provide information for
question answering systems, and present facts for
text summerization tools.

∗ Work done at Raytheon BBN Technologies (prior to
joining AWS AI).

Due to the importance of RE, in recent years
various methods and models have been proposed
for this task. These models can be categorized into
feature-based (Zelenko et al., 2003; Zhou et al.,
2005; Bunescu and Mooney, 2005; Sun et al., 2011;
Chan and Roth, 2010; Nguyen and Grishman, 2014;
Nguyen et al., 2015c) and deep learning (Zeng
et al., 2014; Nguyen and Grishman, 2015a; dos San-
tos et al., 2015; Wang et al., 2016; Nguyen and Gr-
ishman, 2016; Zhou et al., 2016; Zhang et al., 2017;
Nguyen et al., 2019a) models. The existing models
provide solutions for RE in various settings includ-
ing monolingual (Zhang et al., 2018), cross-lingual
(Ni et al., 2020), cross-domain (Pouran Ben Veyseh
et al., 2020), and joint models (Nguyen et al., 2021,
2022). Despite those progress, one limitation that
hinders on-going research for RE is labeled data
scarcity. Annotating a large-scale RE dataset is
challenging, due to the expensive nature of anno-
tation task and the high requirement for expertise
in specific domains. As such, prior methods have
resorted to distantly supervised setting (Mintz et al.,
2009; Zeng et al., 2015; Ji et al., 2017) or pseudo
labeling techniques (Hu et al., 2021b,a) that lever-
age vast amounts of unlabeled data to address the
labeled data scarcity issue for RE. Although these
methods are helpful to substantially increase the
size of RE datasets, they also introduce massive
noisy samples which might hurt the training of an
RE model. Consequently, creating cost-efficient
large-scale labeled datasets for specific domains
remains highly challenging for RE.

To achieve large-scale labeled datasets, in this
work we introduce a novel data augmentation
method to automatically generate labeled data for
RE. In particular, instead of using unlabeled data,
we propose to employ the pre-trained language
model GPT-2 (Radford et al., 2019) to generate
synthetic labeled data for RE. In our method, the
GPT-2 model is first fine-tuned on available manu-
ally labeled RE datasets. Concretely, the language
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model is trained on the label-augmented sentences
in which positive and negative RE samples are
marked with special tags surrounding two input
entity mentions. Next, the fine-tuned GPT-2 model
is employed to generate new label-augmented in-
domain sentences that can be map back to produce
new labeled data for RE. The new labeled data is
then combined with the original manually labeled
data to train an RE model. However, an issue with
this approach involves the separation between the
fine-tuning process of GPT-2 and the target RE
model that might cause a mismatch between the
generated data from GPT-2 and the data expected
by the RE model (e.g., the generated data can be
noisy or redundant for RE). As such, to improve
the effectiveness of the generated data for an RE
model, we propose to further optimize GPT-2 pa-
rameters during the training of the RE model, thus
enabling the interactions between the GPT-2 and
RE models to generate optimal/customized data
for RE. In particular, we propose a meta learning
framework to treat the parameters of the GPT-2
model as meta-parameters for the RE model that
will be fine-tuned based on the performance of the
RE model on a separate meta development set.

To leverage the performance on meta develop-
ment set to optimize GPT-2 parameters, one solu-
tion is to employ reinforcement learning where the
rewards for the generated sentences can be directly
based on some performance metric (e.g., F1 score).
However, due to the small size of the available data,
this reward can lead to unstable training with high
variance. To remedy this issue, in this work we pro-
pose a novel reward function that instead relies on
gradients of the RE model’s loss to produce more
robust training signals. In particular, our intuition
is that a generated sample should have a higher re-
ward if the direction in which the RE model should
be updated to perform well on the sample and the
development data are similar. To fulfil this objec-
tive, in the proposed training procedure, after one
iteration of training, we first compute the average
gradient of the RE model’s loss function over the
meta development set. Next, the gradient of the loss
of the RE model over a generated sample is com-
puted. Finally, the reward for the generated sample
is obtained via the cosine similarity between the
gradients from the development set and the gener-
ated sample. While this reward is backed up with
intuitive objectives, we also provide mathematical
derivation of the reward based on bi-level optimiza-

tion to further demonstrate the advantages of our
method. Finally, we evaluate the effectiveness of
the proposed method on two benchmark datasets
for RE. The experiments show the superiority of
the proposed model compared to strong baselines.

2 Model

Task Definition: We study the problem of sentence-
level relation extraction. In this setting, the ob-
jective is to identify semantic relation between
two input entity mentions in a sentence. For-
mally, the input to our model involve a sentence
T = [w1, w2, . . . , wn] and two indices s and o
(1 ≤ s, o ≤ n) to indicate the positions of the sub-
ject and object in the relation1. Our goal is to pre-
dict label y representing semantic relation between
the entity mentions ws and wo from a predefined
relation label set R (y ∈ R). Note that if the two
entity mentions are not involved in a relation the
special label None is employed. Also, for conve-
nience, let Otrain be the set of available training
data for our RE problem (i.e., T ∈ Otrain).

Model Overview: In this work we propose a
meta-learning framework to train a deep learning
model for relation extraction and a generative lan-
guage model, i.e., GPT-2, to automatically generat-
ing training data for the deep learning RE model.
In particular, our approach consists of a base model
Mθ to be trained on the combination of original
manually labeled RE data and automatically gener-
ated data. This base model is finally employed at
inference time. Also, our approach involves a pre-
trained language modelMψ that will first be trained
on the manually labeled data for RE to prepare it
for in-domain synthetic data generation. Afterward,
the language model will be jointly optimized with
the RE model Mθ to leverage the feedback to each
other from the models to improve the effective-
ness of the generated data for RE. To realize the
second objective, we present a reinforcement learn-
ing procedure that employs performance of the RE
model Mθ as the reward to update the parameters
of the generative model Mψ. More specifically, a
reward function based on agreement of the gradi-
ents from a development set and generated data
is introduced. In the rest of this section, we first
describe the details of the proposed approach. We
will then present the derivation of the proposed
reward function.

1Note that semantic relation between two entity mentions
can be directed.
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2.1 Base Model

In this work we employ a BERT-based model (De-
vlin et al., 2019) to implement the base model
Mθ for RE (θ involves the learnable parameters
for the RE model). Concretely, the input sen-
tence T is provided to BERTbase in the form of
[[CLS], w1, w2, . . . , wn, [SEP]]. For each word
wi ∈ T , the corresponding hidden vector ei in
the final layer of the BERT model is employed to
represent wi, leading to the sequence of vectors
E = [e[CLS], e1, e2, . . . , en, e[SEP]] for T . Note
that if wi contains multiple word-pieces, we uti-
lize the hidden vector for its first word-piece for
ei. Next, to create an overall representation vector
h for the input sentence T with input entity men-
tions ws and wo, we employ the Dynamic Pool-
ing mechanism (Chen et al., 2015): h = [e[CLS] :
f(e1, . . . , es−1) : es : f(es+1, . . . , eo−1) : eo :
f(eo+1, . . . , en)], where “:” indicates vector con-
catenation and “f(·)” is the Max Pooling operation
over a set of vectors. Finally, the feature vector h is
fed into a network architecture to produce a label
distribution P (y′|T, s, o) = σ(FFC(h)), where σ
is the softmax function and FFC is a two-layer
feed-forward network. To train the base model Mθ,
we employ the negative log-likelihood function:
LC(T, y; θ) = − logP (y|T, s, o).

2.2 Generating Labeled Data

This section describes our approach to employ the
pre-trained language model GPT-2, i.e., Mψ, to
generate synthetic labeled data for RE (ψ contains
the learnable parameters for GPT-2). The train-
ing of GPT-2 for this purpose is divided into two
stages: (1) Pre-training to generate in-domain la-
beled data for RE and (2) Fine-tuning to improve
the effectiveness of the generated data for the RE
model.
Pre-Training: To generate additional labeled data
in the same domain as existing manually labeled
data, we first train the GPT-2 model on the avail-
able RE training samples Otrain. In particular,
we augment each training sentence T ∈ Otrain
with special tags surrounding the input entity men-
tions to imply the existence of a relation. For-
mally, the label-augmented sentence T ′ for T is
prepared as T ′ = [w1, w2, . . . , <SUB-l>ws</SUB-
l>, . . . , <OBJ-l>wo</OBJ-l>, . . . , wn], where l is
p for positive samples (i.e., the subject and object
entity mentions are in relation); and n otherwise. To
train the GPT-2 model Mψ on the label-augmented

sentences T ′, denoted by T ′ = [w′
1, w

′
2, . . . , w

′
m]

with m tokens for convenience, we employ auto-
regressive training. In particular, the model Mψ

is trained to predict the the next token w′
i using

the left context [w′
1, . . . , w

′
i−1]. Formally, the fol-

lowing loss function is employed to train Mψ:
LG = −∑m

i=1 logP (w
′
i|w′

1, . . . , w
′
i−1).

Once pre-trained, the GPT-2 model Mψ can be
used to generate new label-augmented sentences
that can be decoded to obtain new sentences along
with markers for entity mention positions and re-
lation labels. This newly generated labeled data
can then be combined with the original training
data Otrain to train the base RE model Mθ. It is
noteworthy that our label-augmented sentences T ′

do not encode actual relation labels (i.e., only the
information about the positive or negative exam-
ples is included) to simplify the generation task
for GPT-2. As such, the new synthetic labeled
data can only provide a binary label to indicate
the existence of relation. Consequently, to em-
ploy the generated data to train the RE model
Mθ, we integrate a classification head into the RE
base model Mθ in which the overall representa-
tion vector h is fed into another feed-forward net-
work with one output to serve as a binary classifier
to predict positive/negative examples for the syn-
thetic data. Accordingly, the cross-entropy loss
for the binary classifier is computed over gener-
ated data for training Mθ (i.e., multi-task learning):
LB(T, yb; θ) = −[yb ∗ log(δ(FFB(h))) + (1 −
yb) log(1 − δ(FFB(h)))] where δ is the sigmoid
function, and yb is 1 for positive samples and 0
otherwise.

Fine-Tuning: The pre-training of GPT-2 model
is helpful to generate in-domain labeled data for
RE. However, as this pre-training step is done
separately from the RE model Mθ, the generated
data from GPT-2 might not be optimal for the RE
model. For instance, due to the lack of consultancy
with Mθ, the generated data can introduce redun-
dant/noisy information to hinder the training of the
RE model. As such, it is necessary to allow the
RE model to provide feedback for the training of
the GPT-2 model so that the generated data from
GPT-2 can be directly optimized/customized for
our RE model to improve the model performance.
To this end, we propose to further fine-tune the
GPT-2 model during the training process of the
RE model (i.e., joint training) that facilities the ex-
ploitation of training guidance from the RE model
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Algorithm 1 Training of the ED model and fine-
tuning of the GPT-2 model
Input: Otrain,Dmeta
Output: Optimal Models Mψ and Mθ

Initialize θ0 and ψ0

For t = 1 to num_train_steps do
Sample |BO| data points from Otrain
Generate |BG | data points (Tg, yg) using GPT-

2 with T ′
g as the label-augmented texts

BC ← BO ∪ BG
▷ Optimize θ
gθ ← 1

|BC |Σ(T,y)∈BC∇θLbase(T, y; θt−1)
θt ← GradientUpdate(θt−1, gθ)
▷ Evaluate Mθ on Dmeta
dθ ← 1

|Dmeta|Σ(T,y)∈Dmeta∇θLbase(T, y; θt)
▷ Optimize ψ
rg ← d⊤θ · ∇θLbase(Tg, yg; θt−1)

gψ ← 1
|BG |Σ

|BG |
g=1rg · ∇ψ logP (T ′

g;ψt−1)
ψt ← GradientUpdate(ψt−1, gψ)

end

to improve the data generation process in GPT-2.
In particular, we present a meta-learning frame-

work for joint training of the GPT-2 and RE model.
At each training iteration t, a batch of training ex-
amples Btrain is sampled from the original training
data Otrain. The GPT-2 model Mψt−1 at the cur-
rent iteration is then employed to generate a batch
of synthetic data BG . The combination of the origi-
nal and generated data batches BC = Btrain∪BG is
next leveraged to update the current base RE model
Mθt−1 using the loss functions LC and LB . For
convenience, we use Lbase to refer to both LC and
LB . We can decide which loss to use depending
on the type of data, i.e., LC for original human-
labeled data and LB for generated labeled data.
Afterward, the current GPT-2 model Mψt−1 is up-
dated using the feedback of the base RE model over
the effectiveness of the generated samples BG (i.e.,
leading to Mψt . In this way, the GPT-2 model will
be adapted along the training process to be generate
effective data for the next training iteration of RE
model.

To measure the effectiveness of the generated
data batch BG for the RE model for GPT-2 up-
dating, one straightforward solution is to employ
the performance (e.g., F1 score) of the updated
RE model Mθt over a separate meta development
set Dmeta as a reward to update the GPT-2 model
Mψt−1 with the REINFORCE algorithm (Williams,
1992) (i.e., to account for the discreteness of gen-

erated data). However, as we might not have suffi-
cient labeled data to offer a large meta development
set, this approach can have high variance for the
reward, thus causing unreliable estimation and lim-
iting the effectiveness of generated data for RE (Du
et al., 2018). To address this issue, we propose
a novel reward to avoid direct reliance on perfor-
mance metrics and improve the robustness for the
meta learning process. Accordingly, we devise the
reward function based on the gradient of the train-
ing loss Lbase for Mθt over the meta development
setDmeta, which captures the the direction to cause
largest reduction for the loss function (i.e., the
steepest direction). Intuitively, a generated sample
Tg is helpful for the RE model Mθt if the gradient
ofLbase with this sample aligns with the steepest di-
rection with the development data (i.e., similar gra-
dients from Tg and Dmeta). Formally, our reward
to train GPT-2 is obtained via the dot product: rg =
d⊤θ · ∇θLbase(Tg, yg; θt−1), where the dθ is the av-
erage of the gradients of the loss function Lbase for
the RE model on the development set Dmeta, i.e.,
dθ = 1

|Dmeta|Σ(T,y)∈Dmeta∇θLbase(T, y; θt). We
use θt for dθ to inform the GPT-2 model with the
latest RE model to generate better data in the next
iteration. Finally, the parameters of the genera-
tive model Mψ is also updated using REINFORCE
algorithm in our framework. The details of the
proposed procedure are presented in Algorithm 1.

2.3 Derivation of Gradient-based Reward

This section aims to justify the proposed gradient-
based reward with a mathematical foundation to
better reveal its effectiveness for updating GPT-2 in
our framework for RE. For simplicity, we assume
that only one example (Tg, yg) is generated in an
iteration, i.e., |BG | = 1. Using the reward rg for
(Tg, yg), we leverage the REINFORCE algorithm
to update ψt in the last GradientUpdate(ψt−1, gψ)
step of Algorithm 1, leading to the update rule:

ψt ← ψt−1 + γrg · ∇ψ logP (T ′
g;ψt−1) (1)

where γ is the learning rate. As such, to jus-
tify this update rule, we consider a bi-level op-
timization problem that starts with (Tg, yg) sam-
pled from P (T ′

g;ψt−1), which is the distribution
induced by the GPT-2 model Mψt−1 . Next, our
first level of optimization aims to optimize the loss
function Lbase for the RE model using (Tg, yg),
leading to the following update rule with gradi-
ent descent: θt = θt−1 − γ∇θLbase(Tg, yg; θt−1).
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Here, θt can be seen as a function of ψ due to
the dependence on (Tg, yg), which is in turn com-
puted over ψt−1 (i.e., θt(ψ)). For convenience,
we also compute the expectation over generated
samples for ψt, i.e., θ̄t = ET ′

g∼P (T ′
g ;ψt−1)[θt] =

θt−1 − γET ′
g∼P (T ′

g ;ψt−1)[∇θLbase(Tg, yg; θt−1)].
Afterward, we estimate the loss function
Lbase of the new RE model θt over the meta
development set Dmeta: J(θt(ψ),Dmeta) =

1
|Dmeta|

∑
(T,y)∈Dmeta Lbase(T, y; θt), serving as a

measure for the effectiveness of the generated sam-
ple (Tg, yg) to provide feedback/training signals for
the GPT-2 model. To this end, our second level of
optimization is to optimize J(θt(ψ),Dmeta) with
respect to ψ to update the GPT-2 model for the next
iteration. Using gradient descent, our optimiza-
tion procedure thus needs to compute the gradient
∇ψJ(θt(ψ),D) that can be computed via the chain
rule:

∇ψJ(θt(ψ),D) =

∇θ̄tJ(θt(ψ),D)⊤ · ∇ψ θ̄t(ψ)

≈ ∇θJ(θt(ψ),D)⊤ · ∇ψ θ̄t(ψ)

(substitute the formula for θ̄t above)

= ∇θJ(θt(ψ),D)⊤ · ∇ψ(θt−1−
γET ′

g∼P (T ′
g ;ψt−1)[∇θLbase(Tg, yg; θt−1)])

(assume ∇ψθt−1 ≈ 0 with Markov assumption)

≈ −γ∇θJ(θt(ψ),D)⊤·
∇ψET ′

g∼P (T ′
g ;ψt−1)[∇θLbase(Tg, yg; θt−1)]

(using the log-gradient trick)

=− γET ′
g∼P (T ′

g ;ψt−1)

[(
∇θJ(θt(ψ),D)⊤

· ∇θLbase(Tg, yg; θt−1)
)
· ∇ψ logP (T ′

g;ψt−1)
]

To this end, using one roll-out sample and gradient
descent, we can eventually derive the update rule
for the GPT-2 parameters ψ in Equation 2.3, thus
justifying our gradient-based reward function rg for
REINFORCE to highlight its advantage for labeled
data generation for RE.

3 Experiments

3.1 Dataset & Hyper-Parameters

To evaluate the effectiveness of the proposed model,
i.e., called Data Generation for Relation Extrac-
tion (DGRE), we employ two English benchmark
datasets for RE, i.e., ACE 2005 (Walker et al.,
2006) and SPOUSE (Hancock et al., 2018). For
ACE 2005, similar to previous work (Nguyen and
Grishman, 2016; Shi et al., 2018; Pouran Ben Vey-
seh et al., 2020), we use the dataset split and prepro-

cessed by (Yu et al., 2015) for compatible compari-
son. There are 6 different domains in this dataset
setting, i.e., (bc, bn, cts, nw, un, and wl), covering
text from news, conversations and web blogs. As
such, the union of the domains bn and nw (called
news) is used as training data; a half of the docu-
ments in bc is reserved for the development data,
and the remainder (cts, wl and the other half of bc)
serve as the test data. In this way, our data organiza-
tion presents different domains for the training and
test data to focus on cross-domain generalization
evaluation of the models (Pouran Ben Veyseh et al.,
2020).

In addition, we employ the standard data split for
the SPOUSE dataset, involving 22,195 sentences
for training data, 2,796 sentences for development
data, and 2,697 sentences for test data as done in
(Hancock et al., 2018; Pouran Ben Veyseh et al.,
2020). Each sentence in SPOUSE2 contains two
marked person names (i.e., the entity mentions)
and the goal is to predict whether the two people
in the sentence are spouses. For both datasets, we
sample 10% of the training data portions to serve
as meta development data for our model.

We utilize the development set of ACE 2005
dataset to fine-tune the hyper-parameters for our
model. Based on the F1 score on the development
set, the following hyper-parameters are selected:
8 for the mini-batch size; 2 layers for the feed-
forward networks with 250 hidden dimensions; and
1e-2 for the learning rate for the GradientUpdate
steps in our meta learning framework. Moreover,
we use the default hyper-parameter values provided
by Huggingface3 for the pre-training step for the
GPT-2 model. Finally, the num_train_steps in Al-
gorithm 1 is set to the number of training batches
in each dataset.

3.2 Baselines

For experiments on ACE 2005, we compare DGRE
with prior models reported on this dataset and also
the related data augmentation methods. In particu-
lar, we consider the following baselines:

RE Models: (i) Feature based models: These
models hand-design linguistic features for RE,
i.e., FCM, Hybrid FCM, and LRFCM (Yu et al.,
2015; Hendrickx et al., 2010). (ii) Deep learning
models: These models employ deep learning ar-
chitectures for RE, i.e., CNN, Bi-GRU (Nguyen

2extracted from news articles
3https://huggingface.co/ (Apache License 2.0.)
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and Grishman, 2016), CNN+DANN (Fu et al.,
2017), GSN (Shi et al., 2018), AGGCN (Atten-
tion Guided GCN) (Guo et al., 2019), SACNN
(Segment-level Attention-based CNN) (Tran et al.,
2019), DRPC (Dependency Relation Prediction
and Control model) (Veyseh et al., 2019), EA-
BERT (Wang et al., 2019), CEON-LSTM (Pouran
Ben Veyseh et al., 2020), MapRE (Dong et al.,
2021), and A-GCN (Qin et al., 2021). Note that
CEON-LSTM and A-GCN have the best reported
performance with different settings over ACE 2005
and SPOUSE.

Data Augmentation Models: These methods
employ data augmentation (DA) techniques to ad-
dress labeled data scarcity for RE or related tasks.
In particular, we compare with GradLRE (Hu et al.,
2021b) that proposes a Gradient Imitation Rein-
forcement Learning method to encourage pseudo
labeled data to imitate the gradient on labeled data,
and MetaSRE (Hu et al., 2021a) that employs
pseudo label generation in a self-training proce-
dure. Both methods use existing unlabeled data.
In addition, we explore DA methods for IE tasks
that exploit GPT-2 for data generation, including
Filter-GPT (Anaby-Tavor et al., 2020) that filters
the generated data based on confidence scores of a
pre-trained RE model before combining them with
original data; and Novelty-GPT (Yang et al., 2020a)
that computes novelty scores for generated data, in
comparison to original training data, to weight the
samples in the combined dataset for training.

3.3 Results

The performance for the models on the test set of
ACE 2005 is presented at Table 1. This table shows
that the proposed method significantly outperforms
all the baselines with p < 0.01 (except for A-GCN
over cts)). Specifically, compared to the baselines
that employ richer information from the input (e.g.,
syntactic structures in CEON-LSTM or label se-
mantics in MapRE), the improvement obtained by
DRGE is important as it requires only the surface
form of the input text. This advantage is helpful in
domains and settings that suffer from the lack of
rich resources and data. Moreover, compared to the
models that employ data augmentation (DA) to ad-
dress data scarcity, the proposed method achieves
significantly better results on all three domains. In
particular, compared to “Filter-GPT” and “Novelty-
GPT”, which are the most relevant approaches to
DRGE, our method can substantially improve the

System bc cts wl Avg.
FCM (2015) 61.90 52.93 50.36 55.06
Hybrid FCM (2015) 63.48 56.12 55.17 58.25
LRFCM (2015) 59.40 - - -
CNN (2016) 63.26 55.63 53.91 57.60
Bi-GRU (2016) 63.07 56.47 53.65 57.73
CNN+DANN (2017) 65.16 - - -
GSN (2018) 66.38 57.92 56.84 60.38
C-GCN∗ (2018) 67.02 64.40 58.92 63.44
AGGCN∗ (2019) 65.29 63.65 60.35 63.09
SACNN∗ (2019) 68.52 64.21 62.19 64.97
DRPC∗ (2019) 69.41 65.82 61.65 65.62
EA-BERT∗ (2019) 69.25 61.70 58.48 63.14
CEON-LSTM∗ (2020) 71.58 66.92 65.17 67.89
MapRE∗ (2021) 71.54 69.19 66.13 68.95
A-GCN∗ (2021) 72.56 70.13 65.07 69.25
GradLRE∗ (2021b) 71.07 68.92 64.33 68.10
MetaSRE∗ (2021a) 70.57 69.13 65.22 68.30
Filter-GPT∗ (2020) 70.77 69.40 64.59 68.25
Novelty-GPT∗ (2020a) 71.32 68.98 65.33 68.54
DGRE∗ (ours) 73.99 70.18 69.23 71.13

Table 1: F1 scores of the models on the ACE 2005 test
set. ∗ designates models that employ BERT.

System P R F1
C-GCN (2018) 71.23 79.59 75.18
AGGCN (2019) 72.45 81.95 76.91
SACNN (2019) 78.89 77.09 77.98
DRPC∗ (2019) 75.09 83.18 78.93
CEON-LSTM∗ (2020) 82.33 79.73 81.01
MapRE∗ (2021) 79.33 81.39 80.35
A-GCN∗ (2021) 81.40 82.64 82.02
GradLRE∗ (2021b) 82.77 81.08 81.92
MetaSRE∗ (2021a) 83.49 77.38 80.32
Filter-GPT∗ (2020) 80.13 81.84 80.98
Novelty-GPT∗ (2020a) 82.71 79.80 81.23
DGRE∗ (ours) 84.15 83.29 83.72

Table 2: Model performance on the SPOUSE test set. ∗

designates models that employ BERT.

performance by up to 2.6% on the average F1 score.
We attribute this improvement to the fact that other
DA methods do not interact with the target RE
model to guide the labeled data creation for opti-
mal performance. In contrast, our method DRGE
embeds the data generation process into the train-
ing process for RE to allow direct communication
between GPT-2 and the RE model to produce more
effective labeled data for the RE models.

In addition, Table 2 reports the performance of
the model on test data of the SPOUSE dataset.
The table corroborates our findings for the ad-
vantages of our labeled data generation method
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Model P R F1
DGRE 70.83 72.85 71.83
No GPT-2 Data 69.42 71.05 70.23
Separate Fine-Tuning 70.28 71.51 70.89
Dev Perf. Reward 70.88 69.74 70.31
No Pre-training 70.98 71.42 71.20

Table 3: Performance of models on the development set
of ACE 2005

for RE over competitive baselines. Specifically,
DRGE is significantly better than all the baselines
(p < 0.01); the performance improvement over
GPT-based baselines is at least 2%, thus suggest-
ing the ability to extend to different datasets and
domains for RE of our method.

3.4 Ablation Study

To provide more insight into the performance of
DGRE, this section studies the contribution of dif-
ferent components of the model to its final per-
formance. Specifically, we examine the following
variants of DGRE: (1) No GPT-2 Data: For this
variant, we entirely remove the GPT-2 model so
that the base RE model is only on original labeled
data Otrain; (2) Separate Fine-Tuning: In this
baseline, the GPT-2 model is separately fine-tuned
on the training set Otrain to generate new labeled
data, i.e., no information from the RE base model
is employed to optimize GPT-2; (3) Dev Perf. Re-
ward: To study the importance of the proposed
gradient-based reward, we report the performance
of the model that replaces the proposed reward in
DGRE with direct F1 scores of the RE model on
the meta development set (i.e., performance-based
reward); and (4) No Pre-training: This variant
is intended to show the benefit of the initial pre-
training step of the GPT-2 model using the original
training data Otrain.

Table 3 shows the performance of the models
on the ACE 2005 development data. This table
shows that all stages and components in the pro-
posed method are necessary to achieve the best
performance for DGRE. In particular, removing
GPT-2 hurts the performance the most, demonstrat-
ing the importance of augmenting RE models with
diverse samples generated by GPT-2. Moreover, re-
placing the proposed reward with the performance
on the meta-development set in REINFORCE algo-
rithm reduces the performance significantly, clearly
confirming the advantages of the proposed reward

Error DGRE No Fine-Tuning
Missing Entity 11% 18%
Wrong Entity 15% 23%
Incorrect Relation 9% 17%
Semantics 11% 14%

Table 4: Frequencies of errors in 100 generated samples
by GPT-2 when (1) it is fine-tuned using the proposed
reward (i.e., DGRE), or (2) no fine-tuning is employed.

with gradient agreement to train our meta learn-
ing framework. Finally, we observe worse perfor-
mance when the GPT-2 model is optimized sep-
arately from the RE model, thus testifying to our
proposal of joint training to leverage the interaction
between the two models for RE.

3.5 Analysis
Error Analysis: To better understand the effec-
tiveness of the proposed reward to update the pa-
rameters of the GPT-2 model for RE, we analyze a
sample of generated labeled data from GPT-2. A
key insight from our analysis is that the proposed
gradient-based reward is able to reduce noises in
the generated data from GPT-2, thus better sup-
porting the training of the base model for RE. In
particular, we compare the frequencies of errors in
the generated samples in two scenarios: (1) GPT-2
is fine-tuned by the proposed reward (i.e., DGRE),
and (2) No fine-tuning is applied to the pre-trained
GPT-2 (i.e., the GPT-2 is only pre-trained sepa-
rately from the RE model as discussed in Section
2.2). 100 generated examples are reviewed for
each scenario in our study. To this end, we con-
sider the following categories of noises in the gen-
erated samples by GPT-2 for the RE model: (1)
Missing Entity: In the generated texts, there is no
tags for entity mentions, or only the subject or the
object mention exists; (2) Wrong Entity: The spe-
cial tokens “<SUB-l>”, “</SUB-l>”, “<OBJ-l>”,
or “<OBJ-l>” do not match or surround correct en-
tity mentions in the generated text; (3) Incorrect
Relation: GPT-2 generates samples with correct
tags for entity mention spans; however, the relation
labels are incorrect (e.g., using the negative tags
<SUB-n> and <OBJ-n> for samples with relation
and vice versa); (4) Semantics: The semantics of
the generated text is not sound (e.g., inconsistent
topics, repeated words, etc.).

Table 4 shows the frequency of each noise cate-
gory in the study. As can be seen, fine-tuning the
GPT-2 model using the proposed gradient-based
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ID Sentence

1
The soldiers will destroy all <SUB-p> cities </SUB-p> on the <OBJ-p> earth </OBJ-p> if they can
reach to that point.

2 She mourned <OBJ-p> her </OBJ-p> <SUB-p> son </SUB-p> for a year.

3
“<SUB-p> United States </SUB-p> is closely watching this conflict and is prepared for that", the
<OBJ-p> president <OBJ-p> said.

4 After <SUB-n> his <SUB-n> visit, <OBJ-n>Arab troops <OBJ-n> started invading the country.

5
<SUB-n> Maria <SUB-n> was informed by the police department that the <OBJ-n> murderer
</OBJ-n> is released.

6 <OBJ-n> He <OBJ-n> must be an idiot to return to his house after that <SUB-n> accident <SUB-n>.

Table 5: Sample sentences generated by GPT-2 fine-tuned with DGRE. Tags with p indicates positive samples while
negative samples involve tags with n.

reward for RE significantly reduces error rates in
all categories. Interestingly, the RE-related errors,
i.e., Wrong Entity, Missing Entity and Incorrect
Relation, enjoy larger error reduction. This fact
corroborates the necessity of integrating the fine-
tuning process of the GPT-2 model with the training
for the RE model. Moreover, the table shows that
among all error categories, Wrong Entity is the ma-
jor source of noises in the generated samples from
GPT-2. Future work can thus explore approaches
to integrate entity knowledge into the GPT-2 model
to address this major for RE.

Case Study: Finally, to shed more light on the
quality of the generated text, we present three pos-
itive and three negative samples produced by the
GPT-2 model fine-tuned in the final epoch of the
proposed training procedure for RE on ACE 2005.
The sentences are shown in Table 5, highlighting
the diverse nature of the generated samples (e.g,
different distances and orders between the subject
and object mentions) from GPT-2 for RE models.

4 Related Work

Relation Extraction is one of the fundamental tasks
in Information Extraction. Due to its importance,
various methods have been proposed for RE, rang-
ing from feature-based and kernel-based techniques
(Zelenko et al., 2003; Zhou et al., 2005; Bunescu
and Mooney, 2005; Sun et al., 2011; Chan and
Roth, 2010; Nguyen and Grishman, 2014; Nguyen
et al., 2015c) to recent advanced deep learning
models (Zeng et al., 2014; dos Santos et al., 2015;
Zhou et al., 2016; Verga et al., 2018; Veyseh et al.,
2019). The typical neural architectures for RE in-
clude Convolutional Neural Networks (Zeng et al.,
2014; Nguyen and Grishman, 2015a; dos Santos
et al., 2015; Wang et al., 2016), Recurrent Neu-
ral Networks (Nguyen and Grishman, 2016; Zhou

et al., 2016; Zhang et al., 2017), and self-attentions
in Transformer (Verga et al., 2018).

To address the key challenge of data scarcity for
RE, prior work has resorted to distantly supervised
methods (Mintz et al., 2009; Zeng et al., 2015; Ji
et al., 2017; Chen et al., 2021) or pseudo labeling
techniques (Hu et al., 2021b,a). However, such
methods suffer from low quality of obtained train-
ing data, thus hindering performance for RE. Also,
we note that data augmentation based on GPT-2 has
also been explored for other tasks, such as event
extraction (Pouran Ben Veyseh et al., 2021; Pa-
panikolaou and Pierleoni, 2020; Zhang et al., 2020;
Yang et al., 2020b; Madaan et al., 2020). Com-
pared to such prior work, our work features a new
meta learning framework to jointly train GPT-2
with the downstream RE model, leveraging gradi-
ent agreement-based reward to improve the quality
of generated labeled data.

5 Conclusion

We present a novel data augmentation method for
RE using the pre-trained language model GPT-
2. The language model is fine-tuned over label-
augmented texts to generate in-domain and labeled
samples for RE. To improve the quality of gener-
ated data for RE, the GPT-2 model is further opti-
mized along the training process of a RE model in a
novel meta learning framework (i.e., joint training
to promote model interaction). Agreement scores
between gradients of the RE loss function over
generated data and a meta development set are pro-
posed as the reward to update the GPT-2 model.
We conduct extensive experiments on two bench-
mark datasets to demonstrate the benefits of the
proposed method for RE. In the future, we will
explore the application of the proposed methods to
other related tasks in Information Extraction.
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Limitations & Risks

Limitations: In this work we present a novel
method to address data scarcity issue for Relation
Extraction (RE). Although our experiments demon-
strate the effectiveness of the proposed method,
there are still some limitations that can be improved
in future work. First, similar to previous work (dos
Santos et al., 2015; Veyseh et al., 2019), the current
method assumes golden entity mentions to perform
RE that might not be the case in different applica-
tions. It is thus helpful to explore the method in
a more realistic setting where entity mentions are
predicted, e.g., using joint inference models to si-
multaneously extract entity mentions and relations
in an end-to-end fashion. Second, our method is
currently evaluated only for sentence-level RE (i.e.,
entity mentions are in the same sentences). Future
work can further explore our method for document-
level RE to allow entity mentions to appear in dif-
ferent sentences to better demonstrate its advantage.
Finally, our method requires the generative GPT-2
model for data generation. To perform well, GPT-2
needs to be trained on large unlabeled datasets that
might not be readily available for low-resource lan-
guages. As such, it is important to further evaluate
our method on low-resource languages to better
reveal its effectiveness.
Risks: In this work, we employ GPT-2 to gener-
ate new training samples for the task of RE. Al-
though GPT-2 is publicly available and the datasets
employed in this work to fine-tune GPT-2 for RE
are also publicly available, a generative language
model might produce biased sentences, insulting
texts or reveal private information. As such, it is
necessary to take further measures before publicly
releasing the automatically generated labeled data.
To this end, we inspect the data employed for fine-
tuning to exclude any offensive text and identity
information. The generated data will also be in-
spected for purpose before publicly releasing the
data.
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