
Findings of the Association for Computational Linguistics: ACL 2023, pages 11247–11266
July 9-14, 2023 ©2023 Association for Computational Linguistics

SORTIE : Dependency-Aware Symbolic Reasoning for Logical
Data-to-text Generation

Xueliang Zhao1†, Tingchen Fu2†, Lemao Liu3, Lingpeng Kong1, Shuming Shi3 Rui Yan2,4∗
1The University of Hong Kong 3Tencent AI Lab

2Gaoling School of Artificial Intelligence, Renmin University of China
4Engineering Research Center of Next-Generation Intelligent Search and Recommendation,

Ministry of Education
{xlzhao,lpk}@cs.hku.hk {tingchenfu,ruiyan}@ruc.edu.cn

{redmondliu,shumingshi}@tencent.com

Abstract

Logical data-to-text generation is a representa-
tive task in measuring the capabilities of both
language generation and complex reasoning.
Despite the introduction of reasoning skills in
generation, existing works still rely on neu-
ral language models to output the final table
description. However, due to the inefficacy
of neural language models in complex reason-
ing, these methods inevitably have difficulty
working out key entities in the description and
might produce unfaithful descriptions. To al-
leviate these issues, we propose a dependency-
aware symbolic reasoning framework that rea-
sons out each entity in the table description
with our designed table-compatible program-
ming language. To figure out the dependency
relationship among entities, we devise an en-
tity scheduling mechanism to determine the
order of programme synthesis such that the rea-
soning of an entity only relies on other “re-
solved” entities. Experiments on three datasets
and three backbones show that ours outper-
forms previous methods not only in surface-
level fidelity but also in logical fidelity. No-
tably, the proposed framework enhances GPT-
2, BART and T5 with an absolute improvement
of 5.7% ∼ 11.5% on SP-Acc.

1 Introduction

Generating logical-consistent sentences is an inte-
gral part of human intelligence and has attracted
broad research interests in the field of natural lan-
guage processing recently (Chen et al., 2020a,c;
Wei et al., 2022; Creswell et al., 2022; Kazemi
et al., 2022). One of the most prominent attempts
to investigate this capability in neural models is
logical data-to-text generation (Chen et al., 2020a),
which requires conducting intricate reasoning on

†Xueliang Zhao and Tingchen Fu contribute equally to this
work. This work was done during their internship at Tencent
AI Lab.

*Corresponding author: Rui Yan (ruiyan@ruc.edu.cn).

There are 4 games with the attendance of 16000, the highest
attendance in 1992 - 93 Vancouver Canucks season.

Step1:
There are [ENT1] games with the attendance of [ENT2], the
highest attendance in 1992 - 93 Vancouver Canucks season.

Date Home Visitor Score Series Attendance

May 2 Vancouver Los Angeles 2-5 1-0 16150

May 5 Vancouver Los Angeles 6-3 1-1 16150

May 7 Los Angeles Vancouver 4-7 1-2 16005

May 9 Vancouver Log Angeles 7-2 2-2 16150

1992 - 1993 Vancouver Canucks Season

Neural

MAX(<attendance>)=16150COUNT(FILTER(<attendance>, EQ(16005)))=1

Chronological
Reasoning

There are [ENT1] games with the attendance of [ENT2], the
highest attendance in 1992 - 93 Vancouver Canucks season.

COUNT(FILTER(<attendance>, EQ(16150)))=3 MAX(<attendance>)=16150
Step1:

Step2:

Step2:

Figure 1: A table from LogicNLG (Chen et al., 2020a).
Without symbolic reasoning, neural models fabricate
entities that do not appear in the table; with symbolic
reasoning in chronological order ([ENT1]→[ENT2]), it
is difficult to directly work out [ENT1] since [ENT1] de-
pends on 16150 ([ENT2]); SORTIE perform dependency-
aware symbolic reasoning ([ENT2]→[ENT1]) and
solves two entities correctly.

the given table to produce a logically-consistent
description (Chen et al., 2020a).

To realize intricate reasoning on tables, a wide
spectrum of methods have been proposed such
as table pre-training with diverse self-supervision
tasks (Andrejczuk et al., 2022; Liu et al., 2022;
Zhao et al., 2022) or coarse-to-fine text delibera-
tion (Chen et al., 2020a). Generally, existing meth-
ods attempt to internalize the reasoning ability with
neural model parameters, but they take the direct
output from neural models as the final table descrip-
tion, ignoring the fact that neural language models
suffer from hallucination when performing open-
ended generation task (Maynez et al., 2020). In
addition, since neural language models (even the
large scale ones) often suffer from limited multi-
step reasoning ability, methods based on these thus
struggle to reason out key entities in description and
thus perform poorly on generation faithfulness (Liu
et al., 2022).

With the recent surge of combining contempo-

11247

rary deep learning methods and symbolic AI, we
get inspiration from recent neural symbolic liter-
ature (Gao et al., 2022) that decouples complex
reasoning with language generation. In specific,
we delegate the inference of entities mentioned in
the table description to a programme interpreter.
The interpreter executes our generated python-like
programme, thus working out the entities correctly
and alleviating hallucination.

However, synthesizing such a programme to
infer entities is not a trivial task due to two
major challenges: First, though there are some
domain-specific programming languages on natu-
ral text (Chen et al., 2020b; Gupta et al., 2019),
we need to design a table-compatible and easy-
to-execute programming language to support the
reasoning over entities in the table. Second, the
entities to infer are not independent but have a com-
plex dependency relationship and the inference of
one might rely on the others. For instance, as is
shown in Figure 1, we can not count the appear-
ance of 16150 unless we work out the 16150 first.
Thus, figuring out the synthesis order of the enti-
ties is fundamental to the reasoning process. To
make it worse, there is no human annotation of
programmes or synthesis order for the entities.

To mitigate the aforementioned problems, we
propose SORTIE (SymbOlic Reasoning with enTIty
schEduling), a framework that reasons out each
named entities in the table description with
dependency-aware symbolic reasoning. Specifi-
cally, (1) we introduce a table-compatible program-
ming language that defines the grammar and opera-
tors for reasoning on the tabular data and delegates
the reasoning of each entity to the execution of the
programme; (2) we devise a new pipeline to predict
the dependency relationship between entities and
synchronously synthesize the programmes to work
out each entity; (3) we heuristically search pseudo
labels for both the programmes and synthesis order
of entities. We further adjust the sample weight of
pseudo labels to alleviate the spurious correlation
issue with a self-adaptive training algorithm.

To summarize, our contributions are three-fold:
(1) To our best knowledge, we are the first to model
the dependency relationship between entities in the
table description and propose a new pipeline to syn-
chronously predict the order of entities and reason
them out one by one. (2) We successfully apply
symbolic reasoning to logical data-to-text gener-
ation tasks. To support the reasoning of entities,

we design a table-compatible python-like program-
ming language that is more feature-rich and table-
friendly compared to previous ones. (3) We empiri-
cally validate the efficacy of SORTIE on three bench-
marks for logical data-to-text generation, including
LogicNLG (Chen et al., 2020a), Logic2Text (Chen
et al., 2020c), and SciGen (Moosavi et al., 2021).
When applied on GPT-2, BART or T5, our methods
substantially enhance the SP-Acc which is a crucial
measurement for logical fidelity with an absolute
improvement of 5.7% ∼ 11.5%.

2 Related Work

2.1 Data-to-text Generation

Early data-to-text generation mainly focuses on
surface-level descriptions of the table contents (Le-
bret et al., 2016; Liu et al., 2018; Ma et al., 2019;
Wang et al., 2020). However, in spite of generation
fluency, neural-based generation models struggle
to perform rich inference based on the facts in ta-
ble (Chen et al., 2020a,c). To make up for that, log-
ical table-to-text generation is proposed as a new
task with the aim of generating logically-consistent
descriptions from open-domain tables (Chen et al.,
2020a,c).

In recent years, to endow neural models
with complex reasoning ability, DCVED (Chen
et al., 2021) applies causal intervention meth-
ods to reduce the spurious correlation in entities.
PLOG (Liu et al., 2022) and TABT5 (Andrejczuk
et al., 2022) introduce table-to-logical-form or ta-
ble denoising as self-supervision tasks in the pre-
training stage. Similarly, REASTAP (Zhao et al.,
2022) introduces 7 pre-training tasks to mimic the
7 types of reasoning skills of humans. It is worth
noting that this line of research is orthogonal to
ours since they primarily concentrate on developing
training instances that reflect the desired reasoning
skills. Similar to the programming language in our
proposal, Saha et al. (2022) introduce logic string
as an intermediate step to guide generation. How-
ever, the surface realization from the logic string to
the final description is very prone to hallucinations
as it is done purely by neural language models.

2.2 Symbolic Reasoning

The idea of symbolic reasoning has garnered con-
siderable attention in numerous natural language
processing and computer vision tasks. Andreas
et al. (2016) make the first attempt to combine sym-
bolic reasoning with visual question answering,

11248

Category Operator Arguments Output Description

Value Operator

SUM
v0: a numerical value
v1: a numerical value

a numerical value
Return the sum, difference
or ratio of two values.

DIFF
DIV

COUNT v: list a numerical number Count the number of element.

SELECT v0: a list. v1: an index value Select an element from a list.

MAX
v: a list value

Return the maximum or
minimum value of a list.MIN

List Operator

FILTER
v0: a list.

v1: a condition
list

Filter elements that meets
specific conditions from a list.

UNIQUE v: list list Remove the dublicated value.

ARGMAX
v: list index

Return the index of the
maximum or minimum value.ARGMIN

ARGWHERE
v0: a list.

v1: a condition
list of index

Return the list of index of the elements
that meets specific conditions.

Boolean Operator
EQ GE GEQ
LE LEQ

v: a numerical parameter a condition
Constitute a condition for
FILTER and ARGWHERE.

Table 1: The operators used in our symbolic reasoning.

parsing questions into linguistic substructures and
constructing question-specific deep networks from
smaller modules that each tackle one subtask. Fol-
lowing this work, numerous efforts have been made
to directly predict the instance-specific network lay-
outs in an end-to-end manner (Hu et al., 2017), to
alleviate the requirement for mediate supervision
on semantic parsers (Hu et al., 2018; Mao et al.,
2019), to infer the answer with a purely symbolic
executor (Yi et al., 2018), and to conduct visual
co-reference resolution (Kottur et al., 2018). Very
recently, Gupta et al. (2019) and Chen et al. (2020b)
concurrently proposed using neural symbolic ap-
proaches to answer questions in machine reading
comprehension, which demonstrates advantages
in numerical reasoning and interpretability. Com-
pared to the previous tasks, which only need to
derive a single entity or value, the task of logical
table-to-text generation requires the generation of
a complete natural language sentence containing
multiple entities or logical types.

3 Methodology

3.1 Problem Formulation and Overview

Given a table T , the task of the logical data-to-
text generation is to generate a description Y that
is both fluent and logically consistent. Following
Chen et al. (2020a), we decompose the problem
into a two-step pipeline: template generation and
entity instantiation. Specifically, we first generate
a template Ỹ with n placeholders1 P1, P2, · · · , Pn,
and then seek for a sequence of named entities

1Template is a draft table description that all the named
entities are replaced temporarily with special “[ENT]” tokens.

[e1, e2, · · · , en] to fill in the placeholders to form
a complete description Y . We focus on the sec-
ond step in this work while following Chen et al.
(2020a) for the first step.

Road Map We first introduce our designed table-
compatible programming language in § 3.2. The
architecture of our model, mostly composed of
three components, is illustrated at § 3.3. Finally,
the learning algorithm to deal with the scarcity of
human annotation labels is described at § 3.4.

3.2 Table-compatible programming language

To reason out the named entities faithfully from
the table, we introduce a programming language
composed of a series of specially designed opera-
tors and named entities as operands. We list our
operators in Table 1.

Based on the type of output, we roughly sort
all the operators into three categories: value oper-
ators, list operators, and boolean operators. Bor-
rowed from Chen et al. (2020b), the value oper-
ators are designed to select a value from the ta-
ble (SELECT, MAX and MIN) and calculate some sim-
ple arithmetic (SUM, DIFF, DIV and COUNT). Apart
from that, since the layout of the data in a table
is in the format of columns with each column in-
cluding homogeneous information, we design list
operators (FILTER or UNIQUE) and index opera-
tors (ARGMAX, ARGMIN, ARGWHERE) directed against
a single column 2 to obtain a new list or indies of a
list respectively. Finally, we also include boolean
operation (EQ, GE, LE, GEQ, LEQ) as an integral part

2In this work, we use the column and the list interchange-
ably.

11249

Entity Scheduling

Template: There are [ENT1] games with
the attendance of [ENT2], the highest
attendance in 1992 - 93 Vancouver
Canucks season. attendance of [ENT2], the highest ... There are [ENT1] games …

Programme Synthesis

MAX(<attendance>) COUNT(FILTER(<attendance>, EQ(16150)))

16150 3

Encoding

MAX MIN

SELECT

COUNT

FILTER

EQ

Figure 2: Working flow of SORTIE . The table and template are first encoded into dense representations, and the entity
scheduling mechanism dynamically picks the placeholders (i.e., “[ENT2]” and “[ENT1]”) that will be resolved by
programme synthesis and execution.

of FILTER and ARGWHERE.
Compared with the domain-specific language in

Chen et al. (2020b) and Gupta et al. (2019), the
major novelty lies in its compatibility with struc-
tured tabular data, for example, the list operator to
accurately pick one or more specific values from a
table according to our requirement. We note a con-
current work (Zhou et al., 2022) also puts forward
a table-supported programming language. Differ-
ent from ours, it only operates on linearized tables
in natural language form but does not support raw
structured tables. Generally speaking, we extrap-
olate the traditional symbolic reasoning operators
in reading comprehension to adapt to a more com-
plex scenario. At the same time, our operators still
keep the compositionality, the ability to generate
complex programmes by compositionally applying
the operators. We leave more detailed discussions
about the connections to other domain-specific lan-
guages in Appendix A.

3.3 Main Components

The main working flow of the proposed method is
illustrated in Figure 2. In a nutshell, it is composed
of three parts, (1) encoding, (2) entity scheduling
and (3) programme synthesis and execution, which
we will elaborate on below respectively.

Encoding. Given a table T , we first linearize
the table into a natural language form following
Chen et al. (2020a). Then we concatenate the lin-
earized table with the template into a single se-
quence and transform it into a dense representa-
tion with a pre-trained language model (PLM):
Henc = [henc

1 , · · · ,henc
l], where l is the total

length of the linearized table and the template. Dur-
ing the training phase, the template is obtained by
substituting the entities in the golden description
with placeholders. At inference, the template is

obtained with the same PLM.

Entity Scheduling. As mentioned before, enti-
ties within a description are not isolated and there
exists a latent dependency relationship between
each other. If the entities are reasoned in chronolog-
ical order (i.e., from left to right), the programmer
may struggle to synthesize a suitable programme
when faced with entities whose dependencies are
unsolved yet. To this end, we devise an entity
scheduling mechanism to dynamically select to-be-
solved placeholders that only depends on currently
known entities.

In detail, we employ a 1-layer GRU to realize
scheduling. At the t-th step, with the entity3 rea-
soned out at the last step, we concatenate its word
embedding together with the dense representation
of the corresponding placeholder as input. The for-
mer provides the semantics of the last entity while
the dense representation of the placeholder carries
the contextual and positional information in the
template, which is helpful to reason out the next
placeholder. The input is used to update the inner
hidden state of GRU hs

t−1.
Then, we calculate the probability of selecting

a placeholder in the template Ỹ according to the
similarity between hs

t and the embeddings of the
placeholders:

Pr(Pi) =
exp(fsim(hs

t ,h
plh
i))

n∑
j=1

exp(fsim(hs
t ,h

plh
j))

(1)

where [hplh
1 , · · · ,hplh

n] is a slice of Henc corre-
sponding to the placeholders in the template, and
fsim(·, ·) is a similarity function implemented as

3Strictly speaking, a placeholder is unsolved and is a tem-
poral substitution for an entity. In what follows, we may
slightly abuse the word “entity” to refer to an unsolved place-
holder.

11250

the dot product. Pr(Pi) is the probability of select-
ing the i-th placeholder in the template to solve at
the t-th step. We choose the placeholder with the
highest probability:

λt = argmax
i

Pr(Pi), (2)

and use the dense representation of the chosen
placeholder to initialize the hidden state of the pro-
grammer, which will be illustrated later. To deal
with the undifferentiable problem in selecting a sin-
gle placeholder, we apply gumbel-softmax (Jang
et al., 2016) in the training stage.

Programme Synthesis and Execution. Inspired
by Gupta et al. (2019) and Chen et al. (2020b), we
propose to synthesize programmes in our designed
table-compatible programming language to reason
out each entity. Specifically, the programme synthe-
sis is conducted by a 1-layer GRU. At the t-th time
step, we first update the hidden state hp

t−1 by the
embedding of the last generated operator/operand.
Next, we calculate the relevance between hp

t and
all the operator/operand embeddings to predict the
next operator/operand opt. With a generated pro-
gramme [op1, · · · , oplp], we execute it on the table
T to reason out current entity.

To find more details and specific implementation,
please refer to Appendix B.

3.4 Learning Strategy
3.4.1 Weak Supervision
Since the human annotation about entity scheduling
and programme of entities are absent, we initiate
the learning of the proposed model with weak su-
pervision:

Weak Supervision on Programme Synthesis.
Heuristically tagging pseudo labels is a common
practice to solve the paucity of human annotation.
Following previous works (Min et al., 2019; Chen
et al., 2020b), we collect a group of the most com-
mon programmes as heuristic set H. For every
entity ei that appears in the description, we ex-
haustively enumerate the heuristic set H and find
a subset, Spi , that could derive the target entity as
programme candidates for ei. More details about
the Spi could be found in Appendix C.1.

Weak Supervision on Entity Scheduling. To
deal with the paucity of annotation on entity depen-
dency relationships, again, we explore construct-
ing supervision signals with pseudo programmes.

Algorithm 1 The proposed learning algorithm.
1: Input: A dataset of {(T, Y)} pairs, programme synthe-

sis model pθ and entity scheduling model qϕ, moving-
average momentum α, maximum training step M , hyper-
parameter M0, β.

2: for m← 1 to M do
3: (T, Y)← batch data.
4: D = ∅.
5: Replace the entities in Y to obtain a template Ỹ .
6: For all the placeholders P1, P2, · · · , Pn in Ỹ , con-

struct their programme candidate set Sp
1 ,Sp

2 , · · · ,Sp
n.

7: for P ∈ Sp
1 × Sp

2 × · · · × Sp
n do

8: if A topological order T exists and |D| ≤ β then
9: D = D ∪ (T, Ỹ ,P, T).

10: end if
11: end for
12: Calculate the likelihood for each suite of programme

and scheduling order in D: [ŵ1, ŵ2, · · · , ŵ|D|],
13: if m ≥M0 then
14: Update the pseudo label wi ← α×wi+(1−α)×

ŵi, i ∈ {1, 2, · · · , |D|}.
15: end if
16: Optimize pθ and qϕ on D according to Eq. 3.
17: end for
18: Return: programme synthesis model pθ and entity

scheduling model qϕ

Specifically, we define a n-tuple programme can-
didates (p1, p2, · · · , pn) as a suite of programme
P , where pi is a programme candidate for the i-
th placeholder. In fact, it is an element from the
cartesian product Sp1 ×Sp2 × · · · Spn. For any P , we
could construct a dependency graph with an edge
pointing from entity ei to entity ej if the reasoning
of entity ej is dependent on entity ei. If the de-
pendency graph is a directed acyclic graph (DAG)
then we use the topological order T to serve as a
possible candidate for an entity scheduling order.

3.4.2 Self-adaptive Training

Although we could obtain more than one suite
of programmes for an entity and many possible
scheduling orders through weak supervision, usu-
ally only one is correct while others are spurious
solutions (Min et al., 2019). Inspired by Huang
et al. (2020), we employ the self-adaptive learning
algorithm to eliminate the influence of the spurious
correlation in the training process.

Given all suites of programmes and correspond-
ing scheduling order D = {(Pi, Ti)}mi=1 for a tem-
plate where m is the number of programme suites
with a legal topological order. We consider a soft
pseudo label for each suite: w = [w1, w2, · · · , wm]
which satisfy

∑m
i=1wi = 1, wi ∈ [0, 1]. wi is

initialized to be 1
m at the beginning. For each

iteration, we calculate and normalize the likeli-

11251

hood for each suite [ŵ1, ŵ2, · · · , ŵm] with the
programmer, then we update the pseudo label by
wi ← α×wi+(1−α)×ŵi. α is a hyper-parameter
and serves as the momentum of the exponential-
moving-average scheme. The learning objective
of the programmer and entity scheduling is then
defined as:

max
θ

m∑

i=1

wi log pθ(Pi|T, Ỹ)

max
ϕ

m∑

i=1

wi log qϕ(Ti|T, Ỹ),

(3)

where pθ and qϕ represents the programme synthe-
sis and the entity scheduling, with trainable param-
eter θ and ϕ respectively.

A high-level learning algorithm is summarized
in Algorithm 1. We leave the specific implementa-
tion of the training strategy in Appendix C.3 due
to the space constraint.

4 Experimental Setup

4.1 Datasets

We conduct experiments on three benchmark
datasets for logical table-to-text generation: Logic-
NLG (Chen et al., 2020a), Logic2Text (Chen et al.,
2020c) and SciGen (Moosavi et al., 2021). The
test set of SciGen was split by the data owners
into the “Computation and Language” (C&L) do-
main, and the “Other” domain, which primarily
contains examples from “Machine Learning” (ML)
papers. More details about these three datasets can
be found in Appendix D.

4.2 Evaluation Metrics

Automatic Evaluation. We evaluate the surface-
level and logical fidelity of all models, as described
in previous works (Chen et al., 2020a, 2021). For
surface-level fidelity, we calculate multi-reference
BLEU-n (abbrv. B-n, n = 1, 2, 3). In terms of log-
ical fidelity, we employ SP-Acc and NLI-Acc fol-
lowing previous works (Chen et al., 2020a, 2021).
The former aims to measure the logical consistency
through a semantic parser, while the latter evalu-
ates the entailment degree. More specific imple-
mentations of the automatic evaluation metrics are
provided in Appendix E.1.

Human Evaluation. We conduct the human eval-
uation by selecting 300 samples randomly from the

test set of LogicNLG, Logic2Text and SciGen re-
spectively, and hiring 6 well-educated native speak-
ers to conduct qualitative analysis on the descrip-
tions produced by our model and all competitive
baselines. Two criteria are used by the annotators to
assess the descriptions’ quality: Language Fluency
and Factual Correctness. Each annotator assigns
a score from {0, 1, 2} (representing “bad”, “fair”
and “good” respectively) to each description for
each aspect, and Fleiss’ Kappa (Fleiss, 1971) is
used to gauge the level of agreement between all
annotators. We leave more details about the setup
of human evaluation in Appendix E.2.

4.3 Baseline Models

The following models are selected as baselines:
(1) GPT-Coarse-to-Fine: A template-based model
that first generates a global logical structure of the
description with all entities and numbers replaced
by “[ENT]”, and then conducts surface realization
based on the logical structure (Chen et al., 2020a).
(2) DCVED: A variational auto-encoder model that
employs a confounder to represent the spurious
entities and a mediator to represent the precisely
picked entities (Chen et al., 2021). (3) PLOG:
Proposed by Liu et al. (2022), the model is first
pre-trained on a table-to-logic generation task, and
then fine-tuned on downstream table-to-text tasks.
(4) REASTAP: Zhao et al. (2022) propose 7 ta-
ble reasoning skill and construct training examples
respectively to learn the 7 reasoning skill by pre-
training on generative table QA tasks.

5 Results and Discussions

5.1 Main Results

Table 2 and Table 3 show the performance of
our model on LogicNLG, Logic2Text and SciGen.
From the tables, we can observe that ours substan-
tially outperform previous methods, especially on
SP-Acc and NLI-Acc, which proves the effective-
ness of the proposed method. When compared with
PLOG and REASTAP, two representative methods
that learn reasoning skills through pre-training, we
conclude that symbolic reasoning as well as our
table-compatible programming language is helpful
to promote faithfulness.

Human Evaluation. The human evaluation re-
sults are shown in Table 4. Although our model per-
forms comparably to other baselines in terms of lan-
guage fluency, it attains a significant improvement

11252

Model
LogicNLG Logic2Text

Surface-level Logical Fidelity Surface-level Logical Fidelity

B-1 B-2 B-3 SP-Acc NLI-Acc B-1 B-2 B-3 SP-Acc NLI-Acc

GPT-small 45.9 26.3 13.0 42.2 73.0 48.7 30.1 19.3 41.2 63.4
GPT-Coarse-to-Fine 46.6 26.8 13.3 42.7 72.2 48.3 31.9 20.8 42.5 68.9
DCVED 49.5 28.6 15.3 43.9 76.9 48.9 32.7 21.4 43.9 73.8
SORTIE (Ours) 49.8 30.1 16.9 49.3 79.9 50.4 33.0 22.7 47.2 84.3

T5-large 53.4 34.1 20.4 48.4 85.9 51.8 35.0 24.2 47.8 89.3
PLOG 53.7 34.1 20.4 54.1 89.0 52.2 35.5 24.9 52.8 90.2
SORTIE (Ours) 54.7 34.9 21.0 58.5 89.9 53.1 36.1 25.2 55.0 91.6

BART-large 54.5 34.6 20.6 49.6 85.4 51.3 34.5 23.1 47.8 89.0
PLOG 54.9 35.0 21.0 50.5 88.9 52.1 35.2 22.9 51.8 91.1
REASTAP 52.5 32.5 18.9 54.8 89.2 51.6 34.7 24.3 53.3 90.3
SORTIE (Ours) 56.2 35.8 21.4 57.8 89.3 52.6 35.6 24.8 59.3 94.1

Table 2: Automatic evaluation results on the test sets of LogicNLG and Logic2Text. From top to bottom, the models
in three blocks use GPT2-small, T5-large and BART-large as backbone respectively. The numbers in bold are the
best results.

Model
C&L Other

Surface-level Logical Fidelity Surface-level Logical Fidelity

B-1 B-2 B-3 SP-Acc NLI-Acc B-1 B-2 B-3 SP-Acc NLI-Acc

T5-large 13.5 4.9 1.7 28.9 93.9 11.9 4.4 1.7 20.7 88.3
PLOG 16.4 5.5 2.0 32.2 97.8 12.1 5.6 2.2 25.0 94.2
SORTIE (Ours) 17.8 7.0 2.7 34.7 99.0 18.3 7.5 3.0 27.4 96.3

BART-large 17.1 6.7 2.2 35.6 98.6 17.2 7.1 2.5 33.6 98.4
PLOG 18.2 8.0 3.3 38.3 98.8 18.4 7.6 3.2 34.4 98.5
REASTAP 18.7 8.1 3.2 38.7 98.9 18.6 8.2 3.4 37.3 98.1
SORTIE (Ours) 21.2 9.2 4.0 41.3 99.2 21.0 9.5 4.3 39.9 98.9

Table 3: Automatic evaluation results on two test splits of SciGen. From top to bottom, the models in two blocks
use T5-large and BART-large as the backbone respectively. The numbers in bold are the best results.

Model
LogicNLG Logic2Text SciGen

Language
Fluency

Factual
Correctness

Kappa
Language
Fluency

Factual
Correctness

Kappa
Language
Fluency

Factual
Correctness

Kappa

GPT-Coarse-to-Fine 1.61 1.44 0.68 1.54 1.52 0.69 1.51 1.37 0.81
DCVED 1.62 1.47 0.69 1.58 1.50 0.64 1.44 1.36 0.76
PLOG 1.69 1.61 0.74 1.65 1.58 0.77 1.54 1.49 0.68
REASTAP 1.67 1.63 0.71 1.61 1.59 0.68 1.57 1.51 0.71

SORTIE (Ours) 1.70 1.73 0.65 1.66 1.74 0.71 1.57 1.64 0.79

Table 4: Human evaluation results on LogicNLG, Logic2Text and SciGen. Numbers in bold mean the best
performance.

in terms of factual correctness, which is consistent
with the automatic evaluation results. All kappa
values are more than 0.6, demonstrating agreement
between the annotators.

5.2 Ablation Study

Apart from the main experiments, to have a better
understanding of how each component and mecha-
nism contribute to surface-level fidelity and logical
fidelity, we conduct an ablation study with the fol-
lowing variants: (1)-symbolic: The programmer
and the discrete symbolic reasoning are removed.
Placeholders in the template are filled up with en-

tities whose hidden state is most similar4 to the
hidden state of placeholders. (2)-scheduling: The
topological order among the entities is disregarded.
Instead, we use the embedding of the placehold-
ers P1, P2, · · · , Pn as the initial hidden state for
the programmer and perform symbolic reasoning
simultaneously. (3)-both: Both the programmer
and the decoder are discarded. In this case, we use
the embeddings of the placeholders to predict the
entities simultaneously. (4)-self : The self-adaptive
training is removed and we optimize our model to
marginal maximum likelihood (MML) estimation
when there exist multiple pseudo programme labels

4measured with dot production

11253

Model
Surface-level Fidelity Logical Fidelity

BLEU-1 BLEU-2 BLEU-3 SP-Acc NLI-Acc

Ours 49.8 30.1 16.9 49.3 79.9

-symbolic 47.2 29.7 16.3 46.8 73.5
-scheduling 48.2 28.8 16.7 45.2 74.1
-both 46.3 26.5 13.7 42.5 71.1
-self 47.4 26.2 13.3 42.3 68.0

Table 5: Ablation experiment results on the test set of
LogicNLG.

1 3 5 10
maximum number of (,) pairs

40.0
42.5
45.0
47.5
50.0
52.5
55.0

SP
-A

cc

self-adaptive
MML

Figure 3: SP-Acc vs. the maximum number of the
pseudo labels on LogicNLG.

and topological orders.
The experiment results of ablation are shown in

Table 5. We can observe that: (1) Both symbolic
reasoning and topological entity decoding is vital
for the performance of our approach since the re-
moval of either would cause an evident drop in
fidelity. (2) The surface-level fidelity is less sensi-
tive to different variants, and the chief advantage
of our approach lies in improving logical fidelity.

5.3 Effect of the Pseudo Label Quantity

To see how the proposed learning algorithm works
with respect to the size of (P, T) pairs, we vary
the maximum threshold for the pseudo labels (or
the β in Algorithm 1). Performance of the variants
-self, which is actually maximum marginal likeli-
hood (MML), is also included for comparison and
the results are shown in Figure 3.

It is obvious that the fidelity of the MML opti-
mization deteriorates with the size of the pseudo
label set increases. We gauge that is because there
is usually only one correct topological order and
programme for each entity. More candidates would
inevitably introduce noise and mislead the model to
assign high probabilities to spurious solutions. No-
tably, our method is immune to spurious solutions,
thus exhibiting a different tendency and keeping
competitive.

ldep = 0 ldep=1 ldep>1
length of longest directed path

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Pr
ec

isi
on

Ours
-scheduling

Figure 4: Precision vs. length of the longest directed
path in the dependency graph.

5.4 Effect of Entity Scheduling
To have a closer look at how the complexity of the
inter-dependency relationship influence the preci-
sion of entity reasoning and how the entity schedul-
ing mechanism takes effect, we bin all the test case
of the LogicNLG (Chen et al., 2020a) into three
buckets according to the length of the longest di-
rected path ldep in the dependency graph. The re-
sults are shown in Figure 4. We can see that with
entity scheduling, the precision slightly fluctuates
with different ldep but does not show an obvious
drop in performance. In comparison, when schedul-
ing is removed and the entities are inferred in left-
to-right chronological order, the performance of
reasoning declines, possibly due to its inability to
deal with more complicated dependency scenarios
and directly work out all entities without consider-
ing their dependency. Take the case in Figure 1 as
an example, if we deal with [ENT1] first according
to chronological order, it is challenging to directly
synthesize a programme like “[COUNT] ([FILTER]
(<attendance>,[EQ]([MAX](<attendance>))))”. But
if we have reasoned [ENT2] out, the programme
for [ENT1] is simplified as “[COUNT] ([FILTER]
(<attendance>,[EQ](16150)))”

6 Conclusion
We propose a neural symbolic approach for logical
data-to-text generation. With a table-compatible
programming language, our approach automati-
cally synthesizes a programme to reason out each
entity. Specifically, to handle the inter-dependency
between entities, we propose an entity schedul-
ing mechanism that dynamically predicts the rea-
soning order of entities such that the entity to be
reasoned at each iteration has a minimum depen-
dency on “unseen” entities. In addition, to deal
with the paucity of human annotations of both pro-

11254

grammes and scheduling order, we put forward a
weak supervision method and a self-adaptive learn-
ing algorithm to mitigate the spurious correlation
issue. Evaluation results on three benchmarks show
that our model can significantly outperform state-
of-the-art approaches, and considerably boost the
performance of a pre-trained language model in
terms of logical fidelity.

Ethical Considerations

This paper will not pose any ethical problems. First,
logical data-to-text generation is an old task in nat-
ural language processing, and several papers about
this task are published at ACL conferences. Sec-
ond, the datasets used in this paper have been used
in previous papers.

Limitations

The paper presents a dependency-aware symbolic
reasoning approach for logical data-to-text gen-
eration. All technologies built upon the large-
scale PLM more or less inherit their potential
harms (Bender et al., 2021). Besides, we acknowl-
edge some specific limitations within our methods:

1. Data-to-text generation is essentially a one-to-
many problem since there is more than one
plausible and logically-consistent description
given a specific table. Our approach has lit-
tle control over the diversity and the logical
form of the generated template. It is also pos-
sible that our approach only generates trivial
or naive descriptions if trivial data dominate
in the training dataset.

2. Our work mostly focuses on the named enti-
ties in the description, but logical consistency
is not all about entities. The syntactic struc-
ture or other semantic information also has
an influence on generation fidelity, and we
leave the symbolic reasoning for more com-
plex logical structures or formats as our future
work.

3. Our table-compatible programming language
is mainly designed for simple flat tables, and
extra operators are necessary before it could
be applied to all tables, especially hierarchical
tables where its header exhibits a multi-level
structure (Cheng et al., 2022).

4. Currently, it is difficult to directly integrate
GPT-3 (Brown et al., 2020) or other LLMs

into SORTIE to substitute the PLM backbones.
The reason is that LLM can not be used for
encoding since we have no access to the dense
representation in an LLM. It might be plausi-
ble to only use LLM to generate a template
and use another PLM to do encoding, but we
leave this exploration to our future work.

Acknowledgement

We thank all the reviewers and chairs for their
suggestions and recommendation. This work was
supported by National Natural Science Founda-
tion of China (NSFC Grant No. 62122089),
Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098, and Intelli-
gent Social Governance Platform, Major Innova-
tion & Planning Inter-disciplinary Platform for the
”Double-First Class” Initiative, Renmin University
of China. We wish to acknowledge the support
provided by Public Policy and Decision-making
Research Lab, Renmin University of China and the
Public Computing Cloud, Renmin University of
China.

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 39–48.

Ewa Andrejczuk, Julian Martin Eisenschlos, Francesco
Piccinno, Syrine Krichene, and Yasemin Altun. 2022.
Table-to-text generation and pre-training with tabt5.
arXiv preprint arXiv:2210.09162.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

11255

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020a. Logical natural lan-
guage generation from open-domain tables. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7929–
7942.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint:1909.02164.

Wenqing Chen, Jidong Tian, Yitian Li, Hao He, and Yao-
hui Jin. 2021. De-confounded variational encoder-
decoder for logical table-to-text generation. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5532–
5542.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou,
Dawn Song, and Quoc V. Le. 2020b. Neural sym-
bolic reader: Scalable integration of distributed and
symbolic representations for reading comprehension.
In International Conference on Learning Representa-
tions.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou,
Yunkai Zhang, Sairam Sundaresan, and William Yang
Wang. 2020c. Logic2text: High-fidelity natural lan-
guage generation from logical forms. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2096–2111.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2019. Neural module networks for rea-
soning over text. arXiv preprint arXiv:1912.04971.

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate
Saenko. 2018. Explainable neural computation via
stack neural module networks. In Proceedings of the

European conference on computer vision (ECCV),
pages 53–69.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual
question answering. In Proceedings of the IEEE
international conference on computer vision, pages
804–813.

Lang Huang, Chao Zhang, and Hongyang Zhang. 2020.
Self-adaptive training: beyond empirical risk mini-
mization. In Advances in Neural Information Pro-
cessing Systems, volume 33.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Arthur B Kahn. 1962. Topological sorting of large
networks. Communications of the ACM, 5(11):558–
562.

Seyed Mehran Kazemi, Najoung Kim, Deepti Bhatia,
Xin Xu, and Deepak Ramachandran. 2022. Lam-
bada: Backward chaining for automated reasoning in
natural language. arXiv preprint arXiv:2212.13894.

Satwik Kottur, José MF Moura, Devi Parikh, Dhruv Ba-
tra, and Marcus Rohrbach. 2018. Visual coreference
resolution in visual dialog using neural module net-
works. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 153–169.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1203–1213.

Ao Liu, Haoyu Dong, Naoaki Okazaki, Shi Han, and
Dongmei Zhang. 2022. Plog: Table-to-logic pretrain-
ing for logical table-to-text generation. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, page 5531–5546,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Shuming Ma, Pengcheng Yang, Tianyu Liu, Peng Li,
Jie Zhou, and Xu Sun. 2019. Key fact as pivot: A
two-stage model for low resource table-to-text gener-
ation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
2047–2057.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. 2019. The neuro-
symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision. arXiv
preprint arXiv:1904.12584.

11256

https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://aclanthology.org/2022.emnlp-main.373
https://aclanthology.org/2022.emnlp-main.373

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard em ap-
proach for weakly supervised question answering.
arXiv preprint arXiv:1909.04849.

Nafise Sadat Moosavi, Andreas Rücklé, Dan Roth,
and Iryna Gurevych. 2021. Scigen: a dataset for
reasoning-aware text generation from scientific ta-
bles. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 2).

Swarnadeep Saha, Xinyan Velocity Yu, Mohit Bansal,
Ramakanth Pasunuru, and Asli Celikyilmaz. 2022.
Murmur: Modular multi-step reasoning for semi-
structured data-to-text generation. arXiv preprint
arXiv:2212.08607.

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu,
and Changyou Chen. 2020. Towards faithful neu-
ral table-to-text generation with content-matching
constraints. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1072–1086.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba,
Pushmeet Kohli, and Josh Tenenbaum. 2018. Neural-
symbolic vqa: Disentangling reasoning from vision
and language understanding. Advances in neural
information processing systems, 31.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022. Reastap: Injecting ta-
ble reasoning skills during pre-training via synthetic
reasoning examples. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, page 9006–9018, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Yongwei Zhou, Junwei Bao, Chaoqun Duan, Youzheng
Wu, Xiaodong He, and Tiejun Zhao. 2022. Unirpg:
Unified discrete reasoning over table and text as pro-
gram generation. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, page 7494–7507, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

11257

https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://aclanthology.org/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.615
https://aclanthology.org/2022.emnlp-main.508
https://aclanthology.org/2022.emnlp-main.508
https://aclanthology.org/2022.emnlp-main.508

A Connection to Other Domain-Specific
Languages

A.1 Connection to the NMN for Text

Gupta et al. (2019) propose Neural Module Net-
work (NMN) for reasoning over text (in the form
of unstructured paragraphs) which also designs a
suite of operations for reasoning. Although NMN
has achieved remarkable success and enjoys good
interpretability, one of its major limitations is that
it cannot be deployed with other forms of data,
e.g., the structured table in this work. Additionally,
since each operation in NMN is implemented as a
neural model, the dearth of human-annotated data
for each module makes model training more chal-
lenging. On the other hand, we follow Chen et al.
(2020b) to implement operations with parameter-
free modules that can be directly executed through
an “interpreter”.

A.2 Connection to NeRd

NeRd (Chen et al., 2020b) is a neural sym-
bolic model that integrates discrete reasoning
in reading comprehension. In addition to
value operations (e.g., DIFF/SUM, COUNT, MAX/MIN,
ARGMAX/ARGMIN, which are identical to value oper-
ators in our programming language), NeRd also de-
signs operations for picking spans or numbers from
the passage and question, including SPAN, VALUE
and KEY-VALUE. Similar to NMN, NeRd is also in-
compatible with tabular data. Although we can
flatten a structured table into an unstructured nat-
ural language form, this simple strategy may lose
some of its feasibility when operating on raw table
data. For example, we can directly fetch a column
of data from a raw table by utilizing the name of a
column, but with NeRd, we must repeatedly invoke
the SPAN operation and predict the start and end
indices of each span.

A.3 Connection to UniRPG

We notice that a contemporaneous work
UniRPG (Zhou et al., 2022) also proposes a
collection of domain-specific operations to carry
out discrete reasoning on tables. Although our
value operators (e.g., SUM, DIFF, and DIV) and
those of UniRPG have some similarities, there still
exist some crucial differences. In what follows,
we first briefly describe the operations in UniRPG
and then go into more detail about how our
table-compatible language differs from UniRPG.

A Brief Review of Operations in UniRPG. In
general, the operations in UniRPG can be roughly
categorized into atomic operations and higher-order
operations. For atomic operations, aside from the
SPAN and VALUE introduced in NeRd, UniRPG also
introduces CELL and CELL_VALUE which possess
similar functionality to SPAN and VALUE respec-
tively but operate on the linearized table. In order
to perform higher-order operations, UniRPG en-
riches the original set of arithmetic operations in
NeRd by introducing

1. MULTI_SPANS which returns all the extracted
text fragments or numbers;

2. TIMES and DIV which compute the product
and quotient between two numbers;

3. AVG which returns the average value of the
argument numbers;

4. CHANGE_R that outputs the rate of change be-
tween two numbers.

Differences from UniRPG. The core difference
is that UniRPG supports complex reasoning on tab-
ular data simply by linearizing a structured table
into unstructured natural language, but ours could
directly operate on the structured table and thus is
able to capture the structural relationship among
cell values. To put it more plainly, tabular data is es-
sentially relational data and cell values in the same
row (column) share some common feature or at-
tribute. In light of this, our designed programming
language can easily fetch a column of cell values
and do further analysis (with MAX/MIN, COUNT and
so on), or associate two cell values in a row (by
the combination of SELECT and ARGWHERE). On the
other hand, when an operation on a whole column
is necessary, UniRPG entirely relies on the pro-
grammer to predict the start and end index for all
cells in an interested column and use CELL opera-
tion to pick them out one by one.

Another difference lies in searching for a spe-
cific list that satisfies some conditions. A number
of operations need to take a list of cells as one of
their arguments. For instance, in order to count
games with the largest number of attendees, we
would need to pass a list of games meeting the re-
quirement to the COUNT operation. In these cases,
UniRPG infers the list by independently deriving
elements in it using the CELL operation. Such an
approach makes it challenging to scale to situations
when many more objects meet the requirements

11258

and need to be retrieved since it demands the pro-
grammer to understand the intricate semantics of
the natural language (e.g., the meaning of “largest”)
to precisely predict the start and end indices of each
object. In contrast, our model can directly operate
on the raw table and shrink the scope by recur-
sively invoking the FILTER and boolean operations,
which shifts the responsibility for predicting the in-
dices from the programmer to symbolic execution.

B More Implementation Details of
Different Components

B.1 Encoding
The first step of encoding is to flatten a structured
table into an unstructured paragraph, or “table lin-
earization”. Following Chen et al. (2020a), sup-
posing Ti,j is the value of table cell in the i-th row
and j-th column, we transform the original table
T into a paragraph by horizontally scanning each
cell T1,1 → T1,CT

→ TRT ,CT
in the table, where

RT and CT are the numbers of rows and columns
in the table respectively. For example, the table
in Figure 2 is linearized as “Given the table titled
1992 - 1993 Vancouver Canucks Season, in row 1,
the Date is May 2, the Visitor is Los Angeles, the
Score is 2-5, the Series is 1-0, the Attendance is
16150; in row 5, the Date is May 5, the Visitor is
Los Angeles, the Score is 6-3, the Series is 1-1,
the Attendance is 16150; in row 9, the Date is
May 9, the Visitor is Los Angeles, the Score is 7-2,
the Series is 2-2, the Attendance is 16150. Start
Describing: ”

We recognize all the entities in the golden table
description with heuristics:

1. All the cell values that appear in the table;

2. The named entities recognized by spaCy 5

whose entity labels are among {cardinal, date,
time, quantity } and not appear in table cap-
tion.

We replace all the detected named entities
in the table description Y with a special place-
holder “[ENT]” to obtain a template Ỹ , and fine-
tune a PLM on (T, Ỹ) pairs, following previous
work (Chen et al., 2020a).

B.2 Entity Scheduling
At the t-th step, with the last reasoned entity eλt−1 ,
we obtain its semantic representation hent

λt−1
by

5https://spacy.io

looking up and averaging the word embedding of
all sub-tokens in the entity. Then, we update the
inner hidden state of GRU by:

hs
t = GRUs(h

s
t−1, fmlp([h

plh
λt−1

;hent
λt−1

])), (4)

where fmlp(·) is a multi-layer perceptron network
and [·; ·] denotes the concatenation of two vectors.

At inference, the next placeholder is chosen with
argmax operation. However, argmax is not differ-
entiable and hinders the gradient propagation from
subsequent programme synthesis to the scheduling
or encoding part. To solve the problem, at training
phase, we apply gumbel-softmax (Jang et al., 2016)
to sample the next placeholder:

λt ∼ Gumbel(Pr(Pi), τ), (5)

where τ is the temperature.

B.3 Program Synthesis and Execution
At the t-th time step, we first update the hidden
state hp

t−1 of the 1-layer GRU which is responsible
for programme synthesis by the embedding of the
last generated operator/operand femb(opt−1):

hp
t = GRUp(h

p
t−1, femb(opt−1)), (6)

where femb(·) is an embedding function that con-
verts a programme operator/operand to its embed-
ding, and opt−1 is a programme operator/operand
generated at (t− 1)-th step. The definition of femb

is divided into three cases:

• If opt is from resolved entities, then
femb(opt) = Eent1ω(opt), where ω(·) re-
turns the index of opt in the resolved entities
[eλ1 , · · · , eλle

] and 1ω is a one-hot vector with
a one at index ω and zeros otherwise. Eent is
the embedding matrix of the resolved entities
and defined as follows:

Eent = Went[hs
1, · · · ,hs

le], (7)

where Went is a trainable parameter, and le
denotes the number of resolved entities so far;

• If opt is from Table T or template Ỹ , then
femb(opt) = Eenc1ω̃(opt), where ω̃(·) returns
the index of opt in the linearized table with
the template. Eenc serves as the embedding
matrix of the table and template, and is defined
as follows:

Eenc = WencHenc, (8)

11259

https://spacy.io

where Wenc is a training parameter and Henc

is the dense representation of linearized table
with the template as defined in § 3.3;

• If opt is from the reserved operators, then
femb(opt) is defined as femb = Eres1ω̂(opt),
where ω̂(·) returns the index of opt in the re-
served operators, and Eres is the embedding
matrix of reserved operators and implemented
a training parameter.

After that, hp
t performs attention on

[femb(op1), · · · , femb(opt−1)] and Henc to
obtain a context-aware representation h̃p

t :

h̃p
t = Watt[fo−att(h

p
t); fh−att(h

p
t);h

p
t], (9)

where Watt is a trainable parameter, fo−att(·)
returns the attended representation of the opera-
tor/operand embeddings and is defined as:

fo−att(h
p
t) =

t−1∑

i=1

α̃ifemb(opi),

α̃i =
exp(hp

t · femb(opi))
t−1∑
j=1

exp(hp
t · femb(opj))

.
(10)

The attended representation of the dense represen-
tations Henc, fh−att(h

p
t), is defined in a similar

way:

fh−att(h
p
t) =

l∑

i=1

α̂ih
enc
i ,

α̂i =
exp(hp

t · henc
i)

l∑
j=1

exp(hp
t · henc

j)

.
(11)

The following step is to predict the next token
opt using h̃p

t . We first compute the similarity score
between h̃p

t and each column in [Eent;Eenc;Eres]
where [·; ·; ·] means concatenating three matrices
along the column axis, and then acquire opt which
corresponds to the index with the highest similarity
score.

Finally, we execute the generated programme
[op1, · · · , oplp] on the table T to reason out the
entity eλle+1

.

C Details about Learning Strategy

C.1 Programme Heuristic set
When pruning for the possible programme candi-
date of an entity, we exhaustively search within

a heuristic set H listed below, which includes
the most common and typical “programme tem-
plates” in tabular reasoning. Specifically, we fill
<list_name> and <value> with all the possible col-
umn names and cell values in the table to instantiate
each “programme template” into a real programme.
If the execution result of the programme is the cor-
rect entity, then we add the instantiated programme
into the candidate set Spi for an entity ei.

They are by no means complete or cover all the
possible situations, but we find it is sufficient in our
experiment.

• MAX <list_name>

• MIN <list_name>

• SELECT <list_name> ARGMAX <list_name>

• SELECT <list_name> ARGMIN <list_name>

• SELECT <list_name> (ARGWHERE <list_name>
(EQ <value>))

• SELECT <list_name> (ARGWHERE <list_name>
(GE <value>))

• SELECT <list_name> (ARGWHERE <list_name>
(LE <value>))

• SELECT <list_name> (ARGWHERE <list_name>
(GEQ <value>))

• SELECT <list_name> (ARGWHERE <list_name>
(LEQ <value>))

• COUNT <list_name>

• COUNT (UNIQUE <list_name>)

• COUNT (FILTER <list_name> EQ <value>)

• COUNT (FILTER <list_name> GEQ <value>)

• COUNT (FILTER <list_name> LEQ <value>)

• COUNT (FILTER <list_name> GE <value>)

• COUNT (FILTER <list_name> LE <value>)

• SUM <value> <value>

• DIFF <value> <value>

• DIV <value> <value>

11260

C.2 Topological Sorting of Entities
When seeking for weak supervision signals
of the entity scheduling order, we enumerate
all the possible combinations of programmes
(p1, p2, · · · , pn) ∈ Sp1 × Sp2 × Sp3 × · · · × Spn for
e1, e2, · · · , en in the table description. We treat
every entity as a vertex and add a direct edge point-
ing from ei to ej if ei appears in pj to construct
a dependency graph G. Kahn’s algorithm (Kahn,
1962) is used to judge whether the graph is a DAG
and find out a possible topological order of entities
if so. Note that a DAG can have more than one
topological order since two entities having no inter-
dependency can exchange. In the implementation,
we only keep the order that exchangeable entities
follow the left-to-right chronological order in the
description.

C.3 Self-adaptive Training
When calculating the ŵ for a pair of programme
suite and scheduling order (P, T), where P is a
suite of programme (p1, p2, · · · , pn) and T in im-
plementation is a sequence [λ1, λ2, · · · , λn] where
λi is the index in left-to-right chronological order
for the i-th entity in topological order.

We first calculate the log-likelihood for each
(P, T) in a case:

w̃ = log pθ(P|T, Ỹ) + log qϕ(T |T, Ỹ), (12)

where the first part is the likelihood of the pro-
gramme suite:

log pθ(P|T, Ỹ)

=
n∑

j=1

log pθ(pλj
|T, Ỹ , eλ1:j−1

)

=
n∑

j=1

lp∑

t=1

log pθ(opt|T, Ỹ , eλ1:j−1
, op1:t−1),

(13)
and the second part is the likelihood of the schedul-
ing order:

log qϕ(T |T, Ỹ)

=

n∑

j=1

log qϕ(λj |T, Ỹ , eλ1:j−1
)

(14)

Finally, we normalize the likelihood among all
possible (P, T) pairs in a case:

ŵi =
w̃i

m∑
j=1

w̃j

(15)

We also endow the PLM to learn predicting tem-
plate Ỹ given the Table T in the training process
and optimize the PLM with maximum likelihood
estimation.

D Dataset Statistics

We conduct experiments on the following three
benchmarks for logical data-to-text generation:

LogicNLG (Chen et al., 2020a). This dataset
is constructed based on the TabFact (Chen et al.,
2019), by taking the statements that are entailed by
the tabular knowledge as the target text. Tables in
this dataset are crawled from Wikipedia and cover
a wide range of topics.

Logic2Text (Chen et al., 2020c). This dataset is
collected by employing AMT workers to label the
statement of each table. Specifically, the workers
are encouraged to choose diversified logic types
and write descriptions in a creative tone rather than
using template-like terminology. Despite the fact
that the data owners provide logic forms as well, we
only employ the table-description pairs following
the setting in prior work (Chen et al., 2021).

SciGen (Moosavi et al., 2021). This dataset is
established by collecting tables from scientific ar-
ticles along with their corresponding descriptions.
The tables in SciGen mostly contain numerical val-
ues and arithmetic reasoning is required to syn-
thesize the description. The test set was split by
the data owners into the “Computation and Lan-
guage” (C&L) domain, and the “Other” domain,
which primarily contains examples from “Machine
Learning” (ML) papers. The table-description pairs
in the training and development sets are taken from
“C&L” articles. We choose the medium-size variant
in our experiments.

To facilitate reproducibility, we adopt the
datasets shared by the data owners and conduct pre-
processing strictly following the released code. The
statistics about these three datasets can be found in
Table 6.

E More Details about Evaluation Metrics

E.1 Automatic Evaluation

We evaluate the surface-level fidelity and the log-
ical fidelity of all models, as described in pre-
vious works (Chen et al., 2020a, 2021). For
surface-level fidelity, we calculate multi-reference

11261

LogicNLG Logic2Text SciGen

Train Valid Test Train Valid Test Train Valid Test

Statements 28,450 4,260 4,305 8,566 1,095 1,092 13,607 3,452 492(C&L)+546(Other)
Tables 5,682 848 862 4,549 500 500 13,607 3,452 492(C&L)+546(Other)
Avg. # of words
per statement

14.08 14.63 14.77 16.83 16.55 16.54 103.50 107.49 96.39(C&L)/98.81(Other)

Table 6: Statistics of the three datasets.

BLEU-n (n = 1, 2, 3) which are based on n-
gram matching between the models’ generations
and gold references. We use B-n as an abbrevia-
tion for BLUE-n. Following Chen et al. (2021),
we construct the multi-reference test set of the
Logic2Text dataset by aggregating the references
from the same table into a test data point. In
terms of logical fidelity, we employ SP-Acc and
NLI-Acc following previous works (Chen et al.,
2020a, 2021). Specifically, SP-Acc aims to ex-
amine whether the logical representations of the
generated descriptions, which are obtained by a se-
mantic parser, are consistent with the table’s facts.
While NLI-Acc targets evaluating the entailment
score between the table and the generated descrip-
tion based on a pre-trained Table-BERT (Chen
et al., 2019). All automatic evaluation metrics
are calculated using the official code released on
https://github.com/wenhuchen/LogicNLG.

E.2 Human Evaluation

According to Chen et al. (2020a,c), automatic eval-
uation scores are not sufficient for precise evalu-
ation of factual and logical correctness. Because
of this, we conduct the human evaluation by se-
lecting 300 samples randomly from the test set of
LogicNLG, Logic2Text and SciGen respectively,
and hiring 6 undergraduates from the department
of linguistics in our school to conduct qualitative
analysis on the descriptions produced by our model
and all competitive baselines. We pay 20 cents
for each case. To obscure their sources, the gen-
erated descriptions are mixed up at random. Two
criteria are used by the annotators to assess the de-
scriptions’ quality: (1) Language Fluency: whether
the description is fluent and free of grammatical
errors, and (2) Factual Correctness: whether the de-
scription is factually supported by the table. Each
annotator assigns a score from {0, 1, 2} (represent-
ing “bad”, “fair” and “good” respectively) to each
description for each aspect. Each description re-
ceives two scores for the aforementioned aspects,

and Fleiss’ Kappa (Fleiss, 1971) is used to gauge
the level of agreement between all annotators.

F More Implementation Details about
Experiment and Hyperparameter

For template generation, We perform experi-
ments on three backbones: GPT-2 (117M), BART-
large (406M), and T5-large (770M). Theoretically,
any pre-trained language model could be our back-
bone. We employ beam search with a beam size of
5. For entity scheduling and programme synthesis,
the dimension of the hidden state in two 1-layer
unidirectional GRU are both 512. The temperature
for gumbel-softmax is τ = 1.0 and we keep the
temperature unchanged through the training pro-
cess. The fmlp in entity scheduling is a 2-layer
MLP network and the hidden sizes are both set
to be 512. We apply greedy search when decod-
ing programme tokens. For self-adaptive learn-
ing, we set α and β to be 0.9 and 5 respectively,
the pseudo labels are kept fixed within the first
M0 = 500 steps in the training process. All mod-
els are trained with Adam optimizer with β1 = 0.9
and β2 = 0.999. We sweep the learning rate from
[5e − 6, 1e − 5, 2e − 5, 4e − 5, 6e − 6, 8e − 5]
and the best-found learning rate is 1e − 5; We
sweep batch size from [16, 32, 64, 128, 256] and
the best-found batch size is 32. We set the weight
decay as 1e− 2 and sweep the warm-up steps from
[500, 1000, 2000, 4000]. The best found warm-
up step is 1000. Early stopping on validation is
adopted as a regularization strategy. All models
are trained on an 8×RTX 3090 Ti machine on 5
hours. We report the performance averaged over
three repetitive experiments.

G More Experiment Analysis

G.1 More Analysis about Effects of Entity
Scheduling

To have a better understanding of how the entity
scheduling mechanism promotes the precision of

11262

https://github.com/wenhuchen/LogicNLG

n = 1 n = 2 n = 3 n > 3
number of entity

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Pr
ec

isi
on

Ours
-scheduling

Figure 5: Entity reasoning precision vs. the number of
entities.

entity reasoning, we bin all the test cases of Logic-
NLG (Chen et al., 2020a) into four bins according
to the number of entities in the description. The
results are shown in Figure 5. We can observe a
similar trend to Figure 4. With the number of enti-
ties increasing, variant -scheduling exhibits evident
deterioration. We conjecture the reason is that a ta-
ble description with more entities is more likely to
have complicated dependency relationships among
entities, and thus more difficult to reason out. But
with entity scheduling, the precision is barely im-
pacted by the number of entities. Note that the
templates used in this experiment are derived from
golden description, rather than generated by PLM.

G.2 Analysis about Inference Speed

Model -symbolic -scheduling SORTIE CTF

Inference
Time

394.79 404.29 404.82 1181.40

Table 7: Average inference time (ms) of SORTIE and three
other variants or baselines. CTF = Coarse-to-Fine

To investigate whether entity scheduling leads
to serious latency at inference, we measure the
decoding time of SORTIE in comparison with vari-
ant -scheduling, -symbolic and baseline method
Coarse-to-Fine with BART-large backbone. The
experiment results are shown in Table 7. From the
table, we can see that SORTIE has comparable la-
tency with -symbolic and -scheduling. Or in other
words, programme synthesis and entity scheduling
do not enhance generation fidelity at the sacrifice
of decoding speed. Besides, SORTIE costs much less
time than Coarse-to-Fine, since the latter requires

Year Men’s singles Women’s singles

1990 nicholas hall stephanie spicer
· · · · · · · · ·
1995 tam kai chuen song yang
1996 tam kai chuen li feng
1997 nicholas hall li feng
1998 geoffrey bellingham li feng
· · · · · · · · ·

Template: In 1996, the Women’s singles competi-
tor was [ENT1], which appears [ENT2] times.
Topological Order:
[START]→ [ENT1]→ [ENT2]→ [END]
Programme:
[ENT1]: SELECT (Women’s singles, ARGWHERE
(Year, EQ (1996))) = li feng;
[ENT2]: COUNT (FILTER (Women’s Singles, EQ
([ENT1]))) = 3.

Table 8: A table from LogicNLG with caption New
zealand open (badminton).

a PLM to first generate a template and then a com-
pleted description, which results in low efficiency.

H Case Study

To have an intuitive insight into the strengths of
SORTIE , we show the predicted programme and
the topological order of several cases from Logic-
NLG in Table 8, Table 9 and Table 10. We can see
that our model is able to compositionally assemble
simple operators into a complicated programme
sequence. When executed, the programme emits
propitiate and faithful entities to fill in the place-
holders, which might account for the impressive
fidelity.

11263

Nation Gold Silver Bronze

Switzerland 5 5 15
· · · · · · · · · · · ·
Netherlands 3 2 2
West Germany 2 4 2
United States 2 1 3
Italy 2 1 2
Canada 0 2 3

Template: [ENT1] received [ENT2] more gold
medal than [ENT3] did.
Topological Order: [START] → [ENT3] →
[ENT1]→ [ENT2]→ [END]
Programme:
[ENT3]: SELECT (<Nation>, ARGMIN (<Gold>)) =
Canada;
[ENT1]: SELECT (<Nation>, ARGWHERE (<Nation>,
NEQ ([ENT3]))) = Italy;
[ENT2]: DIFF (SELECT (<Gold>, ARGWHERE (Na-
tion, EQ ([ENT1]))), SELECT (<Gold>, ARGWHERE
(Nation, EQ ([ENT3])))) = 2.

Table 9: A case form LogicNLG with caption 1988
winter Olympics.

Song Language point

In the blue painted blue Italian 13
The Whole World Dutch 1
Sleep, My Love French 27
A Great Love French 1
Little Start Swedish 10
I Tore A Page Out of My Diary Danish 3
Music For Two Pennies German 5

Template:The Eurovision Song Contest of 1958
consisted of [ENT1] different languages.
Topological Order:
[START]→ [ENT1]→ [END].
Programme:
[ENT1]: COUNT (UNIQUE (<Language>)) = 6.

Table 10: A case form LogicNLG with caption Eurovi-
sion Song Contest 1958.

11264

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

In the "Limitations" section (the last section of the main text)

�3 A2. Did you discuss any potential risks of your work?
In the "Ethical Considerations" section (the second last section of the main text). It is notable that
this paper does not pose any ethical problems.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In the Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
In Section 4.1 and Appendix D.

�3 B1. Did you cite the creators of artifacts you used?
In Section 4.1 and Appendix D.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
In Section 4.1 and Appendix D.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
These steps have been conducted by the publishers of the datasets we used. We strictly follow the
data preprocessing steps in the original papers or released codes.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
In Section 4.1 and Appendix D.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In Appendix D.

C �3 Did you run computational experiments?
In Section 4 and Section 5.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In Appendix F.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11265

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In Appendix F.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In Appendix F.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In Appendix B.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
In Section 4.2 and Appendix E.2.

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
In Section 4.2 and Appendix E.2.

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
In Appendix E.2.

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
In Appendix E.2.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

11266

