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Abstract

We introduce CDBERT, a new learning
paradigm that enhances the semantics under-
standing ability of the Chinese Pretrained Lan-
guage Models (PLMs) with dictionary knowl-
edge and structure of Chinese characters. We
name the two core modules of CDBERT as
Shuowen and Jiezi, where Shuowen refers to
the process of retrieving the most appropri-
ate meaning from Chinese dictionaries and
Jiezi refers to the process of enhancing charac-
ters’ glyph representations with structure under-
standing. To facilitate dictionary understand-
ing, we propose three pre-training tasks, i.e.,
Masked Entry Modeling, Contrastive Learn-
ing for Synonym and Antonym, and Exam-
ple Learning. We evaluate our method on
both modern Chinese understanding bench-
mark CLUE and ancient Chinese benchmark
CCLUE. Moreover, we propose a new poly-
semy discrimination task PolyMRC based on
the collected dictionary of ancient Chinese.
Our paradigm demonstrates consistent improve-
ments on previous Chinese PLMs across all
tasks. Moreover, our approach yields signif-
icant boosting on few-shot setting of ancient
Chinese understanding.

1 Introduction

Large-scale pre-trained language models (PLMs)
such as BERT (Devlin et al., 2018) and
GPT (Brown et al., 2020) have revolutionized var-
ious research fields in natural language process-
ing (NLP) landscape, including language genera-
tion (Brown et al., 2020), text classification (Wang
et al., 2018), language reasoning (Wei et al., 2022),
etc. The de facto paradigm to build such LMs is
to feed massive training corpus and datasets to a
Transformer-based language model with billions of
parameters.

Apart from English PLMs, similar approaches
have also been attempted in multilingual (Lample
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Figure 1: Illustration of CDBERT. The expression in
green refers to the selected definition of current charac-
ter.

and Conneau, 2019) and Chinese language under-
standing tasks (Sun et al., 2021b, 2019a). To en-
hance Chinese character representations, pioneer
works have incorporated additional character in-
formation, including glyph (character’s geomet-
ric shape), pinyin (character’s pronunciation), and
stroke (character’s writing order) (Sun et al., 2021b;
Meng et al., 2019). Nevertheless, there still exists
a huge performance gap between concurrent state-
of-the-art (SOTA) English PLMs and those on Chi-
nese or other non-Latin languages (Cui et al., 2020),
which leads us to rethink the central question: What
are the unique aspects of Chinese that are essential
to achieve human-level Chinese understanding ?

With an in-depth investigation of Chinese lan-
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guage understanding, this work aims to point out
the following crucial challenges that have barely
been addressed in previous Chinese PLMs.

* Frequent vs. Rare Characters. Different
from English that enjoys 26 characters to
form frequently-used vocabularies (30,522 Word-
Pieces in BERT), the number of frequently-
occurred Chinese characters are much smaller
(21,128 in Chinese BERT'), of which only 3,500
characters are frequently occurred. As of year
2023, over 17 thousand characters have been
newly appended to the Chinese character set.
Such phenomenon requires models to quickly
adapt to rare or even unobserved characters.

* One vs. Many Meanings. Compared with En-
glish expressions, polysemy is more common for
Chinese characters, of which most meanings are
semantically distinguished. Similar as charac-
ter set, the meanings of characters keep chang-
ing. For example, the character “#” has recently
raised a new meaning: “the involution phenom-
ena caused by peer-pressure”.

 Holistic vs. Compositional Glyphs. Consider-
ing the logographic nature of Chinese characters,
the glyph information has been incorporated in
previous works. However, most work treat glyph
as an independent visual image while neglecting
its compositional structure and relationship with
character’s semantic meanings.

In this work, we propose CDBERT, a new Chi-
nese pre-training paradigm that aims to go beyond
feature aggregation and resort to mining informa-
tion from Chinese dictionaries and glyphs’ struc-
tures, two essential sources that interpret Chinese
characters’ meaning. We name the two core mod-
ules of CDBERT as Shuowen and Jiezi, in homage
to one of the earliest Chinese dictionary in Han Dy-
nasty. Figure 1 depicts the overall model. Shuowen
refers to the process that finds the most appropriate
definition of a character in a Chinese dictionary.
Indeed, resorting to dictionaries for Chinese un-
derstanding is not unusual even for Chinese Lin-
guistic experts, especially when it comes to an-
cient Chinese (aka. classical Chinese) understand-
ing. Different from previous works that simply
use dictionaries as additional text corpus (Yu et al.,
2021; Chen et al., 2022), we propose a fine-grained
definition retrieval framework from Chinese dic-
tionaries. Specifically, we design three types of
objectives for dictionary pre-training: Masked En-

lhttps ://github.com/ymcui/Chinese-BERT-wwm

try Modeling (MEM) to learn entry representation;
Contrastive Learning objective with synonyms and
antonyms; Example Leaning (EL) to distinguish
polysemy by example in the dictionary. Jiezi refers
to the process of decomposing and understanding
the semantic information existing in the glyph in-
formation. Such a process grants native Chinese
the capability of understanding new characters. In
CDBERT, we leverage radical embeddings and pre-
vious success of CLIP (Yang et al., 2022; Radford
et al., 2021) model to enhance model’s glyph un-
derstanding capability.

We evaluate CDBERT with extensive experi-
ments and demonstrate consistent improvements
of previous baselines on both modern Chinese and
ancient Chinese understanding benchmarks. It is
worth noting that our method gets significant im-
provement on CCLUE-MRC task in few-shot set-
ting. Additionally, we construct a new dataset aim-
ing to test models’ ability to distinguish polysemy
in Chinese. Based on the BaiduH anyu, we con-
struct a polysemy machine reading comprehension
task (PolyMRC). Given the example and entry, the
model needs to choose a proper definition from
multiple interpretations of the entry. We believe
our benchmark will help the development of Chi-
nese semantics understanding.

In summary, the contributions of this work are
four-fold: (i) We propose CDBERT, a new learn-
ing paradigm for improving PLMs with Chinese
dictionary and characters’ glyph representation;
(i1) We derive three pre-training tasks, Masked En-
try Modeling, Contrastive Learning for Synonym
and Antonym, and Example Learning, for learn-
ing a dictionary knowledge base with a polysemy
retriever (Sec. 3.1); (iii) We propose a new task
PolyMRC, specially designed for benchmarking
model’s ability on distinguishing polysemy in an-
cient Chinese. This new task complements exist-
ing benchmarks for Chinese semantics understand-
ing (Sec. 4); (iv) We systematically evaluate and
analyze the CDBERT on both modern Chinese and
ancient Chinese NLP tasks, and demonstrate im-
provements across all these tasks among different
types of PLMs. In particular, we obtain significant
performance boost for few-shot setting in ancient
Chinese understanding.

2 Related Work

Chinese Language Model Chinese characters,
different from Latin letters, are generally lo-
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gograms. At an early stage, Devlin et al. (2018);
Liu et al. (2019b) propose BERT-like language
models with character-level masking strategy on
Chinese corpus. Sun et al. (2019b) take phrase-
level and entity-level masking strategies to learn
multi-granularity semantics for PLM. Cui et al.
(2019) pre-trained transformers by masking all
characters within a Chinese word. Lai et al.
(2021) learn multi-granularity information with a
constructed lattice graph. Recently, Zhang et al.
(2020); Zeng et al. (2021); Su et al. (2022b) pre-
trained billion-scale parameters large language
models for Chinese understanding and generation.
In addition to improving masking strategies or
model size, some researchers probe the semantics
from the structure of Chinese characters to enhance
the word embedding. Since Chinese characters are
composed of radicals, components, and strokes hi-
erarchically, various works (Sun et al., 2014; Shi
et al., 2015; Li et al., 2015; Yin et al., 2016; Xu
et al., 2016; Ma et al., 2020; Lu et al., 2022) learn
the Chinese word embedding through combining
indexed radical embedding or hierarchical graph.
Benefiting from the strong representation capabil-
ity of convolutional neural networks (CNNs), some
researchers try to learn the morphological infor-
mation directly from the glyph (Liu et al., 2017;
Zhang and LeCun, 2017; Dai and Cai, 2017; Su and
yi Lee, 2017; Tao et al., 2019; Wu et al., 2019). Se-
hanobish and Song (2020); Xuan et al. (2020) apply
the glyph-embedding to improve the performance
of BERT on named entity recognition (NER). Be-
sides, polysemy is common among Chinese charac-
ters, where one character may correspond to differ-
ent meanings with different pronunciations. There-
fore, Zhang et al. (2019) use “pinyin” to assist
modeling in distinguishing Chinese words. Sun
et al. (2021c) first incorporate glyph and “pinyin”
of Chinese characters into PLM, and achieve SOTA
performances across a wide range of Chinese NLP
tasks. Su et al. (2022a) pre-trained a robust Chi-
nese BERT with synthesized adversarial contrastive
learning examples including semantic, phonetic,
and visual features.

Knowledge Augmented pre-training Although
PLMs have shown great success on many NLP
tasks. There are many limitations on reasoning
tasks and domain-specific tasks, where the data
of downstream tasks vary from training corpus in
distribution. Even for the strongest LLM Chat-
GPT, which achieves significant performance boost

across a wide range of NLP tasks, it is not able to
answer questions involving up-to-date knowledge.
And it is impossible to train LLMs frequently due
to the terrifying costs. As a result, researchers
have been dedicated to injecting various types of
knowledge into PLM/LLM. According to the types,
knowledge in existing methods can be classified to
text knowledge (Hu et al., 2022) and graph knowl-
edge, where text knowledge can be further divided
into linguistic knowledge and non-linguistic knowl-
edge. Specifically, some works took lexical infor-
mation (Lauscher et al., 2019; Zhou et al., 2020;
Lyu et al., 2021) or syntax tree (Sachan et al., 2020;
Li et al., 2020; Bai et al., 2021) to enhance the
ability of PLMs in linguistic tasks. For the non-
linguistic knowledge, some researchers incorporate
general knowledge such as Wikipedia with retrieval
methods (Guu et al., 2020; Yao et al., 2022; Wang
et al., 2022) to improve the performance on down-
stream tasks, others use domain-specific corpora
(Lee et al., 2019; Beltagy et al., 2019) to trans-
fer the PLMs to corresponding downstream tasks.
Compared with text knowledge, a knowledge graph
contains more structured information and is better
for reasoning. Thus a flourish of work (Liu et al.,
2019a; Yu et al., 2020; He et al., 2021; Sun et al.,
2021a; Zhang et al., 2022) designed fusion methods
to combine the KG with PLMs.

Dictionary Augmented pre-training Consider-
ing the heavy-tailed distribution of the pre-training
corpus and difficult access to the knowledge graph,
some works injected dictionary knowledge into
PLMs to alleviate the above problems. (Yu et al.,
2021) enhance PLM with rare word definitions
from English dictionaries. Chen et al. (2022) pre-
trained BERT with English dictionary as a pre-
training corpus and adopt an attention-based infu-
sion mechanism for downstream tasks.

3 CDBERT

3.1 Shuowen: Dictionary as a pre-trained
Knowledge

We take three steps while looking up the dictionary
as the pre-training tasks: 1) Masked Entry Mod-
eling (MEM). The basic usage of a dictionary is
to clarify the meaning of the entry. 2) Contrastive
Learning for Synonym and Antonym (CL4SA). For
ambiguous meanings, we always refer to the syn-
onym and antonym for further understanding. 3)
Example Learning (EL). We will figure out the ac-
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curate meaning through several classical examples.

Masked Entry Modeling (MEM) Following
existing transformer-based language pre-training
models (Devlin et al., 2018; Liu et al., 2019b),
we take the MEM as a pre-training task. Specif-
ically, we concatenate the entry (<ent>) with
its corresponding meaning or definition (<de f>)
as input, i.e., { [CLS] <ent> [SEP] <def>
[SEP]}. Then the MEM task masks out the
<ent> with a [MASK] token, and attempts to re-
cover it. Considering the entry might be composed
of multiple characters, we use whole word mask-
ing (WWM) (Cui et al., 2020) as the entry masking
strategy. The objective of MEM L., is computed
as the cross-entropy between the recovered entry
and the ground truth.

Contrastive Learning for Synonym and
Antonym (CL4SA) Inspired by Yang et al.
(2022), we adopt contrastive learning to better sup-
port the semantics of the pre-trained representation.
We construct positive sample pair (ent, syno)
with synonyms in the dictionary, and negative
sample pair (ent,anto) with antonyms in the
dictionary. The goal of the CL4SA is to make
the positive sample pair closer while pushing the
negative sample pair further. Thus we describe the
contrastive objective as follows:

ehent ‘hsync

Ecl4sa = — 10g ehent hisyno + ehent-hanto
where - denotes the element-wise product, heps,
Psynos Nanto 18 the representation of the origi-
nal entry, the synonym, and the antonym respec-
tively. In practice, we use the hidden states of
[CLS] token as the representation of the input
{[CLS]<ent>[SEP]<def>[SEP]}. Since
the antonyms in the dictionary are much less than
synonyms, we randomly sampled entries from the
vocabulary for compensation. To distinguish the
sampled entries with the strict antonyms, we set
different weights for them.

Example Learning (EL) Compared with other
languages, the phenomenon of polysemy in Chi-
nese is more serious, and most characters or words
have more than one meanings or definitions. To
better distinguish multiple definitions of an entry in
a certain context, we introduce example learning,
which attempts to learn the weight of different defi-
nitions for a certain example. Specifically, given an
entry ent, K multiple definitions def, ..., def k,
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Figure 2: Illustration of glyph-enhanced character rep-
resentation on character “HH”.

and an exemplar phrase exa; of meaning de f;, we
use hezq, the hidden state of the [CLS] token in
the example as query @, and X = {h¢, 5?:1, the
hidden states of the [CLS] token in the meanings
as key K. Then the attention score can be com-
puted as:

T
Attngey = Softmax (%) 1

We use the cross-entropy loss to supervise the
meaning of retriever training:

L = CrossEntropy(one-hot(def), Attnger)
2
where one-hot(-) is a one-hot vector transition of
ground-truth indexes.
We sum over all the above objectives to obtain
the final loss function:

L= )\lﬁmem + )\2£cl4sa + )\3£el (3)

where A1, A2, A3 are three hyper-parameters to
balance three tasks.

3.2 Jiezi: Glyph-enhanced Character
Representation

Chinese characters, different from Latin script,
demonstrate strong semantic meanings. We con-
duct two structured learning strategies to capture
the semantics of Chinese characters. Following
Sun et al. (2021b), we extract the glyph feature by
the CNN-based network.

CLIP enhanced glyph representation To bet-
ter capture the semantics of glyphs, we learn the
glyph representation through a contrastive learning
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algorithm. Specifically, we concatenate character
c with its definition de f as text input and generate
a picture of the character as visual input. We ini-
tialize our model with the pre-trained checkpoint
of Chinese-CLIP (Yang et al., 2022) and keep the
symmetric cross-entropy loss over the similarity
scores between text input and visual input as ob-
jectives. To alleviate the influence of pixel-level
noise, we follow Jaderberg et al. (2014, 2016) to
generate a large number of images of characters
by transformation, including font, size, direction,
etc. Besides, we introduce some Chinese character
images in wild (Yuan et al., 2019) in the training
corpus to improve model robustness. Finally, we
extract the glyph feature through the text encoder
to mitigate the pixel bias.

Radical-based character embedding Since the
glyph feature requires extra processing and is
constrained by the noise in images, we propose
a radical-based embedding for end-to-end pre-
training. We first construct a radical vocabulary,
then add the radical embedding for each character
with their radical token in the radical vocabulary.
Thus, we can pre-train the CDBERT in the end-to-
end learning method.

3.3 Applying CDBERT to downstream tasks

Following Chen et al. (2022), we use the CDBERT
as a knowledge base for retrieving entry definitions.
Specifically, given an input expression, we first
look up all the entries in the dictionary. Then, we
adopt the dictionary pre-training to get the represen-
tation of the entry. At last, we fuse the CDBERT-
augmented representation to the output of the lan-
guage model for further processing in downstream
tasks. We take the attention block pre-trained by
the EL task as a retriever to learn the weight of
all the input entries with multiple meanings. After
that, we use weighted sum as a pooling strategy
to get the CDBERT-augmented representation of
the input. We concatenate the original output of
the language model with the CDBERT-augmented
representation for final prediction.

4 The PolyMRC Task

Most existing Chinese language understanding
evaluation benchmarks do not require the model
to have strong semantics understanding ability.
Hence, we propose a new dataset and a new ma-
chine reading comprehension task focusing on pol-
ysemy understanding. Specifically, we construct a
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Figure 3: Illustration of applying CDBERT to down-
stream tasks. € indicates the concatenation operation.
The Attn. Block is the pre-trained attention model from
the EL task.

dataset through entries with multiple meanings and
examples from dictionaries. As for the Polysemy
Machine Reading Comprehension (PolyMRC) task,
we set the example as context and explanations as
choices, the goal of PolyMRC is to find the correct
explanation of the entry in the example. Table 1
shows the statistics of the dataset.

Table 1: Statistics of PolyMRC Dataset

Split Sentences Average length
Training data 46,119 38.55
Validation data 5,765 38.31
Test data 5,765 38.84

5 Experiments

5.1 Implementation Details

We pre-train CDBert based on multiple official pre-
trained Chinese BERT models. All the models
are pre-trained for 10 epochs with batch size 64
and maximum sequence length 256. We adopt
AdamW as the optimizer and set the learning rate
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as e — 5 with a warmup ratio of 0.05. We set
A1 = 0.6, Ao = 0.2, and A3 = 0.2 in Eqn. (3) for
all the experiments. We finetune CLUE (Xu et al.,
2020) with the default setting reported in the CLUE
GitHub repository?.

5.2 Baselines

BERT We adopt the official BERT-base model
pre-trained on the Chinese Wikipedia corpus as
baseline models.

RoBERTa Besides BERT, we use two stronger
PLMs as baselines: RoBERTa-base-wwm-ext and
RoBERTa-large-wwm-ext (we will use ROBERTa
and RoBERTa-large for simplicity). In these mod-
els, wwm denotes the model continues pre-training
on official RoOBERTa models with the WWM strat-
egy, and ext denotes the models are pre-trained on
extended data besides Wikipedia corpus.

MacBERT MacBERT improves on RoBERTa
by taking the MLM-as-correlation (MAC) strategy
and adding sentence ordering prediction (SOP) as
a new pre-training task. We use MacBERT-large as
a strong baseline method.

5.3 CLUE

We evaluate the general natural language under-
standing (NLU) capability of our method with
CLUE benchmark (Xu et al., 2020), which includes
text classification and machine reading comprehen-
sion (MRC) tasks. There are five datasets for text
classification tasks: CMNLI for natural language
inference, IFLYTEK for long text classification,
TNEWS?’ for short text classification, AFQMC for
semantic similarity, CLUEWSC 2020 for coref-
erence resolution, and CSL for keyword recogni-
tion. The text classification tasks can further be
classified into single-sentence tasks and sentence
pair tasks. The MRC tasks include span selection-
based CMRC2018, multiple choice questions C3,
and idiom Cloze ChID.

The results of text classification are shown in
Table 2. In general, CDBERT performs better
on single-sentence tasks than sentence pair tasks.
Specifically, compared with baselines, CDBERT
achieves an average improvement of 1.8% on sin-
gle sentence classification: TNEWS’, IFLYTEK,
and WSC. Besides, CDBERT outperforms base-
lines on long text classification task IFLYTEK by
improving 2.08% accuracy on average, which is

2https://github.com/CLUEbenchmark/CLUE

more significant than the results (1.07%) on short
text classification task TNEWS’. This is because
TNEWS’ consists of news titles in 15 categories,
and most titles consist of common words which
are easy to understand. But IFLYTEK is a long
text 119 classification task that requires comprehen-
sive understanding of the context. In comparison,
the average improvement on sentence pair tasks
brought by CDBERT is 0.76%, which is worse
than the results on single sentence tasks. These
results show dictionary is limited in helping PLM
to improve the ability of advanced NLU tasks, such
as sentiment entailment, keywords extraction, and
natural language inference.

We demonstrate the results on MRC tasks in
Table 3. As we can see, CDBERT yields a perfor-
mance boost on MRC tasks (0.79%) on average
among all the baselines. It is worth noting that
when the PLM gets larger in parameters and train-
ing corpus, the gain obtained by CDBERT becomes
less. We believe this is caused by the limitation of
CLUE benchmark for the reason that several large
language models have passed the performance of
humans (Xu et al., 2020).

54 CCLUE

Ancient Chinese (aka. Classical Chinese) is the
essence of Chinese culture, but there are many dif-
ferences between ancient Chinese and modern Chi-
nese. CCLUE? is a general ancient NLU evalua-
tion benchmark including NER task, short sentence
classification task, long sentence classification task,
and machine reading comprehension task. We
use the CCLUE benchmark to evaluate the ability
of CDBERT to adapt modern Chinese pre-trained
models to ancient Chinese understanding tasks.

In order to assess the ability of modern Chinese
PLM to understand ancient Chinese by CDBERT,
we test our model on CCLUE benchmark. We pre-
train the CDBERT on the ancient Chinese dictio-
nary for fairness. Results are presented in Table 4,
which shows CDBERT is helpful in all three gen-
eral NLU tasks: sequence labeling, text classifica-
tion, and machine reading comprehension. We find
in MRC task, CDBERT improves from 42.93 on
average accuracy of all 4 models to 44.72 (4.15%
relatively), which is significantly better than other
tasks. In addition, we can see the gain obtained
from the model scale is less than CDBERT on
CLUE datasets. This is because the training corpus

3https://cclue.top
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Table 2: Performance improvements of CDBERT on CLUE j4ssi fication-

Model AFQMC TNEWS’ IFLYTEK CMNLI WSC CSL SCORE
BERTRase 73.70 56.58 60.29 79.69 70 8036  70.10
BERTRase+ CDBERT 73.48 57.19 62.12 80.19 7138 814 70.96
RoBERTa.x; 74.04 56.94 60.31 80.51 80.69 81 72.25
ROBERTaex+ CDBERT 74.88 57.68 62.19 81.81 81.38 8093  73.15
ROBERTaxq.1arge 76.55 58.61 62.98 82.12  82.07 82.13  74.08
ROBERTacx.1arge+ CDBERT 76.82 59.09 63.04 82.89 84.83 83.07 74.95

Table 3: Performance of CDBERT on CLUE s rcg.QAa- * We can not reproduce the result reported in CLUE github repo.

(<report in github repo>-<report in paper>)

Model CMRC2018 CHID C3 SCORE
BERTER ¢ 71.6 80.04 64.50 72.71
BERTg,5¢+ CDBERT 71.75 82.61 65.39 73.25
ROBERTa 75.20 83.62 66.50 75.11
RoBERTac+ CDBERT 75.85 84.7 67.09 75.88
ROBERTa*ext-large 76.65 (77.95-76.58) 85.32(85.37-85.37) 73.72(73.82-72.32)  78.56
RoBERTagx( jarge+ CDBERT 77.75 85.38 73.95 79.03
Table 4: Performance of CDBERT on CCLUE. Table 5: Performance on PolyMRC.
Model NER CLS SENT MRC SCORE Model Accuracy
BERTg,se 71.62 8231 59.95 42776  64.16 BERTg,se 65.33
BERTg,.+ CDBERT 7241 8274 6025 4391  64.83 BERTga5.+ CDBERT 65.93
RoBERTa.y, 69.5 8196 594 423 63.29 ROBERTa 61.96
RoBERTae+CDBERT 70.89 82.15 5995 44.14 64.28 RoBERTaex+ CDBERT 62.93
RoBERTaext.1arge 79.87 829 584  43.45 66.16 ROBERTaex(-1arge 64.18
ROBERTae jurge+ CDBERT | 79.93 83.03 59.75 4552  67.06 ROBERTx jarge + CDBERT 64.77
MacBERT ex-targe 81.89 83.06 589 4322  66.77 MacBERT ext-1arge 66.73
MacBERTex( jarge+ CDBERT | 82.33 83.71 594  45.29 67.68 MacBERT ext jarge + CDBERT 67.16

of these PLMs do not contain ancient Chinese. In
this scenario, CDBERT is more robust.

PolyMRC Results We use BERT, RoBERTa, and
MacBERT as baselines for the new task. Consid-
ering the context of PolyMRC is examples in dic-
tionary, we carefully filter out the entries in test set
from pre-training corpus, and only take the MEM
and CL4SA as pre-training tasks. The results are
shown in Table 5. Compared to baselines, CD-
BERT shows a 1.01% improvement for accuracy
on average. We notice that the overall performance
show weak relation with the scale of the training
corpus of PLM, which is a good sign as it reveals
that the new task can not be solved by models sim-
ply adding training data.

5.5 FewShot Setting on PolyMRC and
CCLUE-MRC

To further investigate the ability of CDBERT
on few-shot setting, we construct two challenge
datasets based on CCLUE MRC and PolyMRC.

Table 6: Performance of CDBERT on 10-shot setting of
two MRC benchmarks.

Model PolyMRC CCLUE-MRC
BERTgse 30.98 23.68
BERTg,5c+ CDBERT 36.65 28.05
RoBERTa.x; 28.85 26.67
RoBERTa.,+ CDBERT 29.47 28.51
ROBERT2x(.1arge 28.45 25.06
RoBERTaex(.1arge+ CDBERT 29.35 27.59
MacBERT e farge 37.35 25.29
MacBERT oy jarge+ CDBERT 39.22 27.81

Following Few CLUE benchmark [few CLUE], we
collect 10 samples for these two MRC tasks. Addi-
tionally, we build three different training samples
to alleviate the possible fluctuating results of mod-
els training on small datasets. We demonstrate the
results on Table 6. Compared with BERT, CD-
BERT+BERT improves on accuracy from 30.98 to
36.65 (18.3% relatively) on PolyMRC, from 23.68
t0 28.05 (18.45% relatively) on CCLUE-MRC. The
performance gain on BERT is much more signif-
icant than larger baselines. This observation in-
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dicates that CDBERT is promising in semantics
understanding with a handful of annotated training
data.

5.6 Ablation Study

Table 7: Ablation of CDBERT on CCLUE-MRC.

Model ACC
RoBERTa+CDBERT 44.14
RoBERTa 42.30
- Radical 43.68
Replace with Glyph 42.53
Replace with Char Dict | 42.76
w/o. CLASA 43.68
w/o. EL 42.99
Continuous-pre-train 43.14

We conduct ablation studies on different compo-
nents of CDBERT. We use the CCLUE-MRC for
analysis and take the Robertay, . as the backbone.
The overall results are shown in Table 7. Gener-
ally, CDBERT improves the Roberta from 42.30 to
44.14 (4.3% relatively).

The Effect of Character Structure We first eval-
uate the effects of radical embeddings and glyph
embeddings. For fair comparisons, we keep other
settings unchanged, and focus on the following se-
tups: "-Radical", where radical embedding is not
considered; "Rep Glyph", where we replace the
radical embedding with glyph embedding. Results
are shown in row 3-4. As can be seen, when we re-
place the radical embedding with glyph embedding,
the accuracy drops 1.61 points, where the perfor-
mance degradation is more obvious than removing
radical embedding. The reason we use here is the
scale of training corpus is not large enough to fuse
the pre-trained glyph feature to CDBERT.

The Effect of Dictionary We then assess the ef-
fectiveness of the dictionary. We replace the origi-
nal dictionary with character dictionary (row 5) and
keep the model size and related hyper-parameters
the same as CDBERT pre-training procedure for
fair. Besides, during finetuning process, we identify
all the characters that are included in the charac-
ter dictionary for further injecting with dictionary
knowledge. We observe the character CDBERT is
helpful to some degree (1.1%) but is much worse
than the original CDBERT. On the one hand, the
number of characters in Chinese is limited, on the

other hand, a word and its constituent characters
may have totally different explanations.

The Effect of Pre-training Tasks At last, we
evaluate different pre-training tasks of CDBERT
including CL4SA and EL (row 6-7). Specifically,
both CL4SA and EL help improve the NLU abil-
ity of PLM, and EL demonstrated larger improve-
ment than CL4ASA. The average improvements on
CCLUE-MRC brought by CL4SA and EL are
1.05% and 2.68%. In order to verify the impact
of CDBERT instead of the additional corpus, we
follow Cui et al. (2019) to continuously pre-train
the Roberta on the dictionary, which is regarded as
extended data. As shown in row 8, using additional
pre-training data results in further improvement.
However, such improvement is less than our pro-
posed CDBERT, which is a drop of 1 point.

6 Limitations

We collect the dictionary from the Internet, and
although we make effort to reduce replicate expla-
nations, there is noise in the dictionary. Besides,
not all the words are included in the dictionary. In
other words, the quality and amount of entries in
the Chinese dictionary are to be improved. Addi-
tionally, our method is pre-trained on the Bert-like
transformers to enhance the corresponding PLMs,
and can not be applied to LLM directly whose
frameworks are unavailable. In the future, we will
use the retriever for disambiguation and dictionary
knowledge infusion to LLM.

7 Conclusion

In this work, we leverage Chinese dictionary and
structure information of Chinese characters to en-
hance the semantics understanding ability of PLM.
To make Chinese Dictionary knowledge better act
on PLM, we propose 3 pre-training objectives simu-
lating looking up dictionary in our study, and incor-
porate radical or glyph features to CDBERT. Exper-
iment results on both modern Chinese tasks and an-
cient Chinese tasks show our method significantly
improve the semantic understanding ability of vari-
ous PLM. In the future, we will explore our method
on more high-quality dictionaries (e.g. Bilingual
dictionary), and adapt our method to LLM to lessen
the semantic errors. Besides, we will probe more
fine-grained structure information of logograms in
both understanding and generation tasks.
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