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Abstract

The increasing sizes of large generative Pre-
trained Language Models (PLMs) hinder their
deployment in real-world applications. To ob-
tain efficient PLMs, previous studies mostly
focus on pruning the attention heads and feed-
forward networks (FFNs) of the Transformer.
Nevertheless, we find that in generative PLMs,
the hidden dimension shared by many other
modules (e.g., embedding layer and layer nor-
malization) contains persistent outliers regard-
less of the network input. In this study, we
propose SIMPLE, a new structured pruning
framework for generative PLMs that compre-
hensively investigates all the above compress-
ible components. To identify redundant net-
work structures, we assign learnable masks
over compressible components followed by
sparse training. Various sizes of PLMs can
be flexibly extracted via different thresholds,
and are then task-specifically fine-tuned for
further improvement. Extensive experiments
on language modeling, summarization and ma-
chine translation validate the effectiveness of
the proposed method. For example, the pruned
BART brings 1.51x/6.96x inference speedup
on GPU/CPU with 67% size reduction, and
can be further combined with quantization for
more than 25× compression.

1 Introduction

Large-scale generative pretrained language models
(PLMs) (Radford and Narasimhan, 2018; Brown
et al., 2020; Lewis et al., 2020; Raffel et al., 2020)
show remarkable performance on various tasks.
However, their increasing sizes also lead to ex-
pensive memory and computation, hindering their
deployment in real applications.

Recent attempts (Tao et al., 2022; Frantar et al.,
2022; Dettmers et al., 2022; Xiao et al., 2022;
Wang et al., 2021) propose to compress gener-
ative PLMs models by quantization. However,
hardware-dependent low-bit kernels need to be spe-
cially developed for real inference speedup. Com-

pared to quantization, structured pruning methods
prune parts of the model structures without requir-
ing designing extra operators to achieve inference
speedup and run-time memory saving. Recently,
Anonymous (2023) show that the feed-forward net-
works (FFNs) of GPT models can be pruned to
smaller widths, and Li et al. (2022) compress the
BART models by combining layer pruning and
model quantization for a higher compression rate.
However, these models consider only limited com-
ponents for pruning, i.e., the FFNs or Transformer
layers, which can be restrictive for various deploy-
ment requirements.

In this work, we propose a new structured prun-
ing framework named SIMPLE (Sparsity-Induced
Mask learning for Pruning generative pre-trained
Language modEls), which offers a wider range of
compressible components. Aside from the atten-
tion heads and the width of FFNs commonly used
for structured pruning of discriminative PLMs, we
also propose to prune the hidden dimension, to fur-
ther push the trade-off between performance and
model size. It is motivated by the observation that
persistent outliers exist in the hidden dimension of
both decoder-only and encoder-decoder generative
PLMs. The observation implies that the hidden
dimension may be slimmed sharply with a slight
performance drop. Additionally, as the dimension
of the hidden state is shared by many modules, e.g.,
embedding layer, attention heads, FFN and layer
normalization, the model size thus can be collec-
tively slimmed for further compression.

The crux of pruning lies in ranking the impor-
tance of different compressible components. To-
wards that end, we assign learnable masks over
the output of all compressible components. These
masks are optimized in an end-to-end fashion to-
gether with a sparsity-induced penalty. Unlike con-
ventional pruning criteria based on magnitudes (He
et al., 2018) or gradients (Voita et al., 2019), these
masks can be mathematically interpreted to prune
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away components shrinking towards zero during
the training. Moreover, the learning of masks
is one-shot, i.e., one can flexibly obtain various
pruned models by different thresholds over the
learned mask values. To mitigate the accumulated
compression error, a causal distillation objective
is proposed to fine-tune the pruned networks for
further improvement on downstream tasks.

We verify the efficacy of SIMPLE on various gen-
eration tasks (i.e., language modeling, summariza-
tion and machine translation) and network architec-
tures (i.e., GPT2 and BART/mBART). Empirical
results show that the proposed SIMPLE outperforms
other pruning methods, significantly speeds up the
inference, and can be combined with quantization
for more aggressive compression.

2 Related Work

2.1 Structured Pruning of Transformers

Pruning away unimportant parameters is a widely-
used approach to compress neural networks. Un-
like unstructured pruning which removes individual
weights, structured pruning prunes parts of network
structures, and achieves inference speedup/run-
time memory saving without designing extra oper-
ators. Two commonly used structured components
in Transformers are attention heads and FFN neu-
rons (Michel et al., 2019; Hou et al., 2020; McCar-
ley, 2019; Anonymous, 2023). Depending on how
the importance of the compressible components
is determined, current structured pruning methods
for Transformer based methods can be divided into
two categories. The first category uses heuristics to
calculate the importance. For instance, magnitude-
based method (He et al., 2018) uses the compo-
nent’s magnitude as its importance, while the loss-
aware method (Voita et al., 2019) measures the
importance of a component based on the variation
in the training loss if it is removed (Hou et al., 2020;
Michel et al., 2019). The other category consid-
ers the changes in the component’s weights dur-
ing training, and the importance is not determined
until the training is finished. For instance, move-
ment pruning (Sanh et al., 2020; Lagunas et al.,
2021) captures the changes in the weights during
fine-tuning as the dynamic importance metric and
prunes weights that shrink during fine-tuning.

2.2 Compression of Generative PLMs

In contrast to the extensive research on compress-
ing the discriminative PLMs like BERT (Sanh

et al., 2019; Lan et al., 2019; Jiao et al., 2020),
the study on the compression of Generative PLMs
still at its early stages. Early attempts try to com-
press generative PLMs by tensor decomposition
(Edalati et al., 2021) and knowledge distillation
(Song et al., 2020), but suffer from severe perfor-
mance drop. Some recent attempts propose to apply
weight quantization (Tao et al., 2022; Frantar et al.,
2022; Dettmers et al., 2022; Xiao et al., 2022) to
reduce the storage and run-time memory of genera-
tive PLMs, but require hardware-dependent low-bit
quantization kernels to achieve inference speedup.
Recently, DQ-BART (Li et al., 2022) combines
weight quantization and layer pruning to compress
BART models on abstractive summarization tasks.
GUM (Anonymous, 2023) proposes to prune the
neurons in the feed-forward network of GPT mod-
els based on importance measured by uniqueness
and sensitivity. In addition to these neurons, our
proposed SIMPLE also prunes the attention heads
and the hidden state dimension, to better explore
the trade-off between performance and model size.

3 Methodology

In this section, we elaborate on the proposed SIM-
PLE for structurally pruning generative PLMs. In
Section 3.1, we include the hidden dimension as
compressible components in addition to the atten-
tion heads and FFN neurons, due to the existence of
persistent outliers. Then, we introduce sparse learn-
ing of masks together with their mathematical inter-
pretations in Section 3.2. The structurally pruned
models are followed by task-specific fine-tuning,
as detailed in Section 3.3. An overall framework
of SIMPLE is depicted in Figure 1.

3.1 Pruning Granularities

3.1.1 Preliminary on Pruning PLMs
A standard Transformer layer has a multi-head at-
tention (MHA) layer and a feed-forward network
(FFN). Previous works (McCarley, 2019; Hou et al.,
2020) show that the width of a Transformer layer
can be reduced by pruning the heads of MHA and
the neurons in the intermediate layer of FFN.

Specifically, suppose the input of MHA is X ∈
Rn×d where n and d are the sequence length and
hidden state size, respectively. The computation
of the MHA can be reformulated as the summa-
tion of all NH attention heads(Hou et al., 2020).
For the h-th head, denote its projection matri-
ces as WQ

h ,W
K
h ,W

V
h ,W

O
h ∈ Rd×dh where

10881



Figure 1: The left part shows the overall framework of the proposed SIMPLE. The stripes with the same color
represent the pruning dimension shared with the same mask, i.e., the hidden dimension (blue), the attention head
(yellow) and the intermediate dimension of FFN layers (red). The right part demonstrates that after sparse learning
of masks, one can flexibly extract various Transformer sizes with different pruning thresholds on the mask.

dh = d/NH . The softmax function is applied
to the scaled dot product of queries and keys to
get attention scores Attnh

WQ
h ,WK

h ,WV
h ,WO

h

(X) =

Softmax( 1√
d
XWQ

h W
K>
h X>)XWV

h W
O>
h . Sup-

pose the mask of attention heads is mA
l ∈ RNH for

the l-th layer, the output of the MHA is:

MHAttnWQ,WK ,WV ,WO(X)

=
∑NH

h=1
[mA

l ]h×Attnh
WQ

h ,WK
h ,WV

h ,WO
h

(X).(1)

We use mA = {mA
l }Ll=1 to denote the masks of

MHA over all L Transformer layers.
For FFN, denote dff as the number of neurons in

the intermediate layer of FFN, and the weights and
biases of two linear layers are W1 ∈ Rd×dff ,b1 ∈
Rdff and W2 ∈ Rdff×d,b2 ∈ Rd, respectively.
The output of FFN can also be reformulated as the
summation of computations of dff neurons. With a
slight abuse of notation, we still use X ∈ Rn×d to
denote the input of FFN. Suppose the mask of these
neurons is mF

l ∈ Rdff for the l-th Transformer
layer, the output of the FFN is computed as:

FFNW1,W2,b1,b2(X)

=
∑dff

i=1
[mF

l ]i×Act(W1
:,i+b

1
i )W

2
i,:+b2. (2)

We use mF = {mF
l }Ll=1 to denote the masks of

FFNs over all L Transformer layers.

3.1.2 Persistent Outliers and Hidden
Dimension Pruning

In McCarley (2019), it is shown that for discrimi-
native BERT-like models, the cross-layer coupling
caused by skip connections makes the hidden di-
mension d is far more difficult to prune than the
attention heads or the FFN neurons.

However, as shown in Figure 2 and Figure 7 in
Appendix B.3, for both decoder-only and encoder-
decoder generative PLMs, large-magnitude outliers
appear only in a small fraction of the hidden dimen-
sions. Moreover, if one dimension has an outlier, it
almost persistently appears for all tokens, i.e., the
variance of all tokens in a particular index is often
smaller than the variance among different indices.
Similar observations are also found in (Xiao et al.,
2022; Dettmers et al., 2022), and are used to guide
weight quantization, i.e., assign the data in outlier
dimension with high bit-width. If the magnitude
is used as the importance metric (i.e., magnitude-
based pruning methods) (Gordon et al., 2020; Shen
et al., 2022), the high sparsity of these outliers indi-
cate that a large fraction of the hidden dimensions
can be pruned away.

Similar to the attention heads and the FFN neu-
rons, we also set a mask on the hidden dimension.
Since the hidden dimensions at adjacent residual
blocks are connected with an identity skip con-
nection, we use a shared mask mH ∈ Rd across
all Transformer layers. For ease of notation, we
use h as a general term denoting the output of
MHAttn(X) in Eq.(1), FFN(X) in Eq.(2), the em-
bedding layer and layer normalization layer. The
output ĥ ∈ Rd of each hidden dimension is then
computed as

ĥ = mH × h. (3)

3.2 Sparsity-induced Mask Learning
After setting these masks over the compressible
components (i.e., attention heads, FFN neurons
and hidden dimension). Determining which com-
ponent to prune away is then equivalent to rank-
ing their learned mask values. To reduce the ac-
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(a) Layer 1 (all). (b) Layer 1 (top-30). (c) Layer 6 (all). (d) Layer 6 (top-30).

Figure 2: Boxplots of the magnitudes of the hidden dimensions in Layer 1 and 6 of a 12-layer GPT-2 fine-tuned on
the dataset PTB. For each layer, we show both (i) magnitudes of all 768 dimensions; and (ii) the top-30 magnitudes.
The other layers follow similar patterns.

curacy drop caused by pruning, it is desired to
learn sparse masks. In this section, we propose a
sparsity-inducing objective to learn the masks. For
a pruned student model, we use the cross-entropy
loss (Hinton et al., 2015) between teacher and stu-
dent model’s output logits to guide the learning of
these masks. Specifically, for the i-th token ti, sup-
pose the logits of the student and teacher network
are zsti , z

t
ti ∈ R|V |, the loss is

` = −
∑n

i=1
ztti log(z

s
ti). (4)

Denote the learnable masks as m =
{mA,mF ,mH}. Inspired by (Liu et al., 2017;
Chavan et al., 2022), we use the `1 regularizer
over m to promote sparsity, and the optimization
objective is:

`mask = `+ λ‖m‖1. (5)

The learnable mask values are initialized to 1, and
is updated with gradient descent during training.
After learning the mask, these masks are binarized
according to a threshold determined by a given
sparsity (Section 3.3). λ > 0 is a penalty parameter
that controls the weights of the two loss terms

The learning stage is computation-efficient as
we only need to learn the masks once, and then
we can extract sub-networks given any required
sparsity, by simply binarizing masks according to
the desired threshold.

Method Interpretation. Intuitively, consider
one attention head with output ĥ = mh, the gradi-
ent with respect to its mask m1 can be computed
as ∂`mask

∂m = 1
mh> ∂`

∂h +λsign(m). For m > 0, the
magnitude of m is increasing when ∂`mask

∂m < 0;
while for m < 0, the magnitude of m is increas-
ing when ∂`mask

∂m > 0. Thus the magnitude of m
increases if

1For simplicity of notation, we drop the superscript A and
omit the case when m equals 0.

{
1
mh> ∂`

∂h + λ < 0, m > 0
1
mh> ∂`

∂h − λ > 0, m < 0

Then we get

h>
∂`

∂h
< −λ|m| < 0, (6)

which means ∂`
∂hi
hi < 0 dominates in the term

∂`
∂hh =

∑n
i=1

∂`
∂hi
hi. Note that ∂`

∂hi
hi < 0 happens

in two cases:

1. ∂`
∂hi

< 0 and hi > 0; or

2. ∂`
∂hi

> 0 and hi < 0.

The above two cases mean hi is increasing while
being positive or is decreasing while being neg-
ative. Thus (6) is equivalent to saying that m is
increasing when most entries in the output h are
moving away from 0. Inversely, m is decreasing
when most entries in h are shrinking towards 0. A
similar analysis also holds for the masks mF for
the neurons in the intermediate layer of FFN and
mH for the hidden dimension. In addition, (6) also
shows that when m gets larger, h> ∂`

∂h also needs
to be further away from 0 to make m even larger.

As can be seen from (5), the gradient w.r.t. m
keeps track of the output h during the learning
stage. This is similar to the movement pruning
(Sanh et al., 2020) which considers the changes
in weights during fine-tuning. The difference is
in two aspects.1) Movement assigns the weights
of high magnitude with high importance, while
SIMPLE considers the output h in each module,
which is directly connected to the final output. 2)
Instead of learning a specific sparse network with
a given sparsity like movement, SIMPLE learns the
importance of each compressible component in a
separable mask learning stage, therefore numerous
sub-neworks can be obtained during the fine-tuning
stage, given different pruning configurations.
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3.3 Fine-tuning
After learning the importance metric during the
first stage, we fine-tune the model to the required
sparsity with the masks fixed. Since generative
models compute tokens in left-to-right order, the
compression error incurred in previous tokens will
pass on to future tokens, making the learning signal
noisier over time.

To alleviate this problem, we design a novel
causal loss to guide the fine-tuning. Specifically,
denote the input sequence of the self-attention layer
in an auto-regressive Transformer as {xi}ni=1. At
the i-th time step, given the query qi = WQxi, the
model first accesses the current key memory Ki =
[Ki−1,ki] and generate the output yi by retrieving
a convex combination of the value memory slots
Vi = [Vi−1,vi] as yi = Visoftmax(Ki,qi).
Therefore, historical key and value memory slots
Ki−1,Vi−1 affect the generation of the current to-
ken. Thus we propose a causal loss `causal to align
the distribution of key and value in the teacher and
student models. With a slight abuse of notation, for
the h-th head, denote Ks

h,V
s
h and Kt

h,V
t
h as the

key and memory slots over all tokens of the pruned
student and full teacher models, respectively. The
causal distillation loss for each Transformer layer
is computed over the remaining heads as:

`causal= mA
h×[MSE(Kt

h,K
s
h)+MSE(Vt

h,V
s
h)],

where MSE(·) is the mean square error.
Besides the causal distillation loss, we also adopt

the conventional logits distillation loss in (4) and
the hidden state distillation loss `hidden (Jiao et al.,
2019). The overall objective during fine-tuning is:

`finetune = `+ λ1`causal + λ2`hidden. (7)

To make the pruning process smooth, progressive
pruning is applied during fine-tuning. The sparsity
is linearly increased to the target value in the first
half of the training steps and then fixed.

Finally, we remark that SIMPLE can be easily ex-
tended to other pruning granularities such as block
pruning and unstructured pruning by simply adjust-
ing the corresponding masks (Appendix B.1).

4 Experiments

4.1 Setup
Tasks and Models. We evaluate the effective-
ness of the proposed method on three types of gen-
erative tasks, i.e., language modeling, abstractive

summarization and machine translation with two
types of network architectures, i.e, the decoder-
only model GPT-2 and encoder-decoder model
BART. More datasets and details can be found in
Appendix A.1, and Appendix A.3, respectively.

Implementation Details. Note that once the
masks are learned, the network can be pruned to
any desired sparsity level. We empirically evaluate
the method by reporting results on three different
sparsity levels. For all compressible components,
we set the compression ratio as 1.2x, 1.5x, and 2x
respectively. For each compression ratio r, we re-
tain bNH/rc attention heads and bdff/rc neurons
in the width of FFN in each Transformer layer and
reduce the hidden dimension to bd/rc.

These compression levels result in 26%, 48%,
and 67% total parameters reduction. We replace the
original GeLU activation with ReLU, which speeds
up the inference with comparable performance.

Compared Methods. To comprehensively eval-
uate SIMPLE across different tasks and network
architectures, we re-implement three state-of-the-
art pruning techniques: magnitude-based pruning
(He et al., 2018), loss-aware pruning (Voita et al.,
2019), and movement pruning (Sanh et al., 2020) 2

given the lack of baselines. For a fair comparison,
we keep the same experimental setting, including
the distillation loss, progressive pruning, and hid-
den dimension pruning, where the importance of
each hidden dimension is averaged from all Trans-
former layers. We also list the comparisons with
the existing records once their tasks and models are
aligned. For instance, GUM (Anonymous, 2023)
prunes FFN in GPT models on language modeling.
DQ-BART (Li et al., 2022) combines layer pruning
and quantization for abstract summarization.

4.2 Main Results

4.2.1 Language Modeling
We perform language modeling on WikiTxt2 (Mer-
ity et al., 2016), PTB (Mikolov and Zweig, 2012)
and WikiTxt103 (Merity et al., 2016). This task
predicts the probability distributions of a sequence
of tokens. Perplexity (PPL) is used to evaluate per-
formance. The results under three different sparsity
levels are shown in Table 1. For all pruning meth-
ods and datasets, the performance drops as the spar-
sity level increases. Among the three comparison

2https://github.com/huggingface/block_
movement_pruning
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Method
Params

(M)
WikiTxt2
PPL (↓)

PTB
PPL (↓)

WikiTxt103
PPL (↓)

Full Model 124.4 14.49 14.67 14.23
Magnitude 91.9 ↓26% 16.12 15.19 15.35
Loss-aware 91.9 ↓26% 15.91 15.27 15.28
Movement 91.9 ↓26% 16.10 15.35 15.32
SIMPLE 91.9 ↓26% 15.77 15.01 15.10
Magnitude 64.1 ↓48% 17.42 16.18 16.77
Loss-aware 64.1 ↓48% 17.37 16.45 16.72
Movement 64.1 ↓48% 17.35 16.36 16.75
SIMPLE 64.1 ↓48% 17.14 16.02 16.51
Magnitude 41.0 ↓67% 19.47 17.65 19.42
Loss-aware 41.0 ↓67% 19.54 18.17 19.41
Movement 41.0 ↓67% 20.08 17.84 19.85
SIMPLE 41.0 ↓67% 19.22 17.46 19.08

Table 1: Results of language modeling on the test set
of WikiTxt2, PTB and WikiTxt103 datasets with GPT-
2. “↓ ” denotes the percentage of reduced parameters.

Params
(M)

WikiTxt2
PPL (↓)

PTB
PPL (↓)

WikiTxt103
PPL (↓)

Full Model 124.4 14.49 14.67 14.23
GUM 96.1 ↓22.7% - - 17.44
Ours 96.1 ↓22.7% 15.30 14.73 14.73

Table 2: Comparison with GUM which prunes the FFN
of the GPT-2 on language modeling tasks.

methods, loss-aware pruning performs better than
magnitude-based and movement pruning when the
compression ratio is relatively small. However,
when the compression becomes more aggressive,
loss-aware pruning’s performance becomes similar
or even worse compared to the other two meth-
ods. In contrast, our proposed method, SIMPLE,
consistently outperforms all three baseline pruning
methods at each of the three sparsity levels.

Comparison with GUM (Anonymous, 2023).
In Table 2, we compare our proposed SIMPLE

method with GUM, the latest work that consid-
ers pruning the width of FFN in GPT-like models.
The GUM does not prune other modules like atten-
tion heads or hidden dimension, and the reduction
in model size is only 22.7% even when half of the
FFN neurons are pruned away. For a fair compari-
son, we also prune away half of the FFN neurons.
As shown, the proposed SIMPLE improves the lan-
guage modeling compared to GUM by a significant
margin. In addition, considering also the attention
heads and hidden stage dimension as compressible
components enables SIMPLE to achieve a better
tradeoff between model size and performance (re-
fer to Section 4.3.1).

4.2.2 Abstractive Summarization

In our experiments, we use the XSum (Narayan
et al., 2018) and CNN/DailyMail (See et al., 2017)
datasets for evaluating the summarization perfor-
mance of the pruned BART model. The ROUGE 1,
2, L metrics are used as the evaluation metric. The
results are presented in Table 3.

As can be seen, our proposed SIMPLE achieves
the best performance on both datasets under all
compared sparsity levels. The performance gain
over other pruning baselines becomes more pro-
nounced as the sparsity level increases. In partic-
ular, SIMPLE reduces 68% of the parameters with
less than 2.5 Rouge 1 drop on the XSum dataset.
This demonstrates the effectiveness and efficiency
of our proposed pruning method for abstractive
summarization tasks.

Comparison with DQ-BART (Li et al., 2022).
DQ-BART (Li et al., 2022) applies weight quan-
tization and layer pruning to compress the BART
model. To compare with it, we also use quanti-
zation on the pruned model. Specifically, we first
prune 48% parameters from the BART model with
our proposed method, and then we quantize the
pruned model with the same quantization method
as DQ-BART. Table 4 shows the comparison be-
tween our proposed method and DQ-BART in
terms of the performance of the quantized models.
As can be seen, our method outperforms DQ-BART
under both 8-bit and 2-bit quantization settings by
a significant margin, under similar model sizes.
This indicates that the pruned models by SIMPLE

are also quantization-friendly. In particular, the
ROUGE 1 score decreases by only 3 points only
with over 25x model size reduction.

4.2.3 Machine Translation

The WMT16 En-Ro dataset (Bojar et al., 2016),
which is used for machine translation of English to
Romanian, is used to evaluate the performance of
the model pruned from a 24-layer mBART model
(Liu et al., 2020). The BLEU metric is used as the
evaluation metric. The results are shown in Table
5. Our proposed SIMPLE method preserves good
translation performance at different sparsity levels,
demonstrating its effectiveness in compressing and
accelerating the Transformer-based neural network
for machine translation tasks.
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Method
Params

(M)
XSum

R1 (↑) R2 (↑) RL (↑)
CNN/DailyMail

R1 (↑) R2 (↑) RL (↑)
Full Model 139.4 41.81 19.07 33.92 44.73 22.15 41.83
Magnitude 102.4 ↓27% 41.42 18.82 33.65 42.55 19.83 39.70
Loss-aware 102.4 ↓27% 41.41 18.85 33.70 42.44 19.86 39.56
Movement 102.4 ↓27% 41.34 18.67 33.44 43.03 20.30 40.13

SIMPLE 102.4 ↓27% 41.70 19.09 33.93 43.34 20.58 40.39
Magnitude 70.9 ↓49% 40.02 17.49 32.29 41.25 18.66 38.44
Loss-aware 70.9 ↓49% 40.65 18.08 32.76 41.68 19.09 38.70
Movement 70.9 ↓49% 40.10 17.67 32.48 42.40 19.71 39.48

SIMPLE 70.9 ↓49% 40.89 18.30 33.18 42.81 20.05 39.91
Magnitude 44.9 ↓68% 35.62 13.92 28.57 39.33 16.73 36.49
Loss-aware 44.9 ↓68% 39.01 16.86 31.62 40.82 18.32 37.79
Movement 44.9 ↓68% 38.05 16.04 30.73 41.05 18.44 38.11

SIMPLE 44.9 ↓68% 39.45 17.08 31.95 42.14 19.48 39.15

Table 3: Results of abstractive summarization on the test set of the XSum and CNN/DailyMail dataset with BART.

Method
Bit-width
(W-E-A)

Size
(MB)

XSum
R1 (↑) R2 (↑) RL (↑)

CNN/DailyMail
R1 (↑) R2 (↑) RL (↑)

Full Model 32-32-32 532.0 41.81 19.07 33.92 44.73 22.15 41.83

DQ-BART(E3D1) 8-8-8 72.4 ↓86% 36.39 15.29 29.91 41.18 18.75 38.58
SIMPLE 8-8-8 69.8 ↓87% 40.31 17.92 32.73 42.02 19.40 39.11

DQ-BART(E3D1) 2-2-8 22.8 ↓96% 29.04 9.56 23.47 39.00 16.73 36.42
SIMPLE 2-2-8 19.9 ↓96% 38.84 16.56 31.35 41.54 18.95 38.58

Table 4: Results of the pruned BART combined with quantization on the test set of the XSum and CNN/DailyMail
dataset, compared with DQ-BART (Li et al., 2022). “W-E-A” denotes the bit-width for weight, embedding layer
and activation. “E3D1” denotes the pruned subnet has 3 encoder layers and 1 decoder layer. Although DQ-BART
uses a stronger full model as the teacher, the proposed SIMPLE outperforms DQ-BART by a clear margin.

Method
Params

(M)
WMT16 En-Ro

BLEU (↑)
Full Model 610.9 26.09
Magnitude 392.1 ↓37% 24.79
Loss-aware 392.1 ↓37% 24.76
Movement 392.1 ↓37% 24.88

SIMPLE 392.1 ↓37% 25.09
Magnitude 299.2 ↓51% 24.20
Loss-aware 299.2 ↓51% 24.05
Movement 299.2 ↓51% 24.10

SIMPLE 299.2 ↓51% 24.37
Magnitude 217.3 ↓64% 22.63
Loss-aware 217.3 ↓64% 22.74
Movement 217.3 ↓64% 23.02

SIMPLE 217.3 ↓64% 22.90

Table 5: Results of machine translation on the test set
of the WMT16 En-Ro dataset with mBART.

4.3 Ablation Study

4.3.1 Pruning the Hidden Dimension

In Figure 4(a), we study the effect of whether
to prune the hidden dimension (Hid) using PTB
dataset on the GPT-2. The stage of mask learning
is shared for all these pruned sub-networks. Under

the same sparsity level, the pruning considering the
hidden dimension has lower perplexities. As the
compression ratio increases, the performance gain
becomes even more pronounced. This indicates
that the hidden dimension of generative PLMs con-
tains a non-negligible amount of redundancy. By
considering pruning hidden dimensions and other
dimensions (attention heads, width of FFN) jointly
can the model achieve a much higher compression
rate under a similar performance drop.

Note that the importance of different compress-
ible components only needs to be computed once
for our proposed method and the magnitude-based
and loss-aware method. To demonstrate that our
sparsity-induced mask learning offers a good model
initialization and importance calculation, we com-
pare the initial perplexity before fine-tuning in Fig-
ure 4(b). Movement pruning is not compared as
the metric is evaluated during fine-tuning. As can
be seen, the proposed method has the lowest per-
plexity, since SIMPLE captures the dynamics of
activations when evaluating the importance metric.
In contrast to movement pruning that converges to
a certain sparsity, SIMPLE provides a good sparsity-
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(a) GPT-2 (Length 1). (b) GPT-2 (Length 8). (c) BART (Length 1). (d) BART (Length 8).

Figure 3: Throughput (sequence/second) comparison during generation. We vary the length of the generated text
in {1,8} with beam size as 6. We use Intel Xeon Gold 6278C CPU and Nvidia V100 GPU devices, respectively.

Figure 4: (a) The effect of pruning the hidden dimen-
sion. (b) The initial perplexity before fine-tuning.

agnostic model initialization.

4.3.2 Fine-tuning with Casual Distillation
Table 6 illustrates the effect of the `causal loss func-
tion on fine-tuning the pruned model for language
modeling tasks. As can be seen, the proposed
`causal consistently reduces the perplexity across
different datasets. In Figure 5, we visualize the
Mean Absolute Error (MAE) of the key and value
in the last Transformer layer between the full model
and the pruned model on the PTB dataset. The error
is computed along the sequence length. The errors
of the key and value both increase as the sequence
length increases, which illustrates that the missed
information in the pruned generative model accu-
mulates along the sequence length, in line with
the auto-regressive nature of GPT. However, by
adopting the `causal loss function, the errors on
the key and value are decreased, which improves
the causality in the compressed generative model.
It’s worth noting that maintaining causality in com-
pressed generative pre-trained language models is
a topic that deserves further research.

WikiTxt2 PTB WikiTxt103

SIMPLE 19.22 17.46 19.08
w/o `causal 19.35 17.75 19.17

Table 6: Ablation study on the `causal.

4.4 Inference Speedup
Finally, we study the practical speed-up of the
pruned models on both CPU and GPU in Figure
3. The batch size is set to 4 and 32 for GPT and

Figure 5: Visualization of the Mean Absolute Error
(MAE) of the key and value in GPT.

BART, respectively. The length of the source text
is fixed at 512. We vary the length of the generated
text in {1,8}.

Single token generation can be used in scenar-
ios like deterministic tasks (Conneau et al., 2018).
When the length of the generation is 1, the speedup
of GPT-2 is at most 2.76x/2.72x on GPU/CPU, and
the speedup of BART is at most 2.06x/9.92x on
GPU/CPU. When the length of the generation is
larger than 1 (e.g., 8), the key and value of source
text and generated history are cached, which causes
the inference to move from computation-bound to
memory-bound gradually. The proportion of time
spent on data movement becomes greater, result-
ing in a lower speedup than that of single token
generation. To further speed up the inference, one
could combine the proposed method with other
memory-saving techniques (Dao et al., 2022).

5 Conclusions

We propose SIMPLE, an efficient method to struc-
turally prune generative pre-trained language mod-
els. SIMPLE includes attention heads, the neurons
in the intermediate layer of the feed-forward net-
work, and the hidden dimension as compressible
components. By learning the masks of these com-
pressible components through a sparsity-induced
objective, different sized pruned models can be
obtained, and further fine-tuned with a causal distil-
lation objective for better performance. Empirical
evaluations on different generative tasks, model
architectures, and pruning configurations demon-
strate the efficacy of the proposed method.
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Limitations

Although SIMPLE achieves great performance with
size reduction and generation speedup on various
generative language tasks, it is interesting to ex-
plore combining the stage of mask learning during
the pre-training. Then, one pre-trained model can
be applied to downstream tasks with any required
sparsity with a stage of fine-tuning. In addition,
the pruning of the larger generative pre-trained lan-
guage models during the fine-tuning is also worth
trying. In the future, we would like to investigate
the generation ability of the compressed models
with more pre-trained data and larger models.

Ethics Statement

During the pre-training process, the information
from the trained corpus may contain part of im-
proper expressions like violence or discrimination.
In addition, the compression of the generative pre-
trained language models may result in relatively
weak sentence generation.

Hence, the trained models are likely to be con-
fronted with some potential risks in the large lan-
guage models as mentioned in (Weidinger et al.,
2021). With the tools proposed in (Thoppilan et al.,
2022), the harmful training data can be removed
to make the trained model conform to the norms
of society. It is also noteworthy that the safety
check is necessary before we deploy the generative
language models.
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A Implementation Details

A.1 Dataset Splits

The train/val/test splits for different datasets are
shown in Table 7. We adopt the default data splits
for these datasets.

Dataset Training Validation Test

WikiTxt2 36,717 3,760 4,358
PTB 42,068 3,370 3,761

WikiTxt103 1,801,350 3,760 4,358
XSum 204,045 11,332 11,334

CNN/DailyMail 287,113 13,368 11,490
WMT16 En-Ro 610,320 1,999 1,999

Table 7: Data splits of different datasets.

A.2 Dataset Description

WikiTxt2 is a compilation of corpus sourced
from Wikipedia’s verified Good and Featured arti-
cles.

Penn Treebank (PTB) is a widely recognized
and utilized corpus for evaluating the capability of
language modeling.

WikiTxt103 is another compilation of corpus ori-
gin from Wikipedia, and has more data volume than
WikiTxt2.

XSum is used to evaluate abstractive single-
document summarization systems. The objective is
to generate a concise, one-sentence summary that
accurately captures the main idea of the article.

CNN/DailyMail is another dataset for abstrac-
tive summarization. The articles that needed to be
summarized are from the stories on CNN and Daily
Mail website.

WMT16 En-Ro is a translation dataset with the
source language as English and the target language
as Romanian. It is released by the Workshops
on Statistical Machine Translation (WMT) (Bojar
et al., 2016).

A.3 Hyper-parameters Setting

For all tasks, the coefficients of the mask regular-
izer are set as 2e-4, 5e-5 and 1e-4 for mA, mF and
mH , respectively.

Language Modeling. We use the 12-layer GPT-
2 (Radford et al., 2019) as the backbone. The
sequence length is set as 512. We initialize the
learning rate as 5e-4 and linearly decay it to 0
with AdamW optimizer (Loshchilov and Hutter,
2017). The overall batch size is 32. λ1 and λ2 are
both set to 0.001. In addition, language modeling
loss with coefficient 1 is added for WikiTxt103
during fine-tuning, which improves performance.
For datasets WikiTxt2/PTB/WikiTxt103, we set the
learning epochs as 40/100/2 and fine-tuning epochs
as 120/300/8, respectively.

Summarization. We use the 12-layer BART
(Lewis et al., 2020) as the backbone. For XSum and
CNN/DailyMail datasets, the length of the source
sequence is set as 512/512 and the length of the
target sequence is set as 64/128, respectively. the
beam size is utilized to generate summaries with
size 4/6 for XSum and CNN/DailyMail datasets,
respectively, following the default hyperparameters
in BART. Both λ1 and λ2 are set to 0.1. The learn-
ing rate is initialized as 2e-4/2e-5 for XSum and
CNN/DailyMail datasets with a linear scheduler.
The AdamW optimizer is used with batch size 96.
We set the learning epochs as 3 and fine-tuning
epochs as 12 for both XSum and CNN/DailyMail
datasets.

Machine Translation. We use the 24-layer mul-
tilingual BART (M-BART)3 (Liu et al., 2020) as
the backbone due to the lack of 12-layer open-
sourced pre-trained M-BART. For the WMT16
En-Ro dataset, the maximum length of both the
source sequence and target sequence is set as 128.

3https://huggingface.co/facebook/
mbart-large-en-ro
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The beam size is set as 5, λ1, λ2 to 0.05 and
0.001, respectively. In addition, language modeling
loss with coefficient 1 is added during fine-tuning,
which boosts translation performance. The learn-
ing rate is initialized as 5e-5 with a linear scheduler.
We learn the model for 1 epoch and fine-tune it for
3 epochs, with the batch size 32.

A.4 Training Budget

In stage 1, the masks need to be learned once
in a relatively short time. For example, it
requires 1.0/2.3 hours only for GPT-2 on the
PTB/WikiTxt103 dataset with 8 cards. And this
cost can be amortized by N times for N different
pruned neural networks, since all the pruned net-
works shared the masks learned in stage 1. Then,
the model is fine-tuned with the masks fixed in
stage 2.

A.5 Compression Ratio vs. Total Parameter
Reduction

In practice, we assign the same compression ratio
to all the compressible components, the attention
heads, the width of FFN and the hidden dimensions
for ease. The aforementioned compression ratio is
not equal to the ratio of total parameter reduction.

For instance, in the case with a compression ra-
tio 2x, assuming a matrix M with the shape m*(nd),
reducing both the hidden dimension (m) and the
number of attention heads (n) to m/2, n/2 respec-
tively will lead to a 75% reduction. On the other
hand, for the embedding layer and layer normaliza-
tion, the setting of compression ratio 2x leads to
50% parameter reduction. Overall, the setting of
compression ratio 2x results in approximately 67%
total parameter reduction.

B More Experiments

B.1 Extension to Block Pruning and
Unstructured Pruning

Extension to Block Pruning. Block pruning
(Lagunas et al., 2021) is an extension of the com-
mon structured pruning, which balances the fine-
grained model sparsification and dense hardware
optimization. In block pruning, the weights are
divided into different blocks that can be computed
efficiently via appropriate GPU kernels. Pruning al-
gorithms are expected to keep the important blocks
and remove the redundant ones.

The proposed SIMPLE can be easily combined
with block pruning by adapting the size of learn-

able masks according to the block size. Assume
the weight matrix requires to be divided into multi-
ple blocks with block size (M,N), the shapes of
mH , mA and mF are Rd/M , RNH×d/(NHN) and
Rdff/N , respectively. The learnable masks score
these blocks and select the important ones.

WikiTxt2 PTB WikiTxt103

Uniform Structured 19.22 17.46 19.08
Non-uniform Structured 20.79 18.75 19.45

Unstructured 19.18 17.10 23.03
Block size (32,32) 19.43 17.43 19.00
Block size (16,16) 19.51 17.41 19.02

Table 8: Ablation of sub-net configurations.

Extension to Unstructured Pruning. In SIM-
PLE, the granularity of pruning can be easily con-
trolled by the shape of the mask. For example,
the shape of the attention mask mA can be set as
RNH×d to perform unstructured pruning on the at-
tention module. Here, unstructured pruning does
not refer to removing part of connections in any
neuron, but removing different dimensions in dif-
ferent attention heads, similar to ViT-slim (Chavan
et al., 2022). However, this does not directly accel-
erate the model inference. By default, we rank the
learned masks in each Transformer layer locally
to ensure that the number of attention heads in the
Multi-Head Attention (MHA) and the width of the
Feed-Forward Network (FFN) are equal in each
Transformer layer. This is referred to as uniform
structured pruning. If we rank the masks globally
in each compressible component, then the number
of attention heads in the MHA and the width of the
FFN vary in different Transformer layers, which is
referred to as non-uniform structured pruning.

In Table 8, we report the performance of dif-
ferent variants of SIMPLE by changing the shape
of the mask or the range to rank the mask. The
attention module of the learned subnets is visu-
alized in Figure 6. Interestingly, the setting of
uniform structured pruning not only performs com-
petitively against non-uniform pruning and unstruc-
tured pruning but also requires no specific hardware
design for speedup. Additionally, when using non-
uniform structured pruning, attention heads in the
shallow and deep layers are more likely to be re-
tained, while those in the intermediate layers are
considered relatively less important and are dis-
carded. Furthermore, SIMPLE can be extended to
block pruning by setting the shape of the trained
masks to adapt to the assigned block size. However,
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(e) Block Pruning (32,32).
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(f) Block Pruning (16,16).

Figure 6: Illustration of adapting different pruning configurations using SIMPLE from the perspective of MHA: (a)-
(f) Dimension per attention head in different pruning configurations based on the SIMPLE on the 12-layer GPT-2,
which has 12 heads in each attention module and the dimension of a head is 64 before compression.

(a) Layer 1 (all). (b) Layer 1 (top-30). (c) Layer 6 (all). (d) Layer 6 (top-30).

Figure 7: Boxplots of the magnitudes of the hidden dimensions in Layer 1 and 6 of a BART fine-tuned on the
dataset XSum. For each layer, we show both (i) magnitudes of all 768 dimensions; and (ii) the top-30 magnitudes.
The other layers follow similar patterns.

it should be noted that block pruning can improve
performance but may not bring real speedup when
attention heads are not entirely removed (Lagunas
et al., 2021).

B.2 Comparison with Un-pruned Small
Models

Method
Params

(M)
WikiTxt103

PPL (↓)
24-layer GPT 354.8 12.60

pruned 24-layer GPT 125.3 ↓65% 13.87
un-pruned 12-layer GPT 124.4 14.23

Table 9: Comparison between 1) compression from a
large fine-tuned model by SIMPLE; 2) pre-training a
small model and fine-tuning it on the target dataset.

It is desirable for a small model pruned from

a large model to outperform a similar-sized un-
pruned model trained from scratch. To evaluate
this, we compare the performance of a model
pruned from a 24-layer GPT to a similar-sized un-
pruned 12-layer model in Table 9. As is shown,
the pruned model has a lower perplexity than the
un-pruned pre-trained small model, demonstrating
the effectiveness of SIMPLE. Additionally, by pre-
training one large model and then compressing it
to various sizes during task-specific fine-tuning,
we save the effort required for pretraining various-
sized small models.

B.3 Visualization of the Persistent Outliers
on BART

From Figure 7, we visualize the distribution of
the magnitude of the hidden dimensions on the
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fine-tuned BART, which is averaged on the XSum
dataset. As is shown in the visualization, a few
hidden dimensions have large magnitudes while
most of the hidden dimensions maintain a small
vibration, despite the input data samples. Similar
to the observation on GPT, it indicates that the
hidden dimension of BART has redundancy, which
motivates us to prune the hidden dimension with a
sharp compression rate.
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