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Abstract

Clinical practice frequently uses medical imag-
ing for diagnosis and treatment. A significant
challenge for automatic radiology report gen-
eration is that the radiology reports are long
narratives consisting of multiple sentences for
both abnormal and normal findings. Therefore,
applying conventional image captioning ap-
proaches to generate the whole report proves to
be insufficient, as these are designed to briefly
describe images with short sentences. We pro-
pose a template-based approach to generate
radiology reports from radiographs. Our ap-
proach involves the following: i) using a multi-
label image classifier, produce the tags for the
input radiograph; ii) using a transformer-based
model, generate pathological descriptions (a
description of abnormal findings seen on radio-
graphs) from the tags generated in step (i); iii)
using a BERT-based multi-label text classifier,
find the spans in the normal report template
to replace with the generated pathological de-
scriptions; and iv) using a rule-based system,
replace the identified span with the generated
pathological description. We performed experi-
ments with the two most popular radiology re-
port datasets, IU Chest X-ray and MIMIC-CXR
and demonstrated that the BLEU-1, ROUGE-L,
METEOR, and CIDEr scores are better than
the State-of-the-Art models by 25%, 36%, 44%
and 48% respectively, on the IU X-RAY dataset.
To the best of our knowledge, this is the first at-
tempt to generate chest X-ray radiology reports
by first creating small sentences for abnormal
findings and then replacing them in the normal
report template.

1 Introduction

Radiology report generation, which aims to auto-
matically generate a free-text description of a clin-
ical radiograph (like a chest X-ray), has become
an important and interesting area of research in
both clinical medicine and artificial intelligence.
Natural Language Processing (NLP) can speed up

report generation and improve healthcare quality
and standardization. Thus, recently, several meth-
ods have been proposed in this area (Jing et al.,
2017; Li et al., 2018; Yuan et al., 2019; Chen et al.,
2020; Alfarghaly et al., 2021). Radiology reports
are lengthy narratives, which makes report gener-
ation difficult. Therefore, applying conventional
image captioning approaches to generate the whole
report (Vinyals et al., 2015; Anderson et al., 2018)
proves to be insufficient, as such approaches are
designed to briefly describe images with short sen-
tences. Further, even if benchmark datasets are
balanced between normal and abnormal studies,
multiple organs’ findings are included in a single
report, and if at least one organ is abnormal, the
report is classified as abnormal, but it still contains
more normal sentences than abnormal. As a result,
existing text generation models may be overly fo-
cused on widely reported normal findings. Hence,
we propose an approach to generating radiology re-
ports by generating pathological descriptions, i.e.,
descriptions of abnormal findings, and then replac-
ing corresponding normal descriptions from the
normal report template with a generated patholog-
ical description. Experimental results on the TU
Chest X-ray (referred to as IU X-RAY) and the
MIMIC-CXR benchmark datasets confirm the va-
lidity and effectiveness of our approach and demon-
strate that our approach achieves better results than
the State-of-the-Art methods. Two experts in the
field were involved in this work. One is a radiolo-
gist with 30 years of experience, and the other is a
doctor with an MBBS, MD, and Ph.D. and 2 years
of experience in medicine.
Our contributions are:

1. A new approach to generating radiology re-
ports: i) generating the tags for the input ra-
diograph; ii) generating pathological descrip-
tions from the tags generated in step (i); iii)
identifying the spans in the normal report tem-
plate to replace with the generated pathologi-
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cal descriptions; and iv) replacing the identi-
fied span with the generated pathological de-
scription—improves the quality and accuracy
of the radiology reports. Compared to the pre-
vious State-of-the-Art models, the BLEU-1,
ROUGE-L, METEOR, and CIDEr scores of
the pathological descriptions generated by our
approach are raised by 25%, 36%, 44% and
48% respectively, on the IU X-RAY dataset.

2. A dataset of tags (tags are the disease key-
words and radiological concepts associated
with X-ray images) and their corresponding
pathological descriptions. (Derived from IU
X-RAY and MIMIC-CXR datasets containing
3827 and 44578 data points respectively.)

3. A dataset of the pathological descriptions and
the corresponding normal sentences from the
normal report template to replace with patho-
logical descriptions (6501 data points).

2 Related Work

The topic of automatic report generation was re-
searched by Jing et al. (2018); Zhang et al. (2017);
Yuan et al. (2019). Several attempts have been
made in the medical field to create medical reports
from the corresponding images. Most researchers
use multilabel image captioning to produce X-ray
reports, and they subsequently use those captions
as textual features. The IU X-ray dataset was cre-
ated by Demner-Fushman et al. (2016) to generate
radiology reports automatically. The IU X-RAY
dataset’s chest X-ray images were used to generate
the first structured report using tags predicted by
a CNN-RNN model (Shin et al., 2016). A system
for generating natural reports for the Chest-Xray14
dataset, employing private reports, was presented
by Wang et al. (2017). This framework used a
non-hierarchical CNN-LSTM architecture and fo-
cused on semantic and visual aspects. Visual atten-
tion given to recurrent decoders and convolution-
recurrent architectures (CNN-RNN) was first intro-
duced by Vinyals et al. (2015) on image captioning.

Radiology report generation has recently shifted
to transformer-based models (Vaswani et al., 2017,
Devlin et al., 2018). Knowledge-driven Encode,
Retrieve, and Paraphrase (KERP) (Li et al., 2019)
is used for accurate and reliable medical report
generation. Yuan et al. (2019) suggests pretrain-
ing the encoder with several chest X-ray images to
properly recognise 14 typical radiographic obser-
vations. According to Chen et al. (2020) proposals,

radiology reports can be generated using a memory-
driven transformer, while Pino et al. (2021) sug-
gests a template-based X-ray report generation ap-
proach. Pino et al. (2021) clinically defines the tem-
plates for each abnormality to indicate its presence
or absence. If the generated tags indicate any dis-
ease, then the system will choose the corresponding
abnormal sentence template. This method cannot
generate patient-specific data like anatomical lo-
cation, size, efc. Wang et al. (2021) proposed a
template-based multi-attention report generation
model (TMRGM) for normal and abnormal studies.
This work uses template-based techniques exclu-
sively for normal reports.

The differences between our work and previous
work are as follows: i) Instead of generating the
whole report at once, we generate smaller sentences
for only abnormal findings and then replace them
in the normal report template. ii) Unlike other state-
of-the-art models, our methodology does not put
excessive emphasis on normal sentences. iii) If
the report’s findings are normal, we use a standard
template for normal reports.

3 Methodology

The approach that we follow to generate the radiol-
ogy reports from the radiographs is as follows:

* Generate the tags for the input chest radio-
graph.

* Generate the pathological description from
generated tags.

* Replace appropriate normal sentences (re-
ferred to as normal description) from the nor-
mal report template with the generated patho-
logical descriptions.

— Identify the span in the normal report
template to replace.

— Replace the identified span with the gen-
erated pathological description.

3.1 Model Architecture

Figure 1 illustrates the four main components
of our model, which are the image tagger, text-
generator (i.e., transformer), span identifier, and
replacement module. The overall description of the
four parts is provided below.

3.1.1 Image Tagger

Tagging X-ray images with multiple tags is a multi-
label image classification problem. We build our
multi-label classifier on top of convolutional neural
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Figure 1: The architecture of our proposed model: Our model has four important components: an image
tagger, a text generator, a span identifier, and a replacement module. The image tagger module produces
tags for the input X-ray image. The text-generator module generates the pathological description for input
tags. The span identifier module identifies the normal sentences that need to be replaced by generated
pathological descriptions in the normal report template. The replacement module replaces identified
normal spans with generated pathological descriptions.

network (CNN) architectures such as ResNet-50.
Our model takes an X-ray image as input, calcu-
lates a score for each of the L labels, and then uses
a cutoff threshold to decide which labels to keep.
Target in each sample presented a binary vector
(17,927, ...,yr],j = 1..n,y € Y and indicates
whether a label is present (1) or absent (0). We use
the sigmoid activation function in the output layer,
and the binary cross-entropy loss function is used
to fit the model. The loss is calculated as:

1 & . .
Loss = = > _[yilog(y:) + (1 = yi)log(1 - 3)]
i=1
()
where y; is the ¢th predicted value by model, y; is

the corresponding target value, and L is the number
of scalar values in the model output.

3.1.2 Tags Embedding

Input tag set X is tokenized as {z1, 72, ..., 74 }.
Input token embeddings is given by, e, =
{ew,s €as, s €gy,, }. For a token z;, its embedding
is e;, € R, where d is the dimension of the token
embeddings. The positional encoding is added to
the input embeddings before passing it to the trans-
former layer. The text embeddings are the sum of
the token embeddings and the positional embed-
dings, i.e., ez, = e, +ep, where e, is the positional
embeddings.

3.1.3 Encoder-decoder Architecture

Generating pathological descriptions from tags can
be looked at as a text generation problem. Given
the input tag sequence X = (x1,x2,...,xs), the
goal of general text generation model is to gen-
erate the pathological description sequence ¥ =
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(y1, Y2, ..., y1), Wwhere S and T are the length of the
input and output sequence respectively. The text
generation model can be defined as follows:

T

p(Y]X) = Hp(yt\X, Yoi) (2)
=1

Finally, it generates a pathological description
with the highest probability. If the image is labeled
as normal then the text generation module gen-
erates the sentence No acute abnormality found.
Table 3 shows the samples from the dataset that
include tags and their corresponding pathological
descriptions.

3.1.4 Span Identification and Replacement
Module

Span Identification: The span identification
module identifies the span from the normal report
template that would be replaced with a generated
pathological description. To create a standard nor-
mal report template, we manually curated a set of
sentences per abnormality indicating absence of
abnormality (that means normal findings), totaling
23 sentences. With the expert’s opinion, we built
the template by examining the reports and picking
existing sentences or creating new ones. Due to
the fixed nature of sentences, we treat each as a
separate label. Figure 2 shows an example of the
normal report template with a label for each sen-
tence mentioned in brackets. We create a dataset
of pathological description sentences, which we
extract from the findings and impressions section
of the original dataset, and annotate it with corre-
sponding normal sentence labels (i.e., lungl, lung?2,
etc.). If a pathological description cannot be re-
placed with any of the normal sentences, then we
annotate that sentence with the extra label.

This normal sentence identification problem can
be formulated as a multilabel text classification
problem. Consider input sentence as series of
words: X = {w, w2, ...,w,} and for span iden-
tification, we need to predict the sentence cate-
gory Y = {lungl,lung2, ....,extra}. We use a
BERT-based multilabel text classifier to identify
the normal sentences. The last layer uses a sigmoid
activation function to generate the probability of
a sample belonging to the corresponding classes.
The loss function is the same as equation 1.

Replacement: Once we obtain the list of nor-
mal sentences to replace with the generated patho-
logical description, we submit the normal sen-

tences, the normal report template, and the gen-
erated pathological description to the replacement
module. If a sentence is labeled as extra then we
do not replace any normal sentences, but instead
add pathological description sentences as an ex-
tra part in the report. For example, if the gener-
ated pathological description sentence is, Multiple
surgical clips are noted., then we add this as an
extra part in the report without removing any nor-
mal sentences. Replacement module finds the ex-
act match of the identified normal span sentences
with normal report sentences and replaces it with
generated pathological description. If the gener-
ated description is No acute abnormality found.
then our replacement algorithm returns the stan-
dard normal report template as the generated report.
If the span identifier gives multiple sentences to
replace by a single sentence of pathological de-
scription, then the replacement module replaces
the first sentence from the span and removes the
remaining span sentences from the template. For
example, if generated pathological description is
Stable cardiomegaly with large hiatal hernia., then
we have to replace No evidence of hernia (lung14)
and Heart size is within normal limits. (heartl).
Here, our replacement algorithm replaces lungi4
sentence with a generated pathological description
and removes the heartl from the template.

/ Chest X-ray Normal Report Template \
Findings:

Both lung fields are clear (lungl). No evidence of pleural effusion
(lung2). No evidence of pneumothorax (lung3). No focal airspace
disease (lung4). No focal airspace consolidation (lung5). No focal
infiltrate (lung6). No fibrosis (lung7). No pulmonary nodules or
mass lesions identified (lung8). No findings of pulmonary edema
(lung9). No focal pulmonary opacity (lungl0). No atelectasis
(lungll). No fibrosis (lungl2). No pneumonia (lungl3). No
evidence of hernia (lungl4). No costophrenic blunting (lungl5).
Midline trachea (lungl6). Normal pleural thickening (lungl7).
Heart size is within normal limits (heartl). The mediastinum is
unremarkable (heart2). Pulmonary vascularity is within normal
limits (heart3). Soft tissues are within normal limits (softtissuel).
No acute bony abnormality noted (bonel). Normal aorta (aortal).

Wression: No abnormality found. /

Figure 2: Chest X-ray normal report template.
Each sentence is mapped with a unique label. La-
bels are highlighted in red.

4 Experiments

In this section we cover the datasets, evaluation
metrics and baselines used for the training and eval-
uation of our model in detail.
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4.1 Datasets

We conduct our experiments on two datasets, which
are described as follows:

e IU X-RAY (Demner-Fushman et al., 2016) :
a public radiography dataset compiled by Indi-
ana University with 7,470 chest X-ray images
and 3,955 reports. Each report has three parts:
an impression, which is a title or summary of
the report; findings, which contain the report
in detail; and manual tags.

e MIMIC-CXR (Johnson et al., 2019) : the
largest publicly available radiology dataset
that consists of 473,057 chest X-ray images
and 227,943 reports. For the purpose of our
experiments we utilized 44578 reports.

Figure 3 shows the data samples from the IU-
Chest X-ray dataset and the MIMIC-CXR dataset.

IU X-RAY
ﬁAGS: calcinosis, mediastinum; lymph nodes, lung, hilum;\

lymph nodes, right

FINDINGS: Heart size is normal. There are densely
calcified madiastinal and right hilar lyph XXXX which
suggest prior histoplasmosis exposure. No consolidating
airspace disease is seen within the lungs. No pleural effusion
or pneumothorax. No convincing acute bony findings.
QMPRESSION' No acute abnormality identified.

MIMIC-CXR /AGS Pleural effusion, edema, cardiomegaly

FINDINGS: There is new mild pulmonary edema with
small bilateral pleural effusions. Lung volumes have
decreased with crowding of vasculature. No pneumothorax.
Severe cardiomegaly is likely accentuated due to low lung
volumes and patient positioning.
IMPRESSION: 1. New mild pulmonary edema with
persistent small bilateral pleural effusions. 2. Severe
\cardiomegaly is likely accentuated due to low lung volumes/

and patient positioning.

Figure 3: The data samples are from the IU X-ray
and MIMIC-CXR datasets.

We use distinct fields from the original datasets
to train different modules. In this section, we give
details about experimental settings for each module
separately.

4.1.1 Image Tagger Dataset

We consider frontal chest-radiographs as input and
target as tags for the IU X-RAY dataset and CheX-
pert labels for MIMIC-CXR dataset. We build
a model using Convolutional Neural Networks
(CNN) to analyze each image and classify it with
one or more of the 189 labels for IU X-Ray dataset
and 14 labels for MIMIC-CXR dataset. Figure 4
and figure 5 shows the distribution of important
classes in IU X-RAY dataset and MIMIC-CXR
datasets, respectively. For the IU X-RAY dataset
out of 3827 samples train, validation and test split

Tag distribution in the IU X-RAY dataset
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Figure 4: IU X-RAY dataset tag distribution.
There are a total of 189 unique tags but here we
represent only 19 important tags.
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Figure 5: MIMIC-CXR dataset tag distribution
with all 14 tags.

is 3000, 327 and 500 respectively. For the MIMIC-
CXR dataset out of 44578 samples train, validation
and test split is 40000, 2000 and 2578 respectively.

4.1.2 Pathological Description Generator
Dataset

To train a model we derive two separate datasets
from the original IU X-RAY and MIMIC-CXR
datasets. Two tasks are involved in creating this
dataset:

* We constructed one more dataset that includes
unique sentences from the IU X-RAY dataset,
and we annotated them as normal or abnor-
mal. The binary classifier dataset contains
5000 samples, each labeled as normal or ab-
normal by domain experts. We then train a
BERT-based binary classifier to classify each
sentence as normal or abnormal.

* We use the trained model to classify each sen-
tence from findings and impressions into nor-
mal and abnormal classes. We remove normal
sentences for each report and consider only
abnormal sentences as our pathological de-
scription.

Table 1 shows the examples of findings from the
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Tags

Findings from the Original Dataset

Extracted Pathological Descriptions

calcinosis, abdomen, left,
severe

The heart size and cardiomediastinal silhouette are stable and
within normal limits. Pulmonary vasculature appears normal.
There is no focal air space consolidation. No pleural effusion or
pneumothorax. Extensive left upper quadrant splenic calcifica-
tion may reflect old granulomatous disease

Extensive left upper quadrant splenic
calcification may reflect old granulo-
matous disease

nodule, lung, base, calci-
nosis, lung, hilum, lymph
nodes, right, granuloma,
right

There is a 1 cm nodule within one of the lung bases, seen only
on the lateral view. There is a calcified right hilar lymph node
and right granuloma. Heart size is normal. No pneumothorax.

There is a 1 cm nodule within one of
the lung bases, seen only on the lateral
view. There is a calcified right hilar
lymph node and right granuloma.

opacity, lung, apex, right,
focal, opacity, lung, base,
left, mild, spine, degener-
ative, cicatrix, lung, base,
left, mild, pulmonary at-
electasis, base, left, mild

The heart, pulmonary XXXX and mediastinum are within normal
limits. There is no pleural effusion or pneumothorax. There is
no focal air space opacity to suggest a pneumonia. There is a 1
cm focal opacity in the right lung apex incompletely evaluated
by this exam. There is minimal left basilar XXXX opacity
compatible with scarring or atelectasis. There are degenerative

There is a 1 cm focal opacity in the
right lung apex incompletely evalu-
ated by this exam. There is minimal
left basilar XXXX opacity compatible
with scarring or atelectasis. There are
degenerative changes of the spine.

changes of the spine.

Table 1: The samples are from the IU X-ray dataset, including the findings and the pathological descrip-

tions extracted from it.

IU X-RAY dataset and extracted pathological de-
scriptions from it. The train, validation, and test
split is the same as the image tagger dataset.

4.1.3 Normal Span Identifier Dataset

Concept Annotation labels Concept Annotation labels
cardiomegaly heartl airspace disease lungl, lung4

heart size heartl infiltrate lungl, lung6

hilar heart2 nodule lungl, lung8
sternotomy bonel pulmonary edema lungl, lung9
kyphosis bonel clavicle bonel

scoliosis bonel shoulder bonel

pleural fuild  lung2 humerous bonel

atelectasis lungl, lungl1 sternotomy bonel
consolidation  lungl, lung5, lung13  spine bonel

fibrosis lungl, lung7 bronchial cuffing  lungl, lung9

penumonia lungl, lung13 bronc}lmvascular lungl, lung11
costophrenic crowding

. lung2, lungl5 .
blunting degenerative bonel
bronchial lungl changes
granuloma lungl CABG heartl
COPD lung1, lung4 scarring lungl, lung6, lung7
interstitial interstitial Junel. lung6. lune7
marking lungl prominence &%, ungo, lung

Table 2: Any mention of a concept given in column
one in a pathological sentence should be labeled
with the labels given in column two.

We construct a dataset to identify the sentences
to replace from the normal report template with
the generated pathological description. The con-
structed dataset contains sentences from the find-
ings and impressions of the IU X-RAY dataset and
their corresponding list of normal sentences to re-
place. Annotation guidelines are provided by the
domain expert. Table 2 shows the guidelines pro-
vided by experts. Using those guidelines, we an-
notate the pathological description sentences. Data
annotated by us is verified by a domain expert and
corrected if necessary. Table 3 shows the samples
from the span identification dataset. Out of total

6500 samples, the train, validation, and test splits
are 5000, 500, and 1000, respectively. Table 3
shows the samples from the multilabel text classifi-
cation dataset that we have constructed.

Pathological Description Labels

The thoracic aorta is tortuous and calcified. aortal

XXXX right pleural opacity along the lower lung2, lung4,
chest wall compatible with thickening and/or  lung10, lungl11,
some loculated effusion, accompanied with  lungl7

some adjacent atelectasis / airspace disease
within the right lung base.

Stable cardiomegaly with large hiatal hernia. ~ lung14, heartl

Left greater than right basilar opacity, probable
atelectasis and/or scarring.

lung10, lungl1

Table 3: The samples are from the span identifier
dataset. It includes the pathological descriptions
and labels of the corresponding normal sentences
to replace.

4.2 Training Details

We adopted the ResNet50 pretrained on Imagenet
as the image tagger to produce tags for radiographs.
We used frontal radiographs for both the IU X-RAY
and the MIMIC-dataset. The IU X-RAY dataset
contains 189 labels, and the MIMIC-CXR dataset
contains 14 labels. According to the number of
labels, the last layer of the image tagger module is
different for both modules. We resize the images
from both datasets to 224 x 224. We trained our
model up to 20 epochs for both datasets. DGX
A100-SXM-80GB GPU server takes 100 minutes
for a single epoch for the MIMIC-CXR dataset and
approximately 3 minutes for the IU X-RAY dataset.
The transformer in our proposed model was initial-
ized with pretrained T5-large model weights. The
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Dataset Method NLG Metrics CE Metrics
Bleu-1 Bleu-2 Bleu-3 Bleu-4 Rouge-L. Meteor CIDEr | P R F

CDGPT?2 (Alfarghaly et al., 2021) 0.387 0.245 0.166 0.111  0.289 0.164 - 0.0 0.0 0.0
Visual Transformer (Chen et al., 2020) | 0.470  0.304 0.219 0.165 0.371 0.187 - - - -
MvH+AH®L+MC (Yuan et al., 2019) 0.529 0372 0315 0.255 0.453 0.343 - - -
SentSAT+KG (Zhang et al., 2020) 0441 0.291 0203 0.147 0.367 - 0.304 | 0483 0490 0478

IU X-RAY CoAttn (Jing et al., 2018) 0.517 0.386 0.306 0.247 0.447 0.217 0.327 0.491 0.503 0.491
CNN-TRG (Pino et al., 2021) 0273 - - - 0.352 - 0.249 | 0.529 0.534 0.540
TMRGM (Wang et al., 2021) 0419 0.281 0.201  0.145 0.280 0.183 0.359
Ours (pathological description) 0402 0322 0285 0.180 0.567 0.455 0.473 | 0.892 0.890 0.889
Ours (full report) 0.775  0.699 0.658 0.627 0.817 0.782 0.835 | 0.533 0.874 0.648
Visual Transformer (Chen et al., 2020) | 0.353  0.218  0.145  0.103  0.277 0.142 - 0.333 0.273 0.276
SentSAT+KG (Zhang et al., 2020) 0441 0.291 0203 0.147 0.367 - 0.304 | - - -

MIMIC-CXR | CNN-TRG (Pino et al., 2021) 0.080 - - - 0.151 - 0.026 | 0.668 0.749 0.640
Ours (pathological description) 0.253  0.188 0.169 0.163 0.348 0.268 0.331 0.769 0.771 0.765
Ours (full report) 0.833 0.807 0.794 0.785 0.833 0.861 0.861 0.488 0.863 0.606

Table 4: The NLG metrics and CE metrics score of generated X-ray reports by previous methods and
our approach vs. gold standard X-ray reports. The best results are in bold font, and the second best is

underlined.

model was trained under cross entropy loss with
the ADAM optimizer. We set the learning rate to
le-4. We decayed such a rate by a factor of 0.8
per epoch for each dataset and set the beam size
to 5 to balance the generation’s effectiveness and
efficiency. Maximum input and output sequence
lengths were set to 100. We train the transformer
model up to 20 epochs for IU X-RAY dataset and
up to 15 epochs for the MIMIC-CXR dataset. For
one epoch it takes approximately 10 minutes and
60 minutes on a single DGX A100-SXM-80GB
GPU for the IU X-RAY and MIMIC-CXR datasets,
respectively. The last module was a BERT-based
multilabel classifier, which identifies the normal
span to replace. We used pretrained BERT weights
to initialize our model. There are a total of 24 la-
bels, according to the number of nodes in the last
layer change. We train all the models on a DGX
A100-SXM-80GB GPU server. For all transformer
based models we use hugging face transformer li-
braries.!

4.3 Evaluation

We evaluate the results of different modules sep-
arately. For the image tagger and span identifier
modules, we compare the accuracy, AUC score,
precision, recall, and F1 scores. The first slot in
the table 5 shows the results for the image tagger
module, and the second slot shows the results for
the span identifier module on the IU X-RAY and
MIMIC-CXR datasets.

We compare the performance of our model with
previous State-of-the-Art image captioning based

"https://huggingface.co/docs/transformers/
index

Module Dataset Acc  auROC Flscore Prec Recall

Image Tagger MIMIC-CXR 0.71 0.82 0.68 0.80 0.64
IU X-RAY 0.75 0.79 0.61 0.71 0.58

Span Identifier MIMIC-CXR 0.94 0.95 0.96 095 0.96
IU X-RAY 0.96 0.95 0.96 0.96 0.97

Table 5: Results of the image tagger module and
span identification module on the IU X-RAY and
MIMIC-CXR datasets given by our model. First
slot shows the results for image tagger and second
slot shows the results for span identifier.

methods like CNN-RNN (Vinyals et al., 2015),
CDGPT2 (Alfarghaly et al., 2021) and Visual
Transformer (Chen et al., 2020) and template based
methods such as CNN-TRG (Pino et al., 2021)
and TMRGM (Wang et al., 2021). To evaluate
the generated pathological descriptions, we con-
sider the pathological descriptions that we extract
from original reports as ground truth. To evaluate
the generated full reports, we generate templated
reports by replacing ground truth pathological de-
scription in normal report template and consider it
as ground truth. The performance of the aforemen-
tioned models is evaluated by conventional natural
language generation (NLG) metrics and clinical ef-
ficacy (CE) metrics. Clinical Efficacy (CE) metrics
provides a quantitative assessment of the quality of
generated radiology reports. Clinical efficacy (CE)
metrics are calculated by comparing the critical
radiology terminology extracted from the gener-
ated and reference reports. We use MIRQI? tool
to calculate the precision, recall, and F1 scores
to evaluate the model performance for these met-
rics. NLG metrics such as BLEU (Papineni et al.,

2https://github.com/xiaosongwang/MIRQI
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2002), ROUGE (Lin, 2004), CIDEr and METEOR
(Banerjee and Lavie, 2005), which primarily focus
on measuring n-gram similarities. For CE metrics,
precision, recall, and F1-score are used to evaluate
model performance. We use the CheXpert (Irvin
et al., 2019) to label the generated reports and com-
pare the results with ground truths in 14 different
categories of thoracic diseases and support devices.
Table 4 shows NLG and CE metrics of the gener-
ated pathological description as well as full reports
by our model and baseline models compared to
gold standard reports.

4.4 Qualitative Evaluation and Error Analysis

This section provides a qualitative analysis per-
formed by a domain expert. The domain expert
classified the generated reports into three cate-
gories: accurate (reports with most of the vital
information), missing details (reports with no false
information but missing some vital details), and
misleading (reports with false information and an
overall incorrect diagnosis).

Method  Samples Accurate Missing Details Misleading
All(500) 78.00% 12.00% 10.00%

Ours Normal(183) 99.95% 00.00% 00.05%
Abnormal (317) 63.13% 22.00% 14.05%
All(500) 61.60% 28.20% 10.20%

CDGPT2  Normal(201) 99.00% 00.00% 01.00%
Abnormal(299) 36.50% 47.10% 16.40%

Table 6: Results of generated reports, manually
evaluated by radiologist. Manual evaluation is done
on the IU X-RAY dataset. Best results are shown
in a bold face.

We provide 500 test samples from the test dataset
and their corresponding generated reports to the do-
main expert for qualitative analysis. The model
generated 78% accurate reports, 12% reports with
missing information, and 10% with misleading pre-
dictions. Further, these random samples were clas-
sified into normal and abnormal reports. Out of
183 normal reports, the model generated 99.95%
correct reports, 0.0% reports with missing details,
and 0.05% misleading reports. Out of 317 abnor-
mal reports, the model could produce 64% accu-
rate reports, 22% of them with missing details, and
14.5% with false reports. Table 6 contains the re-
sults of the qualitative analysis. Figure 6 shows the
case studies of ground truth reports and generated
pathological descriptions and full reports by our
method for the above mentioned categories.

5 Summary, Conclusion and Future Work

We present a template-based approach for gener-
ating X-ray reports from radiographs. Our model
generates small sentences exclusively for abnor-
malities, which are then substituted in the normal
report template to produce a high-quality radiol-
ogy report. We create a replacement dataset that
contains pathological descriptions and their corre-
sponding normal sentences from the normal report
template. Our experimental results demonstrate
that, compared to the State-of-the-Art models, the
BLEU-1, ROUGE-L, METEOR, and CIDEr scores
of the full reports generated by our approach are
raised by 25%, 36%, 44% and 48%, respectively.
Also, clinical evaluation metrics show that our
method generates more clinically accurate reports
than the State-of-the-Art methods. Unlike other
State-of-the-Art models, our methodology does not
put excessive emphasis on normal sentences. In
the future, we plan to apply the proposed method
to generate radiology reports for CT, MRI, efc. For
our experiments, we have used all samples from the
IU X-RAY dataset. But we have used only 44578
reports out of 227827 reports for the MIMIC-CXR
dataset. Our immediate plan is to perform exper-
iments on the whole MIMIC-CXR dataset. Take
away from our work is that creating smaller sen-
tences of pathological descriptions and replacing
them in the normal template produces better quality
reports than generating the whole report at once.

Limitations

Data unbalancing is one of the limitations of our
work. In the future, we would like to address this
problem by data oversampling or undersampling.
For our experiments, we have used all samples from
the IU X-ray dataset. But from the MIMIC-CXR
dataset, we have used only 44578 reports out of
227827 reports. Our results for the MIMIC-CXR
dataset might differ when we use the whole dataset.
To evaluate the generated pathological descriptions,
we consider the pathological descriptions that we
extract from original reports as ground truth. To
evaluate the generated full reports, we generate
templated reports by replacing ground truth patho-
logical description in normal report template and
consider it as ground truth. So it considers the ab-
normalities from the original reports and the normal
sentences from the normal report template. Auto-
matic generation of chest X-ray reports will make it
easier for radiologists to diagnose and write reports.
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The heart size is normal. There is
minimal fibronodular scarring right

. No evidence of hernia. No costophrenic blunting. Midline trachea. Normal
apex, otherwise lungs clear.

pleural thickening. Heart size is within normal limits. The mediastinum is
unremarkable. Pulmonary vascularity is within normal limits. Soft tissues are
. within normal limits. No bony abnormalities. Normal aorta. i
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upper lobe. No adenopathy, nodules, or
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costophrenic blunting. Midline trachea. Normal pleural thickening. Heart size is
within normal limits. The mediastinum is unremarkable. Pulmonary vascularity is
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Hyperinflated lungs
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Figure 6: Examples of the ground truth and the pathological descriptions and full reports generated using
our approach The first column shows the findings from the IU X-RAY dataset. Abnormal findings in
the original report are highlighted in magenta. The second column shows the pathological description
generated by our system. The third column shows the full report generated by our method. For both second
and third column, correctly generated sentences are highlighted in , partially correct sentences are
highlighted in blue and misleading sentences are highlighted in red. Example 1 shows that the generated
report is correct but missing some important information. Example 2 shows that the generated report is
misleading. Example 3 shows that the generated report is correct but missing the measurements. Example
4 shows that the generated report is correct and reports all findings.
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