ERNIE-Code: Beyond English-Centric Cross-lingual Pretraining for
Programming Languages

Yekun Chai Shuohuan Wang Chao Pang Yu Sun Hao Tian Hua Wu
Baidu
{chaiyekun, wangshuohuan, sunyu02}@baidu.com

Abstract

Software engineers working with the same pro-
gramming language (PL) may speak different
natural languages (NLs) and vice versa, erect-
ing huge barriers to communication and work-
ing efficiency. Recent studies have demon-
strated the effectiveness of generative pre-
training in computer programs, yet they are
always English-centric. In this work, we step
towards bridging the gap between multilingual
NLs and multilingual PLs for large language
models (LLMs). We release ERNIE-Code, a
unified pre-trained language model for 116 NLs
and 6 PLs. We employ two methods for univer-
sal cross-lingual pre-training: span-corruption
language modeling that learns patterns from
monolingual NL or PL; and pivot-based trans-
lation language modeling that relies on paral-
lel data of many NLs and PLs. Extensive re-
sults show that ERNIE-Code outperforms pre-
vious multilingual LLMs for PL or NL across a
wide range of end tasks of code intelligence, in-
cluding multilingual code-to-text, text-to-code,
code-to-code, and text-to-text generation. We
further show its advantage of zero-shot prompt-
ing on multilingual code summarization and
text-to-text translation. We release our code
and pre-trained checkpoints'.

1 Introduction

Recent trends in generative pre-training of pro-
gramming languages (Feng et al., 2020; Chen
et al., 2021; Li et al., 2022) have led to a prolif-
eration of improvements in code intelligence sce-
narios, including program understanding and gen-
eration (Wang et al., 2021; Ahmad et al., 2021).
In this context, a transformer-based large language
model (LLM) is pre-trained on a large corpus of
open source code (e.g., from GitHub) and then
finetuned or zero-shotly evaluated on downstream
tasks, such as program synthesis (Austin et al.,

"https://github.com/PaddlePaddle/PaddleNLP/tree/
develop/model_zoo/ernie-code

S X X-]

e TR At

| p i i

! I
L @B ‘ :

- PHP Python JavaScript| GO i

m
English Go ig ; N - \/ i
java -

Go Java Ruby | Vs .‘ . - |

@ wﬁ I 2. - \ %l |

***************************** | <>\ F 1< 18

" Y= Je®e, !

~ I

A - |

i

|

|

|

|

i

|

|

|

|

|
|
-
! ~e— -
= Deutsch Frangais Espaﬁol} m / \ ¢
aF € | g
|
|
|
|
|

Figure 1: Comparison among (a) Multilingual code pre-
training; (b) Multilingual text pre-training; (c) Universal
multilingual text-code pre-training (ours).

2021; Fried et al., 2022; Nijkamp et al., 2022),
code search (Husain et al., 2019; Li et al., 2021),
clone detection (Lu et al., 2021b), and text-to-code
generation (Clement et al., 2020).

Although there has been a surge of interest in
learning general-purpose multilingual LLMs for
source code (Feng et al., 2020; Ahmad et al., 2021;
Wang et al., 2021; Fried et al., 2022; Xu et al.,
2022), research in this area has been essentially con-
necting English texts (e.g., comments or docstring)
and multiple computer programs (e.g., Python,
C++, and Java), as shown in Figure 1(a), and pri-
marily focused around English-centric corpora and
benchmarks. This English-centricity issue dramat-
ically limits their use and practice given that 95%
of the world population does not have English as
their native language (Guo, 2018).

As such, it is crucial to mitigate barriers and
draw connections between non-English natural lan-
guages (NLs) and multiple programming languages
(PLs). One engineering solution is to use English
translation of non-English texts by engaging neural
machine translation (NMT) systems before/after
the code LLM as a pipeline. Unfortunately, most
general-purpose NMT systems (Wu et al., 2016;
Johnson et al., 2017) are not designed for code-
specific texts and can be prone to accumulative
errors due to cascaded prediction stages.

A more general way is to learn a multilingual

10628

Findings of the Association for Computational Linguistics: ACL 2023, pages 10628-10650
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-code
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-code

LLM that encodes a mixture of multiple NLs and
PLs into a shared cross-mode representation space.
The success in learning universal representations of
many languages (Conneau and Lample, 2019; Xue
etal., 2021; Ahmad et al., 2021; Wang et al., 2021;
Xu et al., 2022) that focuses on PLs or NLs suggests
that it is possible to build a universal multilingual
model that jointly represent multiple PLs and NLs.

In this work, we present ERNIE-Code, a unified
cross-lingual pre-trained LLM for multiple NLs
and PLs in hopes of mitigating the English-centric
bias for program pre-training, as illustrated in Fig-
ure 1. Our model builds on the T5 (Raffel et al.,
2020) encoder-decoder architecture that has been
demonstrated to be effective in understanding and
generation tasks for multilingual NL (Xue et al.,
2021) and PL (Wang et al., 2021). For monolin-
gual pre-training on mono-mode data (i.e., unpaired
multilingual code or text), we follow the same T5
recipe to employ the “span-corruption” denoising
objective in the text-to-text format.

The good-quality parallel corpus between low-
resource NLs and multilingual PLs is usually un-
available. Instead, most popular PLs, accompany-
ing API documentation, code examples, and discus-
sion forums are primarily written in English, which
poses a bottleneck to drawing connections between
low-resource NLs and PLs. Inspired by the pivot-
based machine translation (Gispert and Marifio,
2006; Utiyama and Isahara, 2007) that uses a pivot
language and decomposes the source<>target trans-
lation into source<+pivot and pivot<+target bilin-
gual translation, we introduce the pivot-based trans-
lation language modeling (PTLM) with prompting
that disassembles multi-NL<>multi-PL into multi-
NL<+>English and English<>multi-PL with pivoting
through English.

Specifically, we leverage the PTLM training in
dual direction for parallel corpus in different modes:
(1) English<+multi-PL. For multi-PL+<+English par-
allel data, i.e., code snippets and their accompany-
ing comments, the model learns to generate English
comments from code fragments and vice versa. (2)
English<+>Multi-NL. It learns to translate between
English and other NLs. The model thus encodes
PL<+English and English<+>NL at the same time,
with English as a pivot language. We conduct exten-
sive experiments on different downstream tasks: (1)
Multilingual text-to-code generation; (2) Multilin-
gual code summarization (code-to-text); (3) Docu-
mentation translation (text-to-text); (4) Code repair

(code-to-code). Empirical results have shown that
our model outperforms strong multilingual LLMs
for PL or NL and have verified its universal multi-
lingual capacity. We also provide examples to show
its decent zero-shot capability on code summariza-
tion and text translation via zero-shot prompting.

To summarize, this paper makes the follow-
ing contributions: (1) We first propose a unified
cross-lingual pre-trained LLM for both multilin-
gual NLs and multilingual PLs, enlarging the ca-
pacity of LLMs towards jointly learning the uni-
versal multilingualism. (2) We employ the pivot-
based translation language modeling with prompt-
ing to build connections between multi-NLs and
multi-PLs (with English pivots) and mitigate the
problem when the parallel corpus of multilingual-
NL<multilingual-PL is unavailable. (3) We obtain
superior performance compared with previous mul-
tilingual LLLMs across a wide range of code intel-
ligence tasks, including text-to-code, code-to-text,
code repair, and code documentation translation.
(4) To some extent, our model has shown zero-
shot prompting ability on multilingual code-to-text,
text-to-code, and text-to-text generation. More-
over, ERNIE-Code is well-performed at naming a
function and completing corresponding arguments
given multilingual NL instructions.

2 Related work

As text-based formal languages with strict syn-
tax and semantics, PL differs from NL because
NL is only used for human communication while
PL requires the interaction between humans and
computers. This work targets bridging the gap be-
tween human languages and computer programs
in a cross-lingual manner for unified multilingual
pre-training, which is closely related to LLMs in
either multilingual PL or NL.

Multilingual PL pre-training The success of
large-scale pre-training has led to impressive ad-
vances in computer programs. This line of re-
search involves pre-training on multilingual PLs
using bidirectional transformer encoders (Feng
et al., 2020; Li et al., 2021), casual transformer
decoders (Chen et al., 2021; Austin et al., 2021;
Fried et al., 2022; Nijkamp et al., 2022; Xu et al.,
2022), and transformer encoder-decoder architec-
tures (Wang et al., 2021; Ahmad et al., 2021; Li
et al., 2022). Those with bidirectional encoder fo-
cus on program understanding tasks, such as code
search (Husain et al., 2019), while the encoder-

10629

decoder ones target at building unified LLMs for
both program understanding and generation. We
observe that a large body of pre-trained models
for PL tend to scale up their parameters under the
framework of causal language modeling, mainly
focusing on program synthesis (Chen et al., 2021;
Austin et al., 2021; Fried et al., 2022; Nijkamp
et al., 2022; Xu et al., 2022). Nevertheless, all of
these works are almost English-centric, posing sig-
nificant challenges to coping with PL. end-tasks in
non-English scenarios.

Multilingual NL pre-training This work is also
related to the continual trend of multilingual LLM:s.
One line of this work focuses on encoding multiple
NLs into a shared representation space (Conneau
and Lample, 2019; Conneau et al., 2020), while
some make efforts to extend the efficient mono-
lingual pre-training method into multilingual set-
tings (Xue et al., 2021; Liu et al., 2020).

Inheriting the recent success of LLMs in mul-
tilingualism, this work lies in the intersection be-
tween multilingual NL and PL pre-training. In
contrast to the previous work that attends to either
multilingual NL or multilingual PL, we seek to
explicitly learn multiple NLs and PLs in a shared
representation space in hopes of breaking the lan-
guage barriers between these two modes.

3 Cross-lingual NL-PL pre-training

In this section, we introduce pre-training tasks
(§3.1), model (§3.2), and pre-training data (§3.3)
we use throughout this work.

3.1 Pre-training tasks

We pre-train on two pre-training tasks using both
PL and NL data: one (§3.1.1) uses monolingual
PL/NL data (unsupervised), while the other (§3.1.2)
requires parallel NL-PL and NL-NL pairs (super-
vised). The former advances to learn intra-modal
patterns from PL or NL only, while the latter en-
dows the model with cross-lingual/modal align-
ment and zero-shot capabilities.

3.1.1 Task#1: Span-corruption language
modeling (SCLM)

Denoising sequence-to-sequence pre-training has
been highly effective across a broad set of tasks,
including natural language processing (Liu et al.,
2020; Raffel et al., 2020; Xue et al., 2021) and
programming language processing (Wang et al.,

2021; Ahmad et al., 2021). The denoising pre-
training objective first corrupts input sequences
by masking or adding noise; and then recovers
the original inputs by forcing the model to predict
corrupted spans, sentences, or documents. Raffel
et al. (2020) finds that span-corruption denoising
pre-training produces strong performance while
being more computationally efficient on account of
shorter target sequence lengths.

In similar vein, we extend the span-corruption
denoising pre-training on both PL and NL. We refer
to this task as span-corruption language modeling
(SCLM), as illustrated in Figure 2. Specifically, it
corrupts 15% of the original NL/PL input tokens
with a mean span length of 3 by replacing contigu-
ous, randomly-spaced spans of tokens as a single
mask placeholder and then predicting the corrupted
span on the target side.

PL NL

Original sequence Original sequence
<PL:python>
def sort_array(arr):
arr.sort()
return arr

<NL:Spanish>
"Para amantes de la Imagen,
la Fotografia y el Arte Digital"

Inputs Inputs
def sort_array(arr):
<X>
return <Y>

"Para amantes de la <X>, la
Fotografia y el <Y>"

Targets Targets

<X> arr.sort() <Y> arr <X> Imagen <Y> Arte Digital

Figure 2: Schematic of the SCLM objective for PL (left)
and NL (right) example.

Suppose we have a total of M monolingual cor-
pora of NL and PL corpora {C, }rm=1..0s. We
apply the SCLM pre-training objective on both NL
and PL data in a multi-tasking fashion:

M T

Lscm= Y Y —logPy (w(i)»t‘x>rr2§5k’ Xtmyi<t)
m=1 t=1

€]

where 6 denotes trainable parameters, X}:;;Sk and

x?“nis)k are span-corrupted inputs and corresponding

target spans from monolingual corpus C,,, respec-
tively. x‘(“TfLS)k . indicates the generated tokens until
the ¢-th time step out of the target (corrupted) se-

quence length 7.

3.1.2 Task#2: Pivot-based translation
language modeling (PTLM)

This work aims at narrowing the cross-modal cross-

lingual gap between multiple NLs and PLs, yet

good quality parallel corpora between non-English

10630

NL and multilingual PL are unavailable. The lack
of parallel corpus stems from the fact that most pop-
ular PLs, accompanying documentations, and dis-
cussion websites are primarily written in English.
Early investigation of statistical machine transla-
tion proposed pivot-based approach (Gispert and
Marifio, 2006; Utiyama and Isahara, 2007) to in-
troducing a third language - named pivot language
- for which there exist good-quality source-pivot
and pivot-target bilingual corpora. Johnson et al.
(2017) adopt a single NMT model to simultane-
ously learn many translation directions (including
source<»pivot, pivot<«starget), enabling the zero-
shot translation between NLs implicitly.

In our context, the good-quality multi-PL to the
multi-NL bilingual corpus is unavailable, yet there
exists multi-NL to English and English to multi-
PL parallel corpora, with pivoting through English.
Motivated by the pivot-based NMT (Johnson et al.,
2017) and translation language modeling (TLM;
Conneau and Lample, 2019) approach, we apply a
unified pivot-based training objective to the course
of multilingual NL-PL pre-training, namely pivot
translation language modeling (PTLM).

NL-to-PL PL-to-NL NL-to-NL

Original sequence Original sequence Original sequence

Translate Python to English: Translate English to Russian:

def sort_array(arr): Edit chemical 2D structures
arr.sort() <SEP>

PepakTUpoBaHue ABYMEpHbIX

XMMUUYECKMX CTPYKTYP

Translate English to Python:
Sort an array.<SEP>
def sort_array(arr):
arrsort()
return arr

return arr
<SEP>Sort an array.

Inputs Inputs. Inputs

Translate Python to English:
Translate English to Python: def sort_array(arr): Translate English to Russian:
Sort an array. arr.sort() Edit chemical 2D structures
x> return arr <X>

<X>

Targets

<X> def sort_array(arr): Targets
arr.sort()
return arr

Targets

<X> PepaKTMpOBaHHe ABYMEPHLIX

<X>Sortan array. XMMUHECKWX CTRYKTYP.

Figure 3: Schematic of the PTLM objective for NL-to-
PL (left), PL-to-NL (middle), NL-to-NL (right) example.
“<SEP>" indicates the delimiter token.

With bilingual PL-NL and NL-NL corpora, we
jointly learn the parallelism with pivoting in dual
directions: for instance, Python<+English and
English<»Russian. This allows for implicit bridg-
ing between PL-NL pairs that are never seen explic-
itly in training data (Johnson et al., 2017). More
precisely, we concatenate parallel source-target sen-
tences and learn to predict the corrupted target lan-
guage, as shown in Figure 3. Instead of mask-
ing random tokens (Conneau and Lample, 2019),
we corrupt the whole sentence in either direction
of bilingual data and predict on the target side.
The model requires attending to complete repre-
sentations of source sentences to recover the target

sentence and learn the alignment between source-
target pairs. Suppose we have N bilingual NL-NL
and NL-PL parallel corpora {D), }p=1.. n. We
can formulate the PTLM training as:

N T

Lrmuan = 37 > = log Po (@™ x5
n=1 t=1

@

target

souree and X () denote source and target

where x)

. t t . .
sentences from bilingual corpus D,,. x(%e - indi-

cates the generated tokens until the ¢-th time step
out of the target sequence length 7. This training
format is the same as an NMT task.

To enable a pivot-based approach and specify the
target language, we reformat the PTLM by prompt-
ing with a task prefix (See Figure 3), in which we
prepend a task instruction “translate A to B: \n” on
the left of input sentences, where A and B denote
the source and target language, respectively. This
prompt instruction indicates the target language
the model should translate to, resulting in descent
zero-shot abilities (§5.3).

3.2 Model

Model architecture Our model follows the same
architecture as TS5-base (Raffel et al., 2020). Specif-
ically, we build ERNIE-Code on “T5.1.1” version?,
which improves upon T5 using gated nonlineari-
ties (Shazeer, 2020; Chai et al., 2020). We refer to
§A.3.1 for pre-training settings.

Shared NL/PL encoding We base our tokenizer
on SentencePiece tokenizer in Xue et al. (2021).
However, the original SentencePiece tokenizer de-
signed for encoding NLs does not effectively rep-
resent PL data. We thus add a set of tokens repre-
senting whitespace indentation of different lengths
in PL. See tokenization details in §A.1.

3.3 Pre-training data

Code corpus For PL data, we use the same pre-
training corpora - CodeSearchNet (Husain et al.,
2019) - as previous models (Feng et al., 2020; Wang
et al., 2021).3 It covers six monolingual PLs (Go,
Java, JavaScript, PHP, Python, and Ruby) and six
NL-PL parallel data, i.e., PL-NL query pairs. The

“https://github.com/google-research/
text-to-text-transfer-transformer/blob/main/released_
checkpoints.md#t511

3Note that for a fair comparison, we do not use additional
data from public repositories hosted on GitHub.

10631

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511

Model #Param #PLs #NLs Data source

mBART (Liu et al., 2020) 680M - 25 Common Crawl (CC25)

mT5 (Xue et al., 2021) 560M - 101 Common Crawl (mC4)
PLBART (Ahmad et al., 2021) 390M 2 1 GitHub, StackOverflow

CodeT5 (Wang et al., 2021) 220M 8 1 CodeSearchNet, GitHub (C/C#)
ERNIE-Code (ours) 560M 6 116 CodeSearchNet, CC-100, OPUS

Table 1: Comparison of our model to existing massively
multilingual pre-trained models for NLs and PLs.

majority of NL annotations in the parallel corpora
is English. We defer data statistics and preprocess-
ing details in §A.2.1.

Text corpus We pre-train on the following NL
data corpus: (1) Monolingual data from CC-
100 (Conneau et al., 2020) that built on a clean
CommonCrawl corpus4, containing 116 different
NLs. 3 (2) Parallel data from OPUS website® cov-
ering 15 languages. The collected NL translation
pairs include MultiUN (Ziemski et al., 2016), IIT
Bombay (Kunchukuttan et al., 2018), OPUS (Tiede-
mann, 2012), WikiMatrix (Schwenk et al., 2021),
etc. We refer to §A.2.2 for details.

To alleviate the bias towards high-resource lan-
guages, we follow Conneau and Lample (2019) to
rebalance the data distribution on both corpora and
up/down-sample sentences from each language (or
language pair) ¢ with a rescaled multinomial distri-
bution g;:

Py
=4 (3)
Y

where p; is the data percentage of each monolingual
or parallel corpus. Following Conneau and Lample
(2019), we set a = 0.3 for both monolingual and
parallel corpus.

4 Experiments

In this section, we first introduce multilingual pre-
trained models for comparison (§4.1), downstream
tasks, and evaluation metrics (§4.2). Then we eval-
uate and show consistent performance gains on
several multilingual NL/PL benchmarks, including
code-to-text (§4.3), text-to-code (§4.4), text-to-text
(§4.5), and code-to-code (§4.6) end tasks.

4.1 Comparison to related models

To contextualize our new model, we briefly
compare it with existing multilingual LLMs for
NLs/PLs. Considering that ERNIE-Code is the

“https://data.statmt.org/cc- 100

>Note that following Conneau et al. (2020), we count Ro-
manized variants as separate languages.

®https://opus.nlpl.eu

first LLM targeting multilingual NL and PL explic-
itly, for brevity, we focus on models that support
either many NLs or many PLs. Table 1 reports the
overall statistics of comparison models.

mBART (Liu et al., 2020) is a multilingual-NL
variant of BART (Lewis et al., 2020) trained with
a full-text denoising objective on a subset of 25
languages from CommonCrawl. It learns to recon-
struct the full NL texts from corrupted ones with
an arbitrary noising function. mT5 (Xue et al.,
2021) is a multilingual-NL encoder-decoder model
adapted from T5. It is trained on 101 NLs using
filtered CommonCrawl data (mC4) using the same
SCLM objective as our model. PLBART (Ah-
mad et al., 2021) is a multilingual-PL version of
BART with a denoising objective using three nois-
ing formats. It is trained on 210M Java functions,
470M Python functions from GitHub, and 47M En-
glish posts from StackOverflow. CodeT5S (Wang
et al., 2021) is a PL version of mT5 that is pre-
trained on six-PL monolingual/parallel data from
CodeSearchNet and extra C/C# data collected from
GitHub. It additionally learns token-type informa-
tion from identifiers and applies dual generation
between English and PLs.

4.2 Evaluation datasets and metrics

Table 9 displays the statistics of evaluation dataset.
We use the same public datasets and train-test splits
for all downstream tasks. We refer to §A.3.3 for
experimental settings of finetuning.

Multilingual code summarization is a code-to-
text task that aims to generate multilingual texts
given a code snippet. We use mCoNalLa (Wang
et al., 2022) to evaluate the performance of gen-
erating multilingual NL from PL. It consists of
341/210/345 manually curated parallel samples
with NL in Spanish/Japanese/Russian and PL in
Python. As mCoNaLa does not provide the train-
ing and validation set, we use CoNaLa (Yin et al.,
2018), an English-Python parallel data (consisting
of #2,379 samples), as the train/dev set (with 10:1
data split) after translation. For “translate-train”
settings, we use machine-translated CoNalLa as
training and dev sets, while use mCoNaLa as the
test set. Particularly, we translate CoNalLa’s train-
ing set into three target languages using FLORES-
101 (Goyal et al., 2022) and adopt them as train/dev
set. We utilize ROUGE-L (R-L; Lin, 2004), BLEU-
4 (B-4; Post, 2018), and chrF (Popovié, 2015) for
comprehensive comparison.

10632

https://data.statmt.org/cc-100
https://opus.nlpl.eu

Spanish Japanese

Russian Avg.

Model B4 RL chF | B4 RL

chrF | B-4 R-L chrF | B-4 R-L chrF

Translate-train

mBART 0.96 1946 19.30 | 0.07 4.70

mT5S 094 28.69 19.87 | 0.06 2.95
PLBART 0.16 1433 11.72 | 0.06 4.11
CodeTS5 1.00 2293 20.09 | 0.04 542

7.88 1 0.08 0.00 13.56 | 037 805 13.58
6.58 | 0.09 256 12.00 | 036 1140 12.82
7.87 1024 298 14.06 | 0.15 7.14 11.22

Ours(L512) | 1.90 3251 2322|030 10.62
Ours(L1024) | 2.51 33.87 24.00 | 0.58 8.55

Zero-shot

Ours(L512) [049 1278 15.69 | 1.46 32.07

11.02 | 1.98 3046 11.68 [1.31 25.10 12.80

Table 2: Results of multilingual code summarization task. *

Multilingual text-to-code generation refers to
the code generation task that generates code frag-
ments from multilingual NL instructions. We
use the same train/dev/test set as the code sum-
marization mentioned above. Specifically, un-
der “translate-train” settings, we use translated
CoNalLa data as training and dev set, mCoNalLa
as the test set to generate Python code from NL
instruction in three different NLs (i.e., Spanish,
Japanese, and Russian). We use ROUGE-L, BLEU-
4, and CodeBLEU (C-B; Ren et al., 2020) for eval-
uating code predictions.

Documentation translation is a text-to-text
task that translates code documentation from one
NL to another. We use Microsoft Docs from
CodeXGLUE dataset (Lu et al., 2021a) to verify
the multilingual NL translation between English <+
Danish, Latvian, Norwegian, and Chinese. We re-
port BLEU-4 and exact match (EM) in our results.

Code repair is a code-to-code task that automat-
ically fixes bugs given a piece of buggy code. We
evaluate on Bugs2Fix (Tufano et al., 2019) dataset
with two subsets: (i) “small” with tokens less than
50; (i) “medium” with a length of between 50 and
100. We report BLEU-47 and EM for evaluation.

4.3 Multilingual code summarization

Table 2 shows the multilingual code-to-text results
of generated NL summaries in Spanish, Japanese,
and Russian. We use translated English CoNalLa as
training sets in target three languages®, denoted as
“translate-train” evaluation. As shown in Table 2,
our model outperforms all baseline LLMs for either
NL (mBART, mT5) or PL (PLBART, CodeTS5). In
particular, ERNIE-Code, with a length of 1024, ex-
ceeds its counterpart of 512-length (1.12 vs. 0.88

"https://github.com/microsoft/Code XGLUE/blob/main/
Code-Code/code-refinement/evaluator/evaluator.py
8https://conala-corpus.github.io/

‘L512/1024” indicates the maximum length of 512/1024.

on BLEU-4) in that it allows for learning more
extended contexts from training NL/PL segments.
PLBART performs worst among all baselines on
average, while CodeT5, mT5, and mBART behave
similarly. We conjecture that PLBART only learns
data from Java/Python functions and English Stack-
Overflow posts, whose training data lacks the di-
versity of multilingualism.

4.4 Multilingual text-to-code generation

Table 3 shows the “translate-train” results of mul-
tilingual text-to-code generation on mCoNalLa.
ERNIE-Code outperforms all baselines on BLEU-
4, ROUGE-L, and CodeBLEU scores, showing
that our multilingual PL-NL pre-training can cap-
ture code syntax and semantics. Among all code
generation tasks, multilingual models for NL be-
have worse than those counterparts of PL. PLBART
beats all baselines on surface-form n-gram match
(BLEU-4/ROUGE-L) and structured code-related
match (CodeBLEU), even achieving on par with
our model on CodeBLEU. In contrast, mT5 under-
performs all the other models on either of three
subtasks, suggesting that the mT5 tokenizer is in-
effective in encoding PLs, as aforementioned in
§3.2. By comparing mT5 and our models, the im-
provements suggest our approach’s effectiveness
in encoding whitespace characters for tokenization.
Our model with more extended contexts (1024-
length) overshadows that of 512-length on all three
text-to-code subtasks.

4.5 Documentation translation (text-to-text)

We further investigate the multilingual text-to-
text translation between English (en) and Danish
(da)/Latvian (Iv)/Norwegian(no)/Chinese(zh). Ta-
ble 4 shows the documentation translation results
of comparison models, including multilingual trans-
former (Johnson et al., 2017), XLM-R (Conneau

10633

https://github.com/microsoft/CodeXGLUE/blob/main/Code-Code/code-refinement/evaluator/evaluator.py
https://github.com/microsoft/CodeXGLUE/blob/main/Code-Code/code-refinement/evaluator/evaluator.py
https://conala-corpus.github.io/

Model Spanish Japanese Russian Avg.
ode B4 RL CB|B4 RL CB|B4 RL CB|B4 RL CB
Translate-train
mBART 1.73 11.85 0.05| 3.68 10.33 0.08 | 2.34 9.23 0.07 | 2.58 1047 0.07
mT5 0.27 351 005|022 291 0.07]025 617 004]025 420 0.05
PLBART 2.19 1447 0.06 | 6.56 1826 0.09 | 3.27 1992 0.09 | 401 17.55 0.08
_ CodeTS | 197 1447 005|746 1858 009|426 179 007|456 17.00 007
Ours(L512) | 2.25 1492 0.06 | 8.06 22.65 0.10 | 6.12 25.27 0.08 | 548 20.95 0.08
Ours(L1024) | 2.51 12.65 0.06 | 8.08 20.12 0.09 | 6.55 23.84 0.09 | 5.71 18.87 0.08
Zero-shot
Ours(L512) \ 247 1212 0.0 | 256 1446 0.15)| 3.69 1352 0.14 | 291 1337 0.13
Table 3: Results of on multilingual text-to-code generation task.
En-Da En-Lv En-No En-Zh Avg Ave
Model = « — « - < - b B-4 EM
B4 EM| B4 EM | B4 EM| B4 EM | B4 EM | B4 EM | B4 EM | B4 EM
Transformer | 5331 - | 5873 - |3785 - |5037 - |5384 - |5773 - |5990 - |5000 - |5267 -
XLM-R | 67.09 - |67.02 - [51.92 - |6830 - |6800 - |71.84 - |7060 - |6447 - |66.16 -
mTS 6739 106 | 68.72 24.1 | 57.69 8.5 | 64.95 222 | 6840 123 |68.02 233 | 7226 200 | 68.64 247 | 67.01 1821
S Ours(L512) | 71.16 1327270 272 [60.98 10.6 | 69.28 24.3 | 71.39 15.7 [7228 263 | 74.53 243 | 7243 2857059 21.26
Ours(L1024) | 70.90 13.6 | 7255 27.3 | 61.30 10.6 | 69.85 25.1 | 71.11 15.7 | 72.49 26.7 | 7449 24.7 | 72.49 283 | 70.65 21.50

Table 4: Results of documentation translation.

Model Refine small | Refine medium

B-4 EM B-4 EM
Naive copy 78.06 0| 9091 0
RoBERTa (code) | 77.30 15.90 | 90.07 4.10
CodeBERT 7742 16.40 | 91.07 5.20
PLBART 77.02 19.21 | 88.50 8.98
CodeT5 78.06 22.59 | 88.90 14.18

" Ours (L512) [80.09 1321|9120 222

Ours (L1024) 80.10 12.43 | 91.17 2.00

Table 5: Results of program repair task.

et al., 2020), and mT5. Specifically, we finetune
our model in a multilingual manner where all bilin-
gual language pairs are learned simultaneously.

Our model surpasses mTS and XLM-R in all
eight translation directions, demonstrating that our
model can perform code-related text-to-text transla-
tion. As the experiment design only aims to verify
the NL translation ability of our model, we did
not conduct comprehensive results to compare with
state-of-art (SOTA) NMT methods.

4.6 Program repair (code-to-code)

We further validate that our model can perform
code-to-code generation. Table 5 demonstrates the
comparison model results on the Bugs2Fix bench-
mark. Baseline models include RoBERTa (code) -
a PL variant of RoBERTa (Liu et al., 2019), Code-
BERT (Feng et al., 2020), PLBART, and CodeTS5.

On “small” and “medium” tasks, our model
achieves 80.10 and 91.20 BLEU scores, outper-

We report BLEU-4 (B-4) and exact match (EM) scores.

forming or achieving competitive results compared
with previous SOTA performance.” The results
of 1024-length and 512-length models slightly dif-
fer, possibly because both “small” and “medium”
Java data are of no more than 100-token length, far
shorter than our model’s length limit.

S Analysis

5.1 Syntactic & semantic probing

Code fragments with highly-overlapping surface
forms but with different semantic and syntactic
logic can be given high scores by NL evaluation
metrics, such as BLEU and ROUGE. To evaluate
the semantic and syntactic aspects of text-to-code
generation, we follow Ren et al. (2020) to adopt
dataflow and abstract syntax tree (AST) match to
compute the accuracy of dataflow graph and AST
subtrees between hypothesis and reference. We
refer to Ren et al. (2020) for further details.
Figure 4 illustrates the dataflow and AST match
results of comparison models. PL baselines tend to
generate code with better AST structures than NL
models. In particular, mT5 fails to produce code
with proper AST syntax but can match or surpass
others on dataflow evaluation except on Russian
tasks. Our model (1.512/1024) exceeds or matches

°Note that EM only serves as a reference indicator in that
it is too strict and inaccurate for evaluation, especially for PL
hypotheses with the same semantic logic but in various surface
forms.

10634

40 Language

Es
30 Ja
- Ru
S
=20
L
®©
€
2
kel
&
S 10

3 5 g 5 \
oA 3T)

(a) Semantic dataflow match (w/ log-scaled y-axis).

20 Language

Es
18 Ja
Ru
_16
X
§14
£
l_12
2
10

©

(o2}

3 5 3y 5 \
e

(b) Syntactic AST match.

Figure 4: Semantic and syntactic comparison on multilingual text-to-code generation. All comparison models are
evaluated under “translate-train” settings by default, unless otherwise specified (i.e., “zero-shot”).

baselines in terms of both the semantic dataflow
and syntactic AST match.

5.2 Ablation study

Quantitative results We carry out ablation ex-
periments by ablating either SCLM or PTLM tasks
and report the average results in Figure 5. It is
shown that removing either monolingual (\SCLM)
or bilingual (\PTLM) pre-training task could deteri-
orate overall performance of all tasks. Specifically,
ablating PTLM would vastly reduce the perfor-
mance of PL-to-NL and NL-to-PL tasks compared
to removing SCLM, showing that pivot-based bi-
text pre-training is crucial to implicit bridging be-
tween bilingual NL-to-PL or PL-to-NL pairs that
never seen explicitly in training data. Meanwhile,
PTLM contributes slightly more than SCLM in
NL-to-NL translation. We suspect that although
PLTM can provide explicit training on bilingual
data, SCLM could implicitly learn NL patterns
from amounts of monolingual training corpora. In
contrast, SCLM makes a trivial contribution to PL-
to-PL generation, indicating that PTLM allows the
model to focus on full-sequence generation instead
of partial span reconstruction. Considering that the
training data size of the PL corpus is quite limited,
we suspect that pre-training on more open-source
repositories from GitHub would bring more sig-
nificant performance gain. We refer to §A.4 for
detailed results on each subtask.

Analyzing PL semantics & syntax We further
analyze the semantic and syntactic structure of mul-
tilingual text-to-code generation for ablation com-
parison. Figure 7 shows dataflow and AST match

Methods
N
A0
P\\éLEU—M \C;Lgilvl
N\I‘g UP,X\ \PTLM
®-
WL
N e
€
L
PL-\O(E\\M

1 10
Average Score (log-scale)

Figure 5: Ablation test performance (log-scale). The
reported results are averaged among all subtasks.

performance on text-to-code generation given mul-
tilingual NL inputs. We find that removing SCLM
does not overly impact the semantic dataflow and
syntactic structures of generated PL. At the same
time, ablating PTLM would generally cause more
considerable fluctuation in the semantics and syn-
tax of generated PL, suggesting that PTLM could
allow the model to capture bilingual alignment and
translation across multilingualism.

5.3 Zero-shot prompting

To verify the zero-shot ability of ERNIE-Code, we
carry out code-to-text, text-to-code, and text-to-text
experiments with zero-shot prompting. Precisely,
we prepend a prompt prefix “translate S to T: \n”
on the left of inputs, where S and T denote the
source and target language respectively. Then we
use beam search with five beams to obtain zero-
shot predictions.

Quantitative analysis Table 2 (last row) shows
the performance of zero-shot code-to-text genera-

10635

def contar_vocales(s):
return sum(map(s.lower().count, 'aeiouaéiéui'))

Hypothesis Compute la cifra de vocales de una palabra.

Translation Compute the number of vowels in a word.

Reference (es) ¢Como contar las vocales en una cadena 's'?

Translation How to count the vowels in a string 's'?

(a) Spanish code summarization

model = word2vec.Word2Vec. load('old_model")
model.train(sentences)

Hypothesis FHLWETILEZES S

Translation Learn a new model

def auth_vk_password():
session = vk.AuthSession(app_id=APP_ID,
user_login=LOGIN, user_password=PASS)
file = open("auth_vk.ini", 'w’")
file.writelines(session.access_token)
return session

try:

file = open("auth_vk.ini", 'r")
except IOError as e:

access_token = auth_vk_password().access_token
else:

access_token = file.readline()

session = vk.Session(access_token=access_token)
if session:
print('ABTopu3auns npowna ycnewHo!")

else:

print('ABTopusauns He ypanacb!')
Hypothesis Cospartb 1 3arpy3nTb authentication session.
Translation Create and load an authentication session.

BE#ED €7 /L 'old_model' & 55 H#IAH T — X ‘sentences' &
AVWTHBEIETHLWETILEED

Reference (ja)

Create a new model by reading an existing model 'old_model'

Reference (ru) AsTopu3oBatbea B VK npunoxkenuu c id "APP_ID" ¢ noruHom

"LOGIN' # naponem ‘PASS"

Translation Authorize in VK application with id "APP_ID" with login

Translation . . .
and training it using the data ‘sentences ‘LOGIN® and password "PASS®
(b) Japanese code summarization (c) Russian code summarization
Figure 6: Examples of zero-shot multilingual code summarization (code-to-text).
ours \seum \PTLM shows decent ability on zero-shot PL-to-Chinese
Dataflow match AST match . . .
e generation. We give zero-shot demonstrations and
¢ provide data curation details in §A.5. We argue
a5 .
§ that our model captures many NL genres via cross-
™ lingual pre-training. We encourage the community
20 15 10 5 0 5 10 15 20

Score (%) Score (%)

Figure 7: Ablation results on dataflow and AST match.

tion. Our model demonstrates excellent zero-shot
capability on Japanese and Russian summary gen-
eration, even outperforming “translate-train” set-
tings by 0.43 /9.05 on BLEU / ROUGE-L in gen-
eral. This is because the training data is automati-
cally translated rather than human annotated (i.e.,
“translate-train” settings), lowering the quality of
training data. Table 3 shows that our model can
zero-shotly produce code fragments with higher
CodeBLEU scores than “translate-train” settings.
This indicates that our cross-lingual NL-PL pre-
training renders excellent transfer learning capabil-
ity in bridging multilingual NLs and PLs.

Zero-shot PL-to-NL generation Figure 6 ex-
hibits zero-shot multilingual code summarization
examples in three target languages. Our model
can attend to the whole picture of code semantics
while ignoring blunt descriptions of detailed imple-
mentation, demonstrating the effectiveness of our
approach on zero-shot prompting. To extend the
evaluation to other NL, we further release a Python-
Chinese test set by translating mCoNaLa into its
Chinese variant via crowd-sourcing. Our model

to release more multilingual code-to-text bench-
marks for further evaluation.

Qualitative examples (zero-shot) We show a va-
riety of qualitative examples with zero-shot prompt-
ing in §A.6: multilingual code summarization, NL-
to-PL generation, zero-shot NL translation of tech-
nical jargon in eight randomly selected directions.

6 Conclusion

This work makes the first step towards explicitly
connecting computer programs to human languages
in a universal multilingual fashion. By virtue of
cross-lingual pre-training on 116 NLs and 6 PLs,
our model exhibits strong performance in various
tasks across computer programs and natural lan-
guages, including PL-to-NL, NL-to-PL, NL-to-NL,
and PL-to-PL. Our model shows descent zero-shot
performance via prompting on PL. summarization
and NL translation. Finally, we provide discussions
about limitations and future work for improvement.

Acknowledgements

We would like to thank Xuhong Li and Qiwei Peng
for their helpful feedback on the initial manuscript
of this work.

10636

Limitations

Releasing multilingual NL-PL benchmark
While our model has been shown to capture multi-
lingual languages between humans and computer
programs, we could not systemically evaluate its
performance on a wide range of multilingual NLs
due to the lack of corresponding benchmarks. In-
stead, we undertake NL-to-PL and PL-to-NL exper-
iments on mCoNaLa that involves only three NLs
and present demonstration examples via zero-shot
prompting to reveal its cross-lingual capacity. We
encourage researchers in the community to release
more multilingual NL-PL benchmarks to accelerate
the development of this intersecting area.

Scaling up the model size and data In this work,
we only use the PL data from CodeSearchNet for a
fair comparison to baselines, preventing the model
from learning from more PL genres and billions of
open-source repositories. Increasing the amount of
data for bilingual NL-PL pairs is also a promis-
ing direction, such as using data augmentation.
Moreover, the scaling law for large pre-training
has been well studied and shown significant per-
formance gains in the literature (Chen et al., 2021;
Lietal., 2022). A targeted effort at expanding the
pre-training data size and scaling up models could
give rise to more considerable improvement toward
universal multilingual NL-PL pre-training.

Curse of multilinguality We argue that the curse
of multilinguality (Conneau et al., 2020) also ex-
ists in unified multilingual NL-PL pre-training, in
which per-language capacity decreases as the num-
ber of languages increases given a fixed model size.
It is an interesting direction to investigate the issue
of curse of multilinguality upon this work.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Unified pre-training for
program understanding and generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 2655—
2668. Association for Computational Linguistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program synthesis with large
language models. ArXiv, abs/2108.07732.

Yekun Chai, Shuo Jin, and Xinwen Hou. 2020. High-
way transformer: Self-gating enhanced self-attentive
networks. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6887-6900, Online. Association for Computa-
tional Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Colin B. Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
Pymt5: multi-mode translation of natural language
and python code with transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 9052-9065. Associa-
tion for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 8440-8451. Association
for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 7057-7067.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536—1547. Association
for Computational Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I.
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen

10637

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022.
Incoder: A generative model for code infilling and
synthesis. ArXiv, abs/2204.05999.

A. Gispert and José B. Marifio. 2006. Catalan-english
statistical machine translation without parallel corpus
: Bridging through spanish.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’ Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522-538.

Philip J. Guo. 2018. Non-native english speakers learn-
ing computer programming: Barriers, desires, and
design opportunities. Proceedings of the 2018 CHI
Conference on Human Factors in Computing Sys-
tems.

Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv, abs/1909.09436.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Z. Chen, Nikhil Thorat, Fer-
nanda B. Viégas, Martin Wattenberg, Gregory S.
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation. Transactions of
the Association for Computational Linguistics, 5:339—
351.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66-75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT bombay english-hindi par-
allel corpus. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evalu-
ation, LREC 2018, Miyazaki, Japan, May 7-12, 2018.
European Language Resources Association (ELRA).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.

BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2021. Coderetriever:
Unimodal and bimodal contrastive learning for code
search.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, RéEmi Leblond, Tom, Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de,
Masson d’ Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey, Cherepanov, James Molloy, Daniel Jaymin
Mankowitz, Esme Sutherland Robson, Pushmeet
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. 2022. Competition-level code genera-
tion with alphacode. ArXiv, abs/2203.07814.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021a. Codexglue: A machine learning
benchmark dataset for code understanding and gen-
eration. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Bench-
marks, volume 1.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie

10638

https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://www.lrec-conf.org/proceedings/lrec2018/summaries/847.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/847.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf

Liu. 2021b. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Hai-
quan Wang, Yingbo Zhou, Silvio Savarese, and Caim-
ing Xiong. 2022. A conversational paradigm for pro-
gram synthesis. ArXiv, abs/2203.13474.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmén. 2021. Wiki-
matrix: Mining 135m parallel sentences in 1620 lan-
guage pairs from wikipedia. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
EACL 2021, Online, April 19 - 23, 2021, pages 1351—
1361. Association for Computational Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596-4604. PMLR.

Noam M. Shazeer. 2020. Glu variants improve trans-
former. ArXiv, abs/2002.05202.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929-1958.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. 1In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation, LREC 2012, Istanbul, Turkey, May 23-
25, 2012, pages 2214-2218. European Language Re-
sources Association (ELRA).

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine trans-
lation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28:1 — 29.

Masao Utiyama and Hitoshi Isahara. 2007. A compari-
son of pivot methods for phrase-based statistical ma-
chine translation. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Proceedings of the Main Conference, pages 484491,
Rochester, New York. Association for Computational
Linguistics.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696-8708. Association for Computa-
tional Linguistics.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu,
and Graham Neubig. 2022. Mconala: A benchmark
for code generation from multiple natural languages.
ArXiv, abs/2203.08388.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzm’an, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data. In International Conference on Language
Resources and Evaluation.

Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Ja-
son R. Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Gregory S. Corrado, Macduff Hughes, and
Jeffrey Dean. 2016. Google’s neural machine trans-
lation system: Bridging the gap between human and
machine translation. ArXiv, abs/1609.08144.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J.
Hellendoorn. 2022. A systematic evaluation of large
language models of code. Proceedings of the 6th
ACM SIGPLAN International Symposium on Ma-
chine Programming.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and

10639

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
https://aclanthology.org/N07-1061
https://aclanthology.org/N07-1061
https://aclanthology.org/N07-1061
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 483-498. Association
for Computational Linguistics.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476-486.
ACM.

Michal Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
LREC 2016, PortoroZ, Slovenia, May 23-28, 2016.
European Language Resources Association (ELRA).

10640

https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
http://www.lrec-conf.org/proceedings/lrec2016/summaries/1195.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/1195.html

A Appendix

A.1 Input representation

We base our shared text/code lexer on the mT5
tokenizer - SentencePiece (Kudo and Richardson,
2018), specifically unigram language model (Kudo,
2018). Since the word distribution in PL essen-
tially differs from that of NL, it is not feasible
to directly apply the SentencePiece tokenization
on PL. SentencePiece is ineffective in encoding
whitespace characters - such as blank space, tab
\t, and newline character \n - which are cru-
cial in representing structures and indentations in
source code. We thus add a set of additional to-
kens for encoding whitespace of different lengths in
PL. Considering that developers with different pro-
gramming habits may type indentations with vari-
ous lengths and characters (tab or space), we add
spaces of length-1/2/4 (denoted as <spacex*1>,
<space=*2>, <spacex4>, respectively), and tab
\ 't to represent various indentations. Moreover, we
use the newline symbol \n to encode line breaks.
Our tokenizer eventually consists of 250,105 Sen-
tencePiece vocabularies. Figure 8 exhibits a tok-
enization example of Python snippets. Sentence-
Piece tends to normalize whitespaces and skip extra
empty characters, while our modified tokenizer al-
lows the model to cope with whitespace characters
such as indentation in PL.

Code def function():
Structure print("hello world.")

Original

def function():rint(”hello world.")

SentencePiece _de f _function (): _print (" hello _world . ") </s>
(Ours) _de f _function (): _print. (" hello_world .") </s>

Figure 8: NL/PL-shared tokenization example (Python).
“</s>” represents the end-of-sentence token.

A.2 Pre-training data
A.2.1 PL data

Table 6 shows the statistics of monolingual PL data
and parallel NL-PL pairs, consisting of 6.5 million
monolingual samples and 1.9 million NL-PL pairs
in six different PLs. We do not use additional code
repositories from GitHub for a fair comparison to
baseline PL. models.

The NL data may also exist in their paired PL
data, serving as a comment or docstring. It could
result in data leakage for PL-to-NL translation if

PL #Sample #NL-PL pair

Go 726,768 317,832
Java 1,569,889 454,451
JavaScript 1,857,835 123,889
PHP 977,821 523,712
Python 1,156,085 412,178
Ruby 164,048 48,791
#Total 6,452,446 1,880,853

Table 6: Statistics of CodeSearchNet in six PLs, totaling
6.5 million monolingual PL instances and 1.5 million
parallel NL-PL samples.

NL has been given as a part of PL inputs, thereby
hurting the code-to-text test performance. Accord-
ingly, for all code-to-text generation and randomly
50% of text-to-code generation in PTLM training,
we replace all NL sentences as an NL placeholder
“<Iremoved|>" if it exists in the corresponding PL
fragments.

We additionally observe that parallel data in
CodeSearchNet only contain few non-English NLs.
Directly regarding all NLs in CodeSearchNet as
English would confuse the model to distinguish
various NLs. To better leverage this parallel su-
pervision signal, we utilize FastText (Joulin et al.,
2016) tools'” to identify different NLs. Specifically,
we only consider NL sentences with confidence
higher than 80% predicted by FastText. In PTLM
training, we use the predicted language genre with
50% probability at random; otherwise, we treat the
sample as “text” other than “English”. Therefore,
the model could implicitly tell different language
genres without being exposed to erroneous super-
vision.

A.2.2 NL data

Monolingual NL corpus CC-100'! was con-
structed by processing CommonCrawl snap-
shots (Wenzek et al., 2019). The original CC-100
dataset comprises documents separated by double
newlines. We maintain the document-level corpus
by concatenating paragraphs within the same docu-
ment page. Table 7 summarizes the statistics of our
processed data, totaling 1.5 billion training docu-
ment pages in 116 monolingual NLs. We rescale
the data distribution according to page counts as
aforementioned in Eq. (3) with a = 0.3.

https://fasttext.cc/docs/en/language-identification.html
https://data.statmt.org/cc- 100

10641

https://fasttext.cc/docs/en/language-identification.html
https://data.statmt.org/cc-100

ISO #Pages Percent. ISO #Pages Percent.

code Language ™) (%) code Language ™) (%)

af Afrikaans 1.3 0.09 It Lithuanian 9.19 0.61
am Ambaric 0.24 0.02 Iv Latvian 5.83 0.39
ar Arabic 15.04 1.0 mg Malagasy 0.15 0.01
as Assamese 0.05 0.0 mk Macedonian 1.78 0.12
az Azerbaijani 4.1 0.27 ml Malayalam 1.9 0.13
be Belarusian 1.45 0.1 mn Mongolian 0.96 0.06
bg Bulgarian 18.16 1.21 mr Marathi 1.01 0.07
bn Bengali 4.11 0.27 ms Malay 11.92 0.79
bn_rom Bengali Romanized 6.5 0.43 my Burmese 0.22 0.01
br Breton 0.14 0.01 | my_zaw Burmese (Zawgyi) 0.88 0.06
bs Bosnian 0.4 0.03 ne Nepali 1.13 0.08
ca Catalan 7.01 0.47 nl Dutch 31.16 2.08
cs Czech 10.15 0.68 no Norwegian 28.8 1.92
cy Welsh 0.71 0.05 ns Northern Sotho 0.03 0.0
da Danish 30.19 2.01 om Oromo 0.08 0.01
de German 69.02 4.6 or Oriya 0.19 0.01
el Modern Greek 12.33 0.82 pa Panjabi 0.33 0.02
en English 247.59 16.49 pl Polish 31.2 2.08
eo Esperanto 0.58 0.04 ps Pushto 0.26 0.02
es Spanish 60.54 4.03 pt Portuguese 39.0 2.6
et Estonian 3.94 0.26 qu Quechua 0.03 0.0
eu Basque 1.86 0.12 rm Romansh 0.03 0.0
fa Persian 36.96 2.46 ro Romanian 30.21 2.01
ff Fulah 0.02 0.0 ru Russian 123.18 8.2
fi Finnish 28.12 1.87 sa Sanskrit 0.12 0.01
fr French 62.11 4.14 sc Sardinian 0.0 0.0
fy Western Frisian 0.2 0.01 sd Sindhi 0.08 0.01
ga Irish 0.52 0.03 si Sinhala 0.67 0.04
ed Scottish Gaelic 0.11 0.01 sk Slovak 17.0 1.13
gl Galician 1.85 0.12 sl Slovenian 6.24 0.42
en Guarani 0.02 0.0 SO Somali 0.4 0.03
gu Gujarati 0.75 0.05 sq Albanian 2.72 0.18
ha Hausa 0.46 0.03 st Serbian 2.7 0.18
he Hebrew 12.77 0.85 ss Swati 0.0 0.0
hi Hindi 8.11 0.54 su Sundanese 0.06 0.0
hi_rom Hindi Romanized 1.97 0.13 SV Swedish 46.77 3.12
hr Croatian 16.54 1.1 swW Swahili 1.13 0.08
ht Haitian 0.09 0.01 ta Tamil 4.12 0.27
hu Hungarian 26.14 1.74 | ta_rom Tamil Romanized 1.6 0.11
hy Armenian 2.14 0.14 te Telugu 1.21 0.08
id Indonesian 79.68 5.31 | te_rom Telugu Romanized 1.9 0.13
ig Igbo 0.04 0.0 th Thai 23.92 1.59
is Icelandic 2.06 0.14 tl Tagalog 2.64 0.18
it Italian 24.67 1.64 tn Tswana 0.24 0.02
ja Japanese 65.61 4.37 tr Turkish 18.42 1.23
jv Javanese 0.31 0.02 ug Uighur 0.11 0.01
ka Georgian 2.68 0.18 uk Ukrainian 24.98 1.66
kk Kazakh 1.77 0.12 ur Urdu 2.26 0.15
km Central Khmer 0.61 0.04 | ur_rom Urdu Romanized 4.58 0.3
kn Kannada 0.91 0.06 uz Uzbek 0.46 0.03
ko Korean 35.68 2.38 vi Vietnamese 52.48 35
ku Kurdish 0.24 0.02) Wolof 0.13 0.01
ky Kirghiz 0.41 0.03 xh Xhosa 0.15 0.01
la Latin 3.1 0.21 yi Yiddish 0.15 0.01
Ig Ganda 0.09 0.01 yo Yoruba 0.02 0.0
li Limburgan 0.02 0.0 zh Chinese (Simplified) 40.0 2.66
In Lingala 0.02 0.0 | zh-Hant Chinese (Traditional) 12.33 0.82
lo Lao 0.2 0.01 zu Zulu 0.07 0.0

Table 7: Statistics of CC-100 corpus, totaling 1.5 billion training document pages from 116 different NLs. Reported
training pages and percentages are calculated according to the document distribution of original data. Note that our
116 NLs include 5 Romanized variants of existing languages denoted by “Romanized”.

10642

cl(ig: Lang 1 Lang 2 #5311; S Pe:;;:)n t cl(fge Language 1 Language 2 #f;[l; S Pe(r;:)n t
ar-bg Arabic Bulgarian 46.57 0.59 en-ru English Russian 31291 3.99
ar-de Arabic German 44.58 0.57 en-sw English Swahili 941 0.12
ar-el Arabic Greek 45.66 0.58 en-th English Thai 26.11 0.33
ar-en Arabic English 199.26 2.54 en-tr English Turkish 196.96 2.51
ar-es Arabic Spanish 141.9 1.81 en-ur English Urdu 11.04 0.14
ar-fr Arabic French 118.52 1.51 en-vi English Vietnamese 79.56 1.02
ar-hi Arabic Hindi 7.24 0.09 en-zh English Chinese 156.31 1.99
ar-ru Arabic Russian 96.15 1.23 es-fr Spanish French 522.47 6.67
ar-sw Arabic Swabhili 2.38 0.03 es-hi Spanish Hindi 15.93 0.2
ar-th Arabic Thai 9.42 0.12 es-Tu Spanish Russian 166.12 2.12
ar-tr Arabic Turkish 58.32 0.74 €s-sw Spanish Swabhili 7.88 0.1
ar-ur Arabic Urdu 243 0.03 es-th Spanish Thai 10.15 0.13
ar-vi Arabic Vietnamese 17.36 0.22 es-tr Spanish Turkish 105.87 1.35
ar-zh Arabic Chinese 55.68 0.71 es-ur Spanish Urdu 0.8 0.01
bg-de Bulgarian German 57.71 0.74 es-vi Spanish Vietnamese 44.33 0.57
bg-el Bulgarian Greek 68.07 0.87 es-zh Spanish Chinese 74.93 0.96
bg-en Bulgarian English 151.04 1.93 fr-hi French Hindi 15.38 0.2
bg-es Bulgarian Spanish 86.31 1.1 fr-ru French Russian 154.58 1.97
bg-fr Bulgarian French 69.09 0.88 fr-sw French Swabhili 8.91 0.11
bg-hi Bulgarian Hindi 3.35 0.04 fr-th French Thai 8.7 0.11
bg-ru Bulgarian Russian 66.25 0.85 fr-tr French Turkish 85.83 1.1
bg-sw Bulgarian Swahili 1.12 0.01 fr-ur French Urdu 0.74 0.01
bg-th Bulgarian Thai 6.98 0.09 fr-vi French Vietnamese 25.37 0.32
bg-tr Bulgarian Turkish 66.06 0.84 fr-zh French Chinese 70.14 0.9
bg-ur Bulgarian Urdu 0.59 0.01 hi-ru Hindi Russian 7.32 0.09
bg-vi Bulgarian Vietnamese 11.23 0.14 hi-sw Hindi Swabhili 1.46 0.02
bg-zh Bulgarian Chinese 11.56 0.15 hi-th Hindi Thai 2.69 0.03
de-el German Greek 72.85 0.93 hi-tr Hindi Turkish 8.75 0.11
de-en German English 655.83 8.37 hi-ur Hindi Urdu 1.49 0.02
de-es German Spanish 242.73 3.1 hi-vi Hindi Vietnamese 6.11 0.08
de-fr German French 269.02 343 hi-zh Hindi Chinese 2.39 0.03
de-hi German Hindi 9.36 0.12 ru-sw Russian Swahili 2.17 0.03
de-ru German Russian 80.08 1.02 ru-th Russian Thai 8.12 0.1
de-sw German Swabhili 322 0.04 ru-tr Russian Turkish 51.77 0.66
de-th German Thai 7.07 0.09 ru-ur Russian Urdu 2.56 0.03
de-tr German Turkish 57.14 0.73 ru-vi Russian Vietnamese 16.47 0.21
de-ur German Urdu 0.86 0.01 ru-zh Russian Chinese 61.53 0.79
de-vi German Vietnamese 20.77 0.27 sw-th Swabhili Thai 0.49 0.01
de-zh German Chinese 22.8 0.29 SW-tr Swabhili Turkish 4.16 0.05
el-en Greek English 190.87 2.44 SW-ur Swabhili Urdu 0.39 0.0
el-es Greek Spanish 133.05 1.7 SW-vi Swahili Vietnamese 3.02 0.04
el-fr Greek French 117.73 1.5 sw-zh Swahili Chinese 1.08 0.01
el-hi Greek Hindi 4.55 0.06 th-tr Thai Turkish 9.26 0.12
el-ru Greek Russian 45.1 0.58 th-ur Thai Urdu 0.64 0.01
el-sw Greek Swabhili 1.84 0.02 th-vi Thai Vietnamese 4.62 0.06
el-th Greek Thai 5.83 0.07 th-zh Thai Chinese 0.97 0.01
el-tr Greek Turkish 69.81 0.89 tr-ur Turkish Urdu 4.34 0.06
el-ur Greek Urdu 0.31 0.0 tr-vi Turkish Vietnamese 16.29 0.21
el-vi Greek Vietnamese 14.84 0.19 tr-zh Turkish Chinese 14.62 0.19
el-zh Greek Chinese 11.44 0.15 ur-vi Urdu Vietnamese 0.58 0.01
en-es English Spanish 1088.62 13.89 ur-zh Urdu Chinese 0.11 0.0
en-fr English French 884.16 11.28 vi-zh Vietnamese Chinese 9.31 0.12
en-hi English Hindi 27.42 0.35

Table 8: Statistics of OPUS corpus, totaling 7.8 billion bilingual NL pairs from 105 different NL pairs. The reported
count of bilingual pairs (“#Sent.”’) and percentage (“#Pl’%rgirglt.”) are calculated according to the original data.

Parallel NL corpus We use parallel NL data col-
lected from OPUS website'?. We summarize the
statistics of collected OPUS data in Table 8. The
data we use are in 15 different NLs, comprising
of 105 various bilingual language pairs (ignoring
the dual direction between two languages) and 7.8
billion sentence pairs in total. Similar to CC-100
preprocessing, we apply the same data resampling
process by following Eq. (3), with o = 0.3.

A.2.3 Data rebalance between NL and PL

Considering that the data amount of PL and NL
data vastly differs, the data distribution across NL
and PL will still be unbalanced even after rescal-
ing as per Eq. (3), which could give rise in biases
towards high-resource modality (i.e., NL). To mit-
igate this issue, we set the data distribution of PL
and NL as 1:1 by equating the training sample ratio
of PL with that of NL during pre-training. In other
words, we train the same sample counts for NL and
PL corpora.

A.3 Experimental settings

A.3.1 Pre-training settings

We use the same TS5 architecture with a 12-layer
encoder, a 12-layer decoder, 768 hidden units
(dmodel), 12 heads, 2048 feedforward linear units
(dgr), GELU activations, a dropout (Srivastava et al.,
2014) rate as 0.1, and no embedding tying. Chen
et al. (2021) find no difference between training
from pre-trained model weights and that from
scratch, except that the former converges more
quickly. To this end, we use mT5 checkpoint!?
for initialization, which already contains strong
multilingual NL representations.

For pre-training, we set the maximum length
(L) of 512/1024, a micro-batch size of 8/4 with a
gradient accumulation step of 15. We utilize the
Adafactor (Shazeer and Stern, 2018) optimizer and
a linear warmup of 1000 steps with a peak learning
rate of 1e-4. All pre-training tasks are run on a clus-
ter of 32 NVIDIA A100 GPUs with 40G memory
for 100,000 training steps. To accelerate the pre-
training, we utilize the ZeRO stagel approach (Ra-
jbhandari et al., 2020) for partitioning optimizer
states and enable BFloat16 half-precision format
for mixed-precision training. The total pre-training
time lasts around four weeks.

Phttps://opus.nlpl.eu
Bhttps://github.com/google-research/multilingual-t5#
released-model-checkpoints

A.3.2 Evaluation datasets

Table 9 reports the detailed statistics of evaluation
dataset across a suit of code benchmarks, including
NL-to-PL, PL-to-NL, PL-to-PL, and NL-to-NL.

Task Dataset Language Train Valid Test
NLPL mCoNaLa Spanish <> Python - - 341
8 (Wang et al., 2022) Japanese <> Python - - 210
Russian <+ Python - - 345
Bugs2Fix Java-small 46,680 5,835 5835

PLPL L, 2019

(Tufano etal, 2019) 1. medium 52,364 6,545 6,545
Danish<+English 42,701 1,000 1,000
NL-NL Microsoft Docs Latvian<>English 18,749 1,000 1,000

(Luetal., 2021a)

Norwegian<>English 44,322 1,000 1,000

50,154 1,000 1,000

Chinese<>English

Table 9: Statistics of downstream benchmark datasets.

A.3.3 Finetuning settings

When finetuning on end tasks, we use mini-batches
of 8/4, and a maximum input length of 512. We
set the maximum target length as 128, 64, 256,
and 256 for code summarization, text-to-code, doc-
umentation translation, and code repair tasks, re-
spectively. We use prompt-based finetuning by
prepending a task prompt (as shown in Table 10)
before each sample for training and evaluation. We
finetune code-to-text, text-to-code, and documenta-
tion translation tasks for 100 epochs and train 10
epochs on the code repair dataset. For all finetun-
ing experiments, we use the AdamW (Loshchilov
and Hutter, 2019) optimizer with a learning rate
of 5e-5. As to model inference, we apply beam
search decoding with five beams. We conducted all
finetuning experiments on § NVIDIA V100 GPUs
with 32G memory.

A.4 Ablation results

Table 11 reports ablation results of code sum-
marization (mCoNaLa), text-to-code generation
(mCoNaLa), documentation translation (Microsoft
Docs), and code repair (Bugs2Fix), showing that
combining SCLM and PTLM can confer benefit
for all of the end tasks.

A.5 Chinese code summarization

Data curation To expand the evaluation on Chi-
nese code summarization, we release a translated
variant of mCoNaLa dataset via crowd-sourcing.
Specifically, we hire human translators who sat-
isfy all following three criteria to undertake the
crowd-sourcing:

10644

https://opus.nlpl.eu
https://github.com/google-research/multilingual-t5#released-model-checkpoints
https://github.com/google-research/multilingual-t5#released-model-checkpoints

Finetuning task Prompt format

“translate Spanish to Python: \n”
“translate Japanese to Python: \n”
“translate Russian to Python: \n”

Code-to-text

“translate Python to Spanish: \n”
“translate Python to Japanese: \n”
“translate Python to Russian: \n”

Text-to-code

Documentation

. “translate ‘src_lang’ to ‘tgt_lang’:\n”
translation —lang gt_lang’:\

Code repair “fix bugs: \n”

Table 10: Task prompt we use for finetuning. For doc-
umentation translation, the “src_lang” and “tgt_lang”
represent the source and target language (e.g., English,
Danish, Latvian, Norwegian, and Chinese), respectively.

1. Must be a native Chinese speaker;

2. Holding at least a master’s degree in Spanish,
Japanese, and Russian translation, literature,
or related subjects;

3. Holding professional translation certificates
in the corresponding language.

After human translation, we also employ profes-
sional engineers who are Chinese native speakers
with at least five years of experience in Python to
perform further translation refinement. We will
release this dataset to speed up the research on
multilingual code summarization.

Examples of Chinese code summarization (zero-
shot prompting) We show the Chinese code sum-
marization examples of our model under zero-shot
prompting evaluation in Figure 9. We prepend the
instruction prompt “translate Python to Chinese:
\n” for training and evaluation. It demonstrates
that our model equips the zero-shot ability on Chi-
nese code summarization, affirming the positive
effect of our cross-lingual pre-training. Moreover,
as shown in Figure 9, our model focuses on the
high-level meaning of the input code fragments,
neglecting the implementation details. We guess
this is because we use code search corpus as NL-PL
bilingual training data, where NL instructions com-
prising high-level descriptions are usually extracted
from code comments. It causes a discrepancy be-
tween the training and evaluation settings.

A.6 Qualitative examples (zero-shot
prompting)

Zero-shot multilingual PL-to-NL generation
Figure 9 and 10 illustrate the code summarization

examples with zero-shot prompting. As mentioned
earlier, As illustrated in Figure 9 and 10, we find
that our model focuses on the global overview of
code semantics rather than verbalizing the imple-
mentation process. Moreover, when explaining a
short snippet of code, different people may inter-
pret it with various meanings, which we refer to as
“program ambiguity”, making difficulties in anno-
tating and evaluating the multilingual code summa-
rization. This is because the test-set reference of
mCoNaLa is human-rewritten, while the training
NL is not. We also find that the model tends to
copy small code snippets for code summarization.
For instance, given inputs “# -*- utf-8 -*- ”, our
model tends to copy the original string rather than
describe its usage using NL.

Zero-shot NL-to-PL generation Figure 11 and
12 demonstrate examples of zero-shot text-to-code
generation. We also observe that ERNIE-Code is
well-performed in generating function names, argu-
ments, and docstrings. It tends to generate function-
level snippets and call user-defined functions fol-
lowing the object-oriented logic while lacking the
knowledge of builtin functions or user-defined con-
texts given multilingual NL inputs. The given
Japanese instruction requires the model to mem-
orize the API usage of selenium'* library that
our model may never see in the training data. We
argue that training on data collected from GitHub
and StackOverflow would confer benefits in mem-
orizing and comprehending the API usage and in-
struction contexts. We suspect that the training on
additional PL data from GitHub and StackOverflow
rather than limited data of CodeSearchNet can lead
to large improvements. Note that the generated
“<Iremoved|>" docstring in Figure 11 is consistent
with our preprocessing in §A.2.1.

Zero-shot multilingual NL-to-NL translation
To further validate the zero-shot translation capa-
bility between multilingual NLs, we report several
selected language pairs from different language
families and translate technical terminologies with
zero-shot prompting. Figure 13 exhibits examples
of multilingual NL translation in eight randomly
selected directions, such as Spanish to French and
Russian to Arabic. This suggests that our cross-
lingual pre-training can capture semantic alignment
without seeing direct supervision from bilingual
phrase or short-term pairs.

“https://selenium-python.readthedocs.io/

10645

https://selenium-python.readthedocs.io/

con = pymysql.connect(my_host, user, password, db_name) class SesionGoogle():
with con: def __init__(self, email, contrasefa):
cur = con.cursor() self.sesion = requests.session()
Hypothesis H FEmysql url_login = "https://accounts.google.com/ServiceLogin"
Translation Connect to mysgl url_aut = "https://accounts.google.com/ServiceLoginAuth"
Reference (zh) 1813 F A R userfll Z i passwordE £ E41my_host_E Y login_html = self.sesion.get(url_login)
mysql##E EEdb_name soup_login = BeautifulSoup(login_html.content,
= ‘html.parser').find('form').find_all('input’)
Translation Connect to mysql database “db_name’ on host ‘my_host" as datos = {u['name']l:u['value'] for u in soup_login \
user "user” and password “password’ if u.has_attr('value’)}
- datos['Email'] = email
doc.toxml(encoding="'sjis")) datos['Passwd'] = contrasefia
N - - self.sesion.post(url_aut, data = datos)
Hypothesis 301445 I XML(encoding='sjis')
Translation . it def get(self, URL):
Convert the file to XML(encoding="sjis’) return self.sesion.get(URL).text
Reference (zh) F B F AR sjis B ATxmISAY doc
) Hypothesis B GoogleSession
Translation Parse xml document ‘doc” with character code 'sjis" . :
Translation Create GoogleSession
Reference (zh) NE RN TM A EFH?
doc = DocxTemplate(template_path) Ha e
data = { 'var_name' : "HELLO WORLD!" } Translation How to access a session from my Google account?
doc. render(data)
doc.save(output_file_path) options = Options()
- ~ options.set_preference('javascript.enabled', False)
Hypothesis Bl ZDocxTemplate driver = webdriver.Firefox(options=options)
Translation Create DocxTemplate Hypothesis RE LA ERNEE
Reference (zh) ARIEIC{F template_path’# f9ISON #iiEdatat&EtR 4 i Translation Set the configuration of the current browser
Word3(44 output_file_path® Rt n - = e -
Translation Generate a Word document “output_file_path® according to eference (zh) Fselenium e A B3 2 25 javascript
the JSON data template in the file ‘template_path® Translation Disable javascript when using Firefox with selenium
os.rename(dir, file) session = requests.Session()
- N response = session.get('http://google.com')
Hypothesis B rE cookies = session.cookies.get_dict()
T lati i
ranslation Rename the file Hypothesis %kElGoogle.comfcookies
Reference (zh) EEALTF “dirhHE RSB R A “file”? Translation Get cookies from Google.com
Translation How to rename a file located at “dir’ address to “file'? Reference (zh) M M 5url 3£ B Cookie“cookies”
Translation Obtaining cookies from the URL
alpha = ' abcdefghijklmnopgrstuvwxyz'
new_s = "'
for ¢ in s: driver.get(url)
new_s += alphal(alpha.index(c) + shift) % len(alpha)] screenshot = driver.save_screenshot(filepath)
Hypothesis Walphat& i h—PDFEFFH Hypothesis FREL X 4, 1R fFscreenshot
Translation Convert alpha to a string Translation Get file, and save screenshot
Reference (zh) {5 LR FL shift” 4§ 45 &B"s” HN 25 4 4T 5 new_s” Reference (zh) FSelenium driverdriver ¥4 M TTurl; Bl 3t {R 17 = filepath®
Translation Encrypt the 's' line into the 'new_s' line with Caesar's code Translation Use Selenium driver “driver’ to screenshot the web page url
with the shift 'shift' and save it to ‘filepath®
shutil.rmtree(dir) json.dumps(my_dict, ensure_ascii=False)
Hypothesis 30453k M B 5 MRR Hypothesis Y3 B9dicti% AISON
Translation Remove the folder from the directory Translation Convert my dict to JSON
Reference (zh) TR E & B AR dir Xk ? Reference (zh) o Hmy_dicti ik AISONEE
Translation How to delete a 'dir' folder with several files inside? Translation Convert dictionary my_dict to JSON data

Figure 9: Examples of Chinese code summarization with zero-shot prompting.

10646

Model es ja ru Avg.
00¢l ™B4 RL chrF |B4 R-L chrF | B4 R-L chrF | B4 R-L chrF

Ours 1.90 3251 2322|030 10.62 9.16 | 043 5.01 16.60 | 0.88 16.05 16.33

\SCLM | 1.04 2396 19.56 | 0.17 7.62 888 |0.21 2.69 1553|047 1142 15.10
\PTLM | 0.96 2247 24.00 | 0.06 571 822|020 492 14.66 | 041 11.03 14.15

(a) Ablation results on multilingual code summarization.

Model es ja ru Avg.
B4 RIL CB|B4 RL CB|B4 RL CB|B4 R-L C-B
Ours 225 1492 0.06 | 8.06 22.65 0.10 | 6.12 2527 0.08 | 548 20.95 0.08

\SCLM | 242 1427 0.06 | 6.89 2131 0.10 | 541 23.09 0.08 [491 19.56 0.08
\PTLM | 2.08 13.94 0.06 | 640 17.77 0.10 | 5.11 23.17 0.08 | 453 1829 0.08

(b) Ablation results on multilingual text-to-code generation.
En-Da En-Lv En-No En-Zh
Avg. Avg.
Model = < - “ - “ - < B4 EM
B4 EM| B4 EM| B4 EM | B4 EM| B4 EM| B4 EM | B4 EM | B4 EM
Ours 71.16 132 | 72770 27.2 | 6098 10.6 | 69.28 24.3 | 71.39 15.7 | 72.28 26.3 | 74.53 243 | 7243 285 | 70.59 21.26

\SCLM | 67.70 113 | 68.50 23.4 | 5598 7.5 | 6439 21.6|68.05 11.4 | 6803 241 |7252 201 | 6856 248 | 6672 18.03
\PTLM | 66.91 104 | 67.66 239 | 5584 7.5 |63.87 21.6 | 67.71 113 |66.86 23.5|71.91 19.6 | 67.98 242 |66.09 17.75

(c) Ablation results on documentation translation.

Model Refine small | Refine medium Avg.
B-4 EM | B4 EM | B4 EM
Ours 80.09 13.21 | 91.20 222 | 8565 17.72

\SCLM | 79.65 13.04 | 91.19 2.17 | 85.42 17.61
\PTLM | 79.73 11.31 | 91.13 1.68 | 85.43 6.50

(d) Ablation results on code repair.

Table 11: Ablation results of downstream tasks, including multilingual code summarization (a), text-to-code
generation (b), documentation translation (c), and code repair (d).

Qualitative findings We also observe that our
model allows for naming functions and completing
corresponding arguments according to multilingual
textual instructions, as shown in Figure 14, confirm-
ing that our model learns to bridge the semantics
and syntax between multilingual NL instructions
and PL functions.

10647

t=threading.Timer(interval, function)

t.start()
Hypothesis FESBERET 5,
Translation Keep track of time.

Ay Pt E#nIcRGTT 5
Run thread 't periodically

Reference (ja)

Translation

Japanese code summarization

100 / whole * part

Hypothesis 100 / nonHbIn * yacTtb

Translation 100 / full * part

Reference (ru) BbIYMCUTL CKO/IbKO NPOLIEHTOB COCTAaBAAET YMC/O ‘part’ oT

yuncna ‘whole®

Calculate how many percent of the number “part’ is from the
number ‘whole®

Translation

Russian code summarization

def eliminarEnLista(L):
n=int(raw_input("Ingrese el numero que desea eliminar de
la lista: "))

try:
L.remove(n)
print(L)

except ValueError:
print('{} no se encuentra en la lista'.format(n))

Hypothesis

Translation

Remove n de la lista de datos

Remove n from data list

Reference (es)

Translation

¢Como crear una funcién para eliminar un elemento 'n* de
una lista "L'?

How to create a function to remove an 'n* element from an
'L list?

Spanish code summarization

Figure 10: Multilingual code summarization (code-to-text) examples with zero-shot prompting.

Translate Japanese to Icelandic:

AYEa—ZH ALY KomnbloTepeko EmoTrun

Langue de programmation

V7T THRE

préun cogreepa

Translate Czech to Malay:

nEF
GRS

Vjvoj softwaru Pengembangan software

Potitatova sit Komputer sambungan

Translate Korean to Portuguese:

(b) Spanish-to-Python

Figure 11: Multilingual code summarization (text-to-

code) examples with zero-shot prompting.

Text (ja) selenium CFirefox{t#ER% [ZjavascriptZ EXHIZ T 5
Translation Disable javascript in Firefox specification with selenium
Hypothesis

def _disable_javascript(self, javascript_name):

seleniumTFirefox{tixi¥(Cjavascriptz Ex)ICd %
if javascript_name in self._plugins:
self._plugins[javascript_name] = False
else:
self._plugins[javascript_name] = False

Reference

profile = webdriver.FirefoxProfile()
profile.DEFAULT_PREFERENCES['frozen']['javascript.enabled'] = False
profile.set_preference("app.update.auto", False)
profile.set_preference("app.update.enabled", False)
profile.update_preferences()

Figure 12: Examples of zero-shot multilingual text-to-
code generation (Japanese). The region highlighted in

orange is a hypothesis generated by our model.

peuiamed ZFE st Tecnologia de computadores

MaiRUTEARLT AZES 0] L Desarrollo de software

Translate Russian to Arabic:

Computing science KoMnbloTepHan ceTb 5 el 3,200

Software development

AHanu3 nporpamml Aol it

Examples of zero-shot text-to-text translation

on technical jargon. The region highlighted in orange is
the target language, whereas that in blue is the prefixed
prompt we use for zero-shot translation.

Russian HaiiTn makcumanbHoe 3HaeyHue ‘max_value' B cnosape ‘my_list
(Translation) Find the maximum value of ‘'max_value’ in the dictionary ‘my_list’ Translate Spanish to French:
def max_value(self, max_value): lenguaje de
wnn programacién
prediction fI\IEEWOVEU |> Translate English to Chinese:
if max_value is None: Machine Learning
max_value = self._max_value :‘3"‘"”"“ Design and
return self._max_value neves
- Translate Italian to Thai:
Reference max_val = max(my_list.values())
(a) Russian-to-Python Sviuppo software
— Translate Chinese to English:
Spanish éCémo calctjla\r la desviacién estdndar de la columna “col* en un TERRE
DataFrame “df'?
RIFR
(Translation) How to calculate the standard deviation of the column “col"in a
DataFrame “df?
def _calculate_dv(col, df): Flgure 13:
- <|removed |>
Prediction i
df = df.get_dataframe()
df.set_dv(col)
df.set_dv(df.get_dv(col))
return df
Reference std = df[col]l.std()

Spanish ¢Como calcular la desviacion estandar de la columna
‘col' en un DataFrame 'df'?

Translation HOW to calculate the standard deviation of the column
‘col' in a DataFrame “df'?

Prediction | def _calculate_dv(col, df)

Japanese 2RTTERF arr DEFE £ 732 > TWL S LRITES D O 5%
FEOEDHEREHT

Translation Extract only the first value from the one-dimensional array
that is an element of the two-dimensional array “arr’

Prediction | def _get_first_value(arr)

Russian BbIYMCANTL CKO/ILKO NPOLLEHTOB COCTaB/IAET YAC/IO "part’
ot uncna ‘whole®

Translation Calculate how much percentage is the number 'part’ from
the number 'whole'

Prediction | def _get_percent(self, part, whole)

10648

Figure 14: Examples of function naming and argument
filling in text-to-code generation (zero-shot).

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section 6

X A2. Did you discuss any potential risks of your work?
Similar to large language models (LLMs) for natural language, LLMs for code trained on a large
amount of human data can be prone to the societal stereotypes and cultural bias about names and
genders. Besides, code generation can potentially have security risks. For examples, code LLMs
could generate code for vulnerabilities or malware, leading to security risks.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B Did you use or create scientific artifacts?
Left blank.

0 B1. Did you cite the creators of artifacts you used?
No response.

0 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

O B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

(1 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

No response.

(] B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

0 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

No response.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

10649

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C ¥ Did you run computational experiments?
Appendix A.5

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Parameter count: Table 5 in appendix; Computational budgets and computing infrastructure:
Appendix A.5.

¥ C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A.5.

[1 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

No response.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 3.1

D ¥ Did you use human anneotators (e.g., crowdworkers) or research with human participants?

Appendix A.7

(] D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

¥/ D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

(1 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0J DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10650

