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Abstract

The landscape of NLP research is dominated by
large-scale models training on colossal datasets,
relying on data quantity rather than quality. As
an alternative to this landscape, we propose a
method for weighing the relative importance
of examples in a dataset based on their Ex-
ample Training dynamics (ETD; Swayamdipta
et al., 2020), a set of metrics computed during
training. We propose a new way of comput-
ing the ETD of a dataset, and show that they
can be used to improve performance in both
in-distribution and out-of-distribution testing.
We show that ETD can be transferable, i.e.,
they can be computed once and used for train-
ing different models, effectively reducing their
computation cost. Finally, we suggest an active
learning approach for computing ETD during
training rather than as a preprocessing step—an
approach that is not as effective, but dramati-
cally reduces the extra computational costs.

1 Introduction

Breakthroughs in NLP are often the result of scal-
ing up existing models in size and depth, and
perhaps even more importantly—data (Hoffmann
et al., 2022). To improve data quality, it has be-
come common practice to train models on data
that has been cleaned to some extent using simple
heuristics (e.g. by removing non-language tokens),
but not otherwise optimized for better performance.
While some data-filtering approaches have been
suggested to improve Out-Of-Distribution (OOD)
generalization (Le Bras et al., 2020, Swayamdipta
et al., 2020), they usually result in a decrease of
In-Distribution (ID) performance.

We propose a method for curating datasets for
better performance in both ID and OOD testing,
enhancing data quality rather quantity. Our method
is orthogonal to model architecture or size, and
as such can be used alongside any LM to further
improve results over specific tasks.

To implement our method we use the concept of
Example Training Dynamics (ETD; Swayamdipta
et al., 2020), which builds on the idea that the train-
ing process of models sheds light on the relative
importance of specific examples within the datasets
used. Specifically, Swayamdipta et al. (2020) have
shown that over several epochs of training, a model
may predict some examples in a dataset less con-
sistently than others, and that those “ambiguous”
examples are important for OOD generalization.

We propose a new method for computing ETD,
as well as a new paradigm for using them in train-
ing. We show that by computing ETD over separate
training processes (rather than over consecutive
epochs of the same training process), and using
ETD to weigh the importance of each example in
the dataset, we can train a DeBERTa model (He
et al., 2020) on the weighted versions of several
NLI and multiple-choice datasets, improving aver-
age performance by 0.35% for ID testing and by
0.95% for OOD.

We next demonstrate that ETD can be trans-
ferable across models, i.e., ETD computed from
the training process of model M1 can be used to
weigh a dataset, and train model M2 on it with
improved results, where M2 differs from M1 in
initial weights, structuring details and pre-training
scheme. Though we only show that for a specific
use-case, if transferability of ETD holds gener-
ally, it may allow us to create weighted versions of
datasets once, and use them for multiple training
scenarios, including that of future models.

Finally, we propose Dynamic Training, a method
for training a model while computing ETD and
reweighing the training set between epochs. This
method performs on par with our transferability
method while requiring no additional compute be-
yond that of standard training, which makes it even
more applicable under low computational budgets.

Our proposed method of computing ETD may
allow practitioners to get more value out of their
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existing datasets, and pave the way towards simi-
lar methods to be used for improving large scale
language model training. We publicly release our
code, as well the weighted versions of the datasets
used in this work.1

2 Example Training Dynamics

2.1 Background: Dataset Cartography

Our method aims to expand and improve on Dataset
Cartography (Swayamdipta et al., 2020), a method
for visualizing and characterizing the different
training examples in a given dataset. Dataset Car-
tography uses Example Training Dynamics (ETD),
which are metrics derived by examining the proba-
bility distribution that a model assigns to the pos-
sible labels for each example in a dataset, and fol-
lowing the changes in that distribution over several
epochs of training. ETD derives two metrics for
each example in the dataset: Confidence, which
is the mean score the model assigns to the true la-
bel across epochs, and Variability, which is the
standard deviation of that score. Swayamdipta et al.
(2020) have shown that training a new model only
on examples with high variability improves perfor-
mance in OOD testing, as well as shortens training
time. However, this comes at a slight cost in ID
testing performance.

In this work, we propose a new method
for computing ETD, which differs from that
of Swayamdipta et al. (2020) in two ways: First,
rather than following several epochs of a single
training process to compute the metrics, we com-
pute them by observing separate training processes
of one epoch each. Second, we use the variabil-
ity metric differently; rather than training a new
model only on high-variability examples, we train
it on the entire dataset, while emphasizing high-
variability examples in training. We formally de-
fine our method and compare it to Swayamdipta
et al. (2020) below.

2.2 Computation of Example Training
Dynamics

We introduce a new method for working with Ex-
ample Training Dynamics, which has two separate
components: the computation of ETD, and their
application in training new models. Fig. 1 illus-
trates the full pipeline of the two components as
described below.

1Available at https://github.com/schwartz-lab-NLP/ETD

Figure 1: Computation and Usage of ETD. Multiple
copies of model M1 are trained on a dataset D, each
for one epoch. The probability scores M1 outputs are
used to compute ETD. The ETD are then used to to
curate D(f,b), a new version of D, which reweighs the
examples in D. A (potentially different) model M2

trains on D(f,b).

Let D = {(xi, yi)}Ni=1 be a dataset of N exam-
ples xi with corresponding labels yi, and let M
be a model with initial parameters θ that defines a
probability distribution over the possible labels for
examples in D.

To compute the ETD of D with respect to M,
we train M on D for one epoch, and save the prob-
abilities M assigns to the possible labels of each
example in D. We repeat the process E times with
the same experimental setting at each iteration, ex-
cept for the random seed, and for the ordering of
the examples in D, which is random and different
at each iteration. After the first time M sees an
example during training, it learns a bias towards
its true label, and, if the same example is encoun-
tered again, this bias might affect the probability
assigned to the different labels. To prevent this
kind of bias and compute more informative ETD,
the parameters θ are being reset between iterations.

Using the probabilities accumulated over all E
iterations, we compute the two ETD metrics. The
confidence of an example xi w.r.t. M is defined as
the mean probability M assigns to xi’s true label,
y∗i , across iterations:

µ̂i =
1

E
ΣE
e=1PMe(y

∗
i |xi)

Where PMe(y
∗
i |xi) is the probability M assigns to

the gold label y∗i in iteration e. In a slight abuse of
notation, we use the term PMe , though in practice
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the probability function P may change between
examples even within the same iteration, as training
progresses and the parameters of M change.2

The variability of an example w.r.t. M is de-
fined as the standard deviation of said probability:

σ̂i =

√
1

E
ΣE
e=1(PMe(y

∗
i |xi)− µ̂i)2

We follow Swayamdipta et al. (2020) and refer
to high-confidence examples as easy-to-learn (for
M), and high-variability examples as ambiguous.

2.3 Using ETD

Swayamdipta et al. (2020) have shown that training
only on high-variability (or ambiguous) examples
can lead to better out-of-distribution (OOD) per-
formance, at a small cost for in-distribution (ID)
performance. In this work, we show that they can
be used to improve both ID and OOD performance.

Let D = {(xi, yi)}Ni=1 be a dataset whose ETD
are computed w.r.t. some model M1, and let 0 <
f < 1, b ∈ N. We define Vf (D) as the f · N
highest-variability examples in D. To train a model
M2 using ETD, we construct the dataset D(f,b):
for each example (xi, yi) ∈ D, if (xi, yi) ∈ Vf (D),
we add b copies of it to D(f,b). Otherwise, we add 1
copy of it to D(f,b). That is, every example from the
original dataset D is also in D(f,b), but D(f,b) is bi-
ased towards high-variability examples by a factor
of b. The new model M2 is then trained on D(f,b).
For example, if f = 0.5 and b = 2, D(f,b) contains
each of the top 50% highest-variability examples
in D twice, and every other example once.

Note that this method differs from Swayamdipta
et al. (2020) in that it includes all examples from
the D in the new dataset D(f,b). Training on all
examples helps prevent the decrease in ID perfor-
mance observed by Swayamdipta et al. (2020), and
even improves ID performance, as we next show.

3 Training with ETD Improves
Performance

We follow Swayamdipta et al. (2020) and first test
the capacity of our method to improve the perfor-
mance of a model of the same architecture as the
model used for computing the ETD. We use six
tasks, divided into three groups. Three multiple

2Preliminary experiments show that this method of com-
puting confidence is better than the alternative of computing it
over a separate forward-pass at the end of each iteration, so
that P is the same for all examples within the iteration.

choice tasks: WinoGrande (WG; Sakaguchi et al.,
2019), Abductive NLI (αNLI; Bhagavatula et al.,
2019), and HellaSwag (HS; Zellers et al., 2019);
Two NLI tasks: SNLI (Bowman et al., 2015) and
ANLI (Nie et al., 2019); and a question answering
task: BoolQ (Clark et al., 2019).

For each of the tested tasks, we compute ETD
using one copy of DeBERTa-large (He et al., 2020).
Following Swayamdipta et al. (2020), we use
E = 5 as the number of iterations for the ETD
computation process. We then train a second copy
of DeBERTa on the ETD-weighted dataset D(.25,3).
The specific values of f and b are chosen using a
grid search for the best mean performance over the
development sets of all tasks.3

Due to computational constraints, we do not
tune any hyperparameters other than those defined
specifically for this work, i.e. f and b. For other hy-
perparameters such as learning-rate and batch-size
we follow the values used in Swayamdipta et al.
(2020) for training on the SNLI (Bowman et al.,
2015) dataset.

For each task, we test the trained model on its
designated test set to evaluate ID performance, as
well as on the test sets of all other tasks from the
same group to evaluate OOD performance (e.g., we
evaluate a model trained on WinoGrande on αNLI
and Hellaswag as well).

As baselines, we train DeBERTa on three addi-
tional datasets:

• D is the original, unaltered version of each
dataset.

• D(.33)-NR is the dataset resulting from the ap-
proach of Swayamdipta et al. (2020), i.e., com-
puting the ETD without resetting the model’s
weight between epochs (No Reset), and train-
ing only on 33% of the examples with the
highest variability.

• D(.25,3)-NR is the dataset constructed by com-
puting the ETD without resetting the model’s
weight between epochs (No Reset), but weigh-
ing the examples of the dataset as usual for
our method.

3Grid search is used to select all values of f and b in
any method we present throughout this work. In practice,
we perform a grid search using only the development sets of
SNLI, ANLI, and αNLI. The development sets of the other
three tasks are used for testing, as they have no accessible
labeled test sets.
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SNLI ANLI αNLI WinoGrande Hellaswag BoolQ

ID OOD ID OOD ID OOD ID OOD ID OOD ID

Test ANLI Test SNLI Test WG HS Test αNLI HS Test αNLI WG Test

D 91.93 32.18 55.43 85.37 86.41 64.34 68.7 84 78.13 57.13 42.69 78.58 59.36 86.97
D(.33)-NR 91.03 33.7 51.17 82.01 86.27 65.35 71.5 80.71 78.12 58.47 42.79 79.01 60.57 63.81
D(.25,3)-NR 91.79 34.41 54.08 84.74 87.1 64.83 66.63 84.37 78.81 57.31 42.95 78.47 61.83 86.52

Ours - D(.25,3) 91.96 32.91 55.91 85.39 87.15 64.46 70.09 84.38 78.32 59.1 42.9 79.25 61.87 87.26

Table 1: Training on an ETD-weighted dataset improves performance in both ID and OOD testing. Scores show
the accuracy of trained models on ID and OOD test sets, compared between training on different datasets. D is
the unaltered dataset, D(.33)-NR is the dataset from the approach of Swayamdipta et al. (2020), D(.25,3)-NR is the
dataset resulting from computing the ETD without resetting the model’s weight between epochs (No Reset), and
Ours - D(.25,3) is the dataset obtained by our approach.

ID OOD

SNLI 0.03 0.73
ANLI 0.48 0.02
αNLI 0.74 0.76
WinoGrande 0.38 1.08
HellaSwag 0.21 1.59
BoolQ 0.29 -

Average 0.35 0.95

Table 2: Performance improvement when training
on D(.25,3) (our approach) compared to D (unaltered
dataset). Average is the weighted average of the scores
in each column (scores are weighted by the number of
tasks they represent).

Each training process is repeated with s = 5
different seeds, and the reported result is the mean
result across seeds. For each task, we train for a
fixed number of steps regardless of the size of the
dataset we train on. The fixed number of steps is
task-dependent, and is the number of steps required
to pass E = 5 times on D and compute its ETD.

Table 1 shows the full results of this experiment.
Table 2 provides a summarized version of the re-
sults, as the improvement gained by training on
D(0.25,3) compared to D in each task, on both ID
and OOD test sets. Our method is the only one
to outperform training on D across all 14 cate-
gories, obtaining mean improvement of 0.35% ID
and 0.95% OOD. It also outperforms Dataset Car-
tography’s approach (D(.33)-NR) on 11/14 cate-
gories, and the ablation version (D(.25,3)-NR) on
10/14 categories, demonstrating the importance of
the weight reset.

These improvements are statistically significant:
modelling the result of the baseline method in each
category C as a sample from a normal distribution

NC , the probability of outperforming the baseline
when sampling from the same Nc is 0.5. There-
fore, the probability of outperforming the base-
line on all 14 tasks when sampling from their re-
spective distributions can be calculated using a Bi-
nomial Random Variable B(14, 0.5), which gives
p-value ≤ P [B(14, 0.5) = 14] = 0.00006.

4 ETD are Transferable

The process of computing ETD is costly in terms of
compute, requiring compute roughly equivalent to
that of training the desired model. Thus, computing
the ETD of a dataset separately for every model we
wish to train is expensive, and, depending on the
size of the dataset, may become prohibitively so.
This problem can be bypassed if ETD are transfer-
able across models, i.e., if ETD can be computed
using a model M1, and then used to train a differ-
ent model M2.

To test for transferability, we use DeBERTa as
the ETD-computing model, and ELECTRA (Clark
et al., 2020) as the training model. We conduct ex-
periments similar to those in Section 3, with the ex-
ception that the training model M2 is ELECTRA.
Tables 3 and 4 show the results and summarized
results of these experiments, respectively.

When computing ETD with DeBERTa and creat-
ing the respective D(0.25,4), training ELECTRA on
D(0.25,4) outperforms training on D in 5 out of the
6 ID categories, and in 9 out of all 14 categories.
Though not as consistent as our main method, the
ETD transfers well, with mean improvement of
0.2% ID and 0.33% OOD.
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SNLI ANLI αNLI WinoGrande Hellaswag BoolQ

ID OOD ID OOD ID OOD ID OOD ID OOD ID

Test ANLI Test SNLI Test WG HS Test αNLI HS Test αNLI WG Test

D 91.91 34.83 59.1 83.82 89.34 70.4 74.54 87.19 82.02 67.53 43.64 81.46 68.27 87.67
Ours - D(.25,4) 91.96 35.21 59.7 83.15 89.88 70.73 76.41 87.21 81.66 70.23 44.61 81.3 66.89 86.82

Table 3: Transferring ETD from DeBERTa to ELECTRA: Accuracy of trained models on ID and OOD test sets,
compared between training on the unaltered dataset D and the ETD-weighted dataset of our approach, D(.25,4).

ID OOD

SNLI 0.05 0.38
ANLI 0.6 -0.67
αNLI 0.44 1.1
WinoGrande 0.02 1.17
HellaSwag 0.97 -0.77
BoolQ -0.85 -

Average 0.2 0.33

Table 4: Transferring ETD from DeBERTa to ELEC-
TRA: performance improvement when training on
D(.25,4) (our approach) compared to D (unaltered
dataset). OOD is the mean score of all OOD test sets
for a given dataset. Average is the weighted average of
the scores in each column (scores are weighted by the
number of tasks they represent).

5 From Training Dynamics To Dynamic
Training

We have established that Example Training Dynam-
ics can be computed as a pre-processing step and
used to improve both ID and OOD performance.
Furthermore, thanks to tranferability it may be pos-
sible to save most of the compute involved in the
process. But is it possible to go even further and
use ETD without any pre-processing? After all,
any training process has its own naturally-occuring
Trainin Dynamics. Is it possible to compute and
use ETD within the same training process?

With this question in mind, we propose Dynamic
Training, an active learning method for weighing
examples in datasets mid-training. Dynamic Train-
ing uses the same basic method as regular ETD-
weighted training, except only one training process
takes place, and the ETD are being evaluated dur-
ing training rather than as a preprocessing step. The
ETD are re-evaluated with each epoch of training,
and thus the ETD-weighted dataset D(f,b) on which
the model trains changes between epochs.

A Dynamic Training process starts with no ETD

whatsoever, so training is done on the unaltered
dataset D. Similar to computing regular ETD, as
training progresses, we save the model’s probabili-
ties for the labels of each example in D as ETD. On
some epoch e∗ > 1, we start using them to weigh
D before each epoch. From e∗ onwards, we train
each epoch on D(f,b). We keep saving the model’s
output probabilities to update the ETD, and before
the start of each epoch, calculate a new D(f,b). As
in the previous experiments, training is set to a
fixed number of steps for each task, regardless of
the varying size of D(f,b) during training. Fig. 2
illustrates the flow of a Dynamic Training process.

Experiments To test the effectiveness of Dy-
namic Training , we use the method to train a De-
BERTa model on the six datasets we used for our
previous experiments. We use the hyperparameters
e∗ = 3, f = 0.33, b = 2 (based on a grid search
for the best performance on the development sets).
We compare the results against a DeBERTa model
trained on D without any form of ETD-weighted
Training. Tables 5 and 6 show the results and sum-
marized results of these experiments.

Dynamic Training outperforms training on D in
5 out of the 6 ID categories, and in 11 out of all 14
categories. Though the ANLI task suffers decrease
in performance, results for the other tasks improve
relatively consistently, with mean improvement of
0.23% ID and 0.38% OOD. Though not as effec-
tive as ETD-weighted training, Dynamic Training
improves performance in the majority of the cases,
without any pre-processing of the data.

6 Robustness to Hyperparameter tuning

Throughout this work we report results training
models on ETD-weighted datasets of the form
D(f,b), with specific values chosen for f, b. These
values are hyperparameters, chosen using a grid
search for best performance over the development
set of the different tasks. Table 7 shows the other
values of f, b we tested for in Section 3, and their
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Figure 2: Dynamic Training of ETD. M is trained on D, accumulating ETD with each epoch. Starting at epoch e∗

and on each epoch afterwards, M is trained on D(f,b) instead of D. The ETD and D(f,b) keep updating until the
end of training.

SNLI ANLI αNLI WinoGrande Hellaswag BoolQ

ID OOD ID OOD ID OOD ID OOD ID OOD ID

Test ANLI Test SNLI Test WG HS Test αNLI HS Test αNLI WG Test

D 91.93 32.18 55.43 85.37 86.41 64.34 68.7 84 78.13 57.13 42.69 78.58 59.36 86.97
DT - D(.33,2) 92.04 32.26 55.38 85.15 86.91 65.06 69.42 84.92 78.73 57.12 43.01 78.69 60.36 86.99

Table 5: Dynamic Training results. D is training on the unaltered dataset, and DT - D(.33,2) is Dynamic Training on
D(.33,2) starting at epoch e∗ = 3.

ID OOD

SNLI 0.11 0.08
ANLI -0.05 -0.22
αNLI 0.5 0.72
WinoGrande 0.52 0.3
HellaSwag 0.32 0.56
BoolQ 0.02 -

Average 0.23 0.38

Table 6: Performance improvement when using Dy-
namic Training on D(.33,2) starting at epoch e∗ = 3,
compared to training on D without any form of ETD-
weighted Training. OOD is the mean score of all OOD
test sets for a given dataset. Average is the weighted av-
erage of the scores in each column (scores are weighted
by the number of tasks they represent).

model’s respective improvement in performance.
All values for f, b improve performance over the
baseline in at least 8 out of 11 tests, with 85/99 of
all test scores being positive, implying our method
is robust with respect to its hyperparameters.

7 Related Work

Previous research offered various methods that con-
sider the relative importance of examples within
a dataset in order to improve training. Methods
such as Curriculum learning (Bengio et al., 2009)
or self-paced learning (Kumar et al., 2010) focus
on the order of training, advocating training on easy
examples first (e.g., examples with high likelihood
in the latter case).

Other methods rank the importance of exam-
ples with the goal of filtering datasets. Liu et al.
(2021) use a train-twice approach with some re-
semblance to ETD, and upweight train examples
that were missclassified in the first round of train-
ing. AFLite (Le Bras et al., 2020) ranks examples
based on the ability of a linear classifier to solve
them, and then filters out easy examples in order
to eliminate artifacts and biases from the dataset.
Other works advocated bias and artifacts removal,
and by extension the removal of easy examples
from datasets (Gururangan et al., 2018; Li and Vas-
concelos, 2019).

Several approaches have used training metrics
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SNLI ANLI αNLI WinoGrande Hellaswag BoolQ

ID OOD ID OOD ID OOD ID OOD ID OOD ID

D(.25,2) -0.02 -0.48 0.42 0.34 0.68 0.32 0.02 2.17 0.35 0.96 0.48
D(.33,2) 0.12 1.48 -0.48 0.03 0.61 0.57 0.43 1.14 0.36 1.58 0.04
D(.50,2) 0.11 0.65 0.07 0.04 0.88 -1.23 -0.08 1.65 0.27 0.35 -0.05
D(.25,3) 0.03 0.73 0.48 0.02 0.74 0.76 0.38 1.08 0.21 1.59 0.29
D(.33,3) 0.10 1.23 -0.40 0.52 0.95 0.57 0.97 1.03 0.41 1.52 0.07
D(.50,3) 0.11 0.58 -0.62 0.11 0.61 1.16 0.08 1.52 0.22 0.37 0.17
D(.25,4) 0.15 -0.18 -0.72 0.45 0.89 -0.48 0.54 1.67 0.45 0.95 0.06
D(.33,4) 0.09 0.82 -0.33 0.04 0.69 0.94 0.32 1.10 0.50 1.07 0.14
D(.50,4) 0.02 0.48 -0.35 -0.05 0.70 1.27 -0.01 0.89 0.27 1.59 0.26

Table 7: Performance improvement when training DeBERTa-large on an ETD-weighted dataset (ETD computed
with DeBERTa-large) over training without ETD, compared between different values for f, b. OOD is the mean
score of all OOD development sets. Positive scores are marked in bold font

such as training loss (Han et al., 2018; Arazo
et al., 2019; Shen and Sanghavi, 2018) and con-
fidence (Hovy et al., 2013) to filter mislabeled ex-
amples out of datasets. Chang et al. (2017) used
the training metrics of confidence and variability
to reweigh the examples of a dataset by impor-
tance after each epoch of training, similar to the
method we propose in Section 5 of this work. How-
ever, they focus on simple vision-related tasks and
CNNs, and don’t report results for OOD general-
ization. Wang et al. (2019) use a dynamic sampling
method based on the metric of training-cost differ-
ence between two consecutive epochs to achieve
improved results and accelerated training on the
task of machine translation. Toneva et al. (2019)
defined the forgettability metric, which measures
how often an example is forgotten during training,
and is similar to our notion of variability. They
showed that training on a subset of forgettable ex-
amples can still maintain ID testing results, but
did not report ID performance improvement. They
also tested the transferability of the forgettability
metric between models. Similarly to Chang et al.
(2017), they focused on simple vision-related tasks
and didn’t report OOD results.

Core-set selection (Wei et al., 2013) uses sub-
modular functions to find a subset of a dataset
representative of the whole, to be used under low
computational budget. Conversely, our approach
uses training metrics to find a subset not necessar-
ily representative of the whole, but rather one that
can be emphasized within the whole dataset to im-
prove performance, regardless of budget considera-
tions. Similarities can also be drawn between our
approach and active learning (Settles, 2009; Peris
and Casacuberta, 2018; P.V.S and Meyer, 2019),
which searches unlabeled data for the most useful

examples to label and uses them for training.
Sanh et al. (2020) aim to remove biases from

models without re-sampling of the dataset, us-
ing Product of Experts between a weak (biased)
model and a main model and achieving improve-
ments over OOD test-sets. Karimi Mahabadi et al.
(2020) suggested a somewhat similar approach of
de-biasing a main model by contrasting it with a
“bias-only” model, to achieve OOD improvements
in tasks where the bias is known. Nam et al. (2020)
also used biased models as a foil to a main model,
to achieve de-biasing in vision-related tasks. Utama
et al. (2020) proposed a debiasing method that im-
proves OOD testing while maintaining ID test re-
sults. Their method regulates the model’s confi-
dence over biased examples in the dataset, using
knowledge distillation in combination with biased
models. This approach requires a-priori knowledge
of the dataset’s biases in order to formulate the bi-
ased model, and as such is not applicable to many
NLP tasks. It also requires a large amount of com-
pute, as it trains a full-size teacher model and a
biased model besides the main model.

8 Conclusion

We presented a new method for computing Exam-
ple Training Dynamics, which can be used to in-
crease both ID and OOD performance, without any
changes to model size or architecture. We demon-
strated that ETD can be transferable, i.e., they can
be computed once and used many times for dif-
ferent models, reducing the computation cost at a
long term. Finally, we have shown that ETD can
be computed on the fly using Dynamic Training,
which may hold the key to improved performance
using ETD at no extra compute cost.

As the field of NLP leans more and more into
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the self-supervised pre-training paradigm, further
research on ETD may be focused on adjusting our
method for larger and self-supervised datasets in
order to improve and reduce the cost of pre-training
as a whole.
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Limitations

While this work covers as many domains as its
computational budget allows, it still only tests for
tasks in the English language, and only for NLI,
multiple-choice and question-answering tasks. Our
approach requires a labeled set of examples to be
applied, so that adapting it to other settings, specif-
ically pre-training, is not straightforward.

The results presented in this work are not al-
ways consistent across all tasks. While our main
approach improves performance consistently, the
methods of Transferability and Dynamic Training
are not as consistent and result in decrease in per-
formance for some test-cases. The relation between
method and task should be further researched, so
that future application of our approach can match
the right method to a dataset.

Our approach does not have any clear risks or
negative societal impacts. We hypothesize it might
have the positive impact of social debiasing, as em-
phasizing ambiguous examples can be considered
a form of debiasing in the case that the majority of
examples are biased towards a specific gender or
race. Testing for this is deferred to future work.
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A Datasets

We use the following six datasets to test our
methods. Note that BoolQ, HellaSwag and
WinoGrande don’t have published labeled test sets
(See Section 3).

αNLI (Bhagavatula et al., 2019) is a dataset testing
for inference to the most plausible explanation.
Given two observation-sentences, the task is to
choose the best of two hypothesis-sentences to fit
in-between the observation-sentences to create a
plausible narrative. It applies adversarial filtering
to remove artificial biases. Its train/dev/test split is
169654/1532/3069.

Adversarial NLI (ANLI) (Nie et al., 2019) is
a dataset curated by an adversarial human-and-
model-in-the-loop method. Starting with a base
model trained on an NLI task, human annotators
provide new examples that are misclassified by
the model. A new model is then trained on those
examples, and the process repeats. We use the
version of the dataset from the third (and last)
published round of this process. Its train/dev/test
split is 100459/1200/1200.

BoolQ (Clark et al., 2019) is a dataset of naturally-
occuring yes/no questions collected from queries
to the Google search engine. Its train/dev/test split
is 9427/3270/3245.

HellaSwag (Zellers et al., 2019) is a dataset testing
for commonsense-NLI. Given a premise, the task
is to choose the most likely hypothesis to continue
the premise out of four options. HellaSwag uses
Adversarial filtering to remove artificial biases and
create a more challenging dataset. Its train/dev/test
split is 39905/10042/10003.

Stanford Natural Language Inference (SNLI)
(Bowman et al., 2015) is a large corpus of
NLI examples. Its train/dev/test split is
550152/10000/10000. Our preliminary ex-
periments showed no significant difference
between training DeBERTa-large and ELECTRA-
large models on the full SNLI train-set, and on
10% of the train-set. To save time and compute,
we use only the first 10% of the SNLI train-set
examples for all experiments in this work.

WinoGrande (Sakaguchi et al., 2019) is a

large-scale dataset of pronoun-resolution problems
inspired by the Winograd Schema Challenge
(WSC; Levesque et al. (2012)) design. It applies
adversarial filtering to remove artificial biases. Its
train/dev/test split is 40398/1267/1767.

B Experimental Settings

In all our experiments, we minimize cross entropy
with the Adam optimizer (Kingma and Ba, 2014),
following the AdamW learning rate schedule from
the PyTorch library. We use a batch size of 128
in all experiments. Each experiment is run with 5
random seeds.
αNLI and ANLI model train for 4800 optimiza-

tion steps each. SNLI models are trained for 2600
steps. Winogrande, Hellaswag and BoolQ models
are trained for 2400 steps. The difference in steps
serves to adjust the training time to the size of the
training set, to allow each baseline model to train
fot 5 epochs, following (Swayamdipta et al., 2020)

We train on RTX208, Quadro RTX 600 and A10
GPU’s. We estimate our training at an average of
8 hours per experiment, and approximately 9120
GPU hours in total.

Our implementation uses the Huggingface Trans-
formers library (Wolf et al., 2019).
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