
Findings of the Association for Computational Linguistics: ACL 2023, pages 10452–10465
July 9-14, 2023 ©2023 Association for Computational Linguistics

Modular Transformers: Compressing Transformers into
Modularized Layers for Flexible Efficient Inference

Wangchunshu Zhou∗ 1 Ronan Le Bras 2 Yejin Choi 2 3

1ETH Zurich
2Allen Institute for AI

3Paul G. Allen School of Computer Science & Engineering, University of Washington
wangchunshu.zhou@inf.ethz.ch

Abstract

Pre-trained Transformer models like T5 and
BART have advanced the state of the art on a
wide range of text generation tasks. Compress-
ing these models into smaller ones has become
critically important for practical use. Common
neural network compression techniques such as
knowledge distillation or quantization are lim-
ited to static compression where the compres-
sion ratio is fixed. In this paper, we introduce
Modular Transformers, a modularized encoder-
decoder framework for flexible sequence-to-
sequence model compression. Modular Trans-
formers trains modularized layers that have the
same function of two or more consecutive lay-
ers in the original model via module replacing
and knowledge distillation. After training, the
modularized layers can be flexibly assembled
into sequence-to-sequence models that meet
different performance-efficiency trade-offs. Ex-
perimental results show that after a single train-
ing phase, by simply varying the assemble strat-
egy, Modular Transformers can achieve flexible
compression ratios from 1.1× to 6× with little
to moderate relative performance drop.

1 Introduction

The ever increasing size of pre-trained sequence-to-
sequence (seq2seq) models (Lewis et al., 2020; Raf-
fel et al., 2019; Zhang et al., 2020; Liu et al., 2020b;
Xue et al., 2021; Zhou et al., 2021) has supported
advances in the state of the art in a wide range of
natural language processing (NLP) tasks. For ex-
ample, BART (Lewis et al., 2020) has 400 million
parameters while T5 (Raffel et al., 2019) pushes
this number to 11 billion. This makes large pre-
trained seq2seq models hard to deploy and prone
to negative environmental impacts (Strubell et al.,
2019; Schwartz et al., 2020a; Xu et al., 2021b), mo-
tivating researchers to investigate methods to com-
press large pre-trained models into smaller, faster
ones that retain strong performance. Previous work

∗Work done while interning at the Allen Institute for AI

has shown that BERT (Devlin et al., 2019), a popu-
lar encoder-only pre-trained Transformer (Vaswani
et al., 2017), can be effectively compressed and ac-
celerated via different neural network compression
techniques (Sanh et al., 2019; Sun et al., 2019; Jiao
et al., 2020; Zhou et al., 2020; Gordon et al., 2020;
Shen et al., 2020).

However, there is limited research on methods
to compress pre-trained seq2seq models (Shleifer
and Rush, 2020). On the other hand, pre-trained
seq2seq models are generally more space and time-
consuming compared to their encoder-only counter-
parts since they require storing the decoder as well
and generally decode in an auto-regressive fashion.
To satisfy ever-changing resource constraints vary-
ing in different applications and over time, existing
seq2seq compression techniques must separately
train and store many compact models with differ-
ent compression ratios, which is computationally
inefficient and may also violate space constraints.
Moreover, as suggested by (Kasai et al., 2020), as
opposed to encoder-only models, it is nontrivial to
find proper sizes for seq2seq models with a given
resource constraint as the depth for the encoder
and the decoder must be jointly tuned. As such,
searching for compact seq2seq models meeting dif-
ferent resource constraints can be very costly. This
motivates us to investigate the problem of flexible
seq2seq compression that can dynamically adjust
compression ratio to meet varying resource con-
straints without training multiple compact models.

In this work, we present Modular Transform-
ers, a framework to compress Transformers into
modularized layers for flexible efficient inference.
With the guidance from the original model, Mod-
ular Transformers trains modularized layers that
have the same function of different numbers of
consecutive layers in the original model via multi-
grained module replacing and knowledge distil-
lation. Specifically, we first map each of the
modularized Transformer layers to a sub-module

10452

(i.e., a number of consecutive layers) of the en-
coder or decoder of the original model. We then
train the modularized layers by randomly assem-
bling a model for each training step (replacing sub-
modules of the original model with their corre-
sponding modularized layers), while keeping the
original model parameters frozen. We propose a
curriculum-replacing strategy to train the modu-
larized layers in a fine-to-coarse fashion. We also
use attention and representation distillation to fur-
ther encourage the modularized layers to behave
similarly to the original sub-modules.

After training, the modularized layers can be
flexibly assembled into seq2seq Transformers that
meet different performance-efficiency trade-offs.
The compression ratio for encoders and decoders
can also be seamlessly adjusted to find the opti-
mal parameterization within a fixed computation
budget without any additional training. In addition,
we introduce two deterministic assembling strate-
gies tailored for smaller sizes and lower latency.
Both of them replace the original model following
a decoder-to-encoder, top-to-bottom, and fine-to-
coarse fashion.

We empirically verify the effectiveness of Mod-
ular Transformers by compressing T5 (Raffel et al.,
2019), a popular pre-trained seq2seq model, on
representative text generation tasks including text
summarization, machine translation, and question
generation. Empirical results show that our ap-
proach consistently outperforms prior seq2seq com-
pression techniques across different datasets while
also enabling users to flexibly adjust the efficiency-
performance trade-off of the model to meet differ-
ent requirements for deployment.

2 Related Work

Pre-trained Model Compression Prior work has
shown that BERT (Devlin et al., 2019), a popu-
lar encoder-only pre-trained Transformer (Vaswani
et al., 2017), can be effectively compressed and
accelerated. As summarized in Xu et al. (2021b)
and Xu et al. (2021a), popular BERT compression
techniques include knowledge distillation (Hinton
et al., 2015; Sanh et al., 2019; Sun et al., 2019;
Jiao et al., 2020; Zhou et al., 2022) which trains a
compact student network to mimic the behavior of
the original teacher model, pruning (LeCun et al.,
1989; Michel et al., 2019; Gordon et al., 2020; Sanh
et al., 2020; Wang et al., 2022) which prunes re-
dundant neurons or structures in the original model,

module replacing (Xu et al., 2020) which trains
compact successor sub-modules to replace that in
the original model, and quantization (Shen et al.,
2020; Zafrir et al., 2019) that compresses a neu-
ral network by reducing the number of bits used
to represent its parameters. In addition, a number
of work also investigated efficient inference with
BERT-like models with dynamic inference methods
including early exit (Teerapittayanon et al., 2016;
Xin et al., 2020; Liu et al., 2020a; Schwartz et al.,
2020b; Zhou et al., 2020) or adaptive computation
time (Graves, 2016; Eyzaguirre et al., 2021). These
approaches only reduce inference latency while
keep the model size unchanged. Modular Trans-
formers focuses on the first category which reduces
the size of the model while also accelerating infer-
ence.

Sequence-to-sequence Compression Compared
to conventional neural network compression,
seq2seq compression is relatively less explored.
The de-facto method for compressing seq2seq
model is sequence-level knowledge distilla-
tion (Kim and Rush, 2016), which uses the original
teacher model to generate pseudo-labels with beam
search on the train set and train the compact stu-
dent model with the input-pseuodo label pairs. A
number of recent studies (Junczys-Dowmunt, 2019;
Kasai et al., 2020; Zhang et al., 2021) have verified
the effectiveness of the pseudo labeling method for
distilling pre-trained Transformer-based seq2seq
models. However, (Shleifer and Rush, 2020) shows
that a simple shrink and fine-tune method performs
competitively with pseudo labeling while requiring
fewer computations. Another work related to Mod-
ular Transformers is LayerDrop (Fan et al., 2020),
which randomly dropout Transformer layers when
pre-training a seq2seq model and then prunes cer-
tain layers during inference for improved efficiency.
LayerDrop differs from our method for two main
reasons. First, LayerDrop must be applied during
pre-training while Modular Transformers can be
applied to any pre-trained models. This makes the
scope of application of our method much broader
because most existing models are not pre-trained
with LayerDrop. Second, during inference, Layer-
Drop prunes layers while Modular Transformers
replaces sub-networks with compact modules with
similar functionality. This hopefully reduces the
performance drop, especially when the target com-
pression ratio is relatively large.

Moreover, there is also some prior work explor-

10453

training inference

or or

3x
2x 1.5x

replacing

distillation
t6

t5
t4

t3

t2

t1
m21

m22

m23 m32

m31 m31

m32

t1

t3

m21

m32

t2

m22

m23

m2i

legend
ti

i-th modularized layer
of granularity 2

m3i

i-th modularized layer
of granularity 3

i-th layer in the model

Figure 1: Illustration of the Modular Transformers framework. A set of modularized layers with different granularity
are trained by multi-grained module replacing and knowledge distillation. During inference, the modularized layers
are assembled to meet different resource budgets. ti denotes the i-th layer in the original model. mij denotes j-th
modularized layer with a granularity of i.

ing pruning (Michel et al., 2019; Li et al., 2021)
and quantization (Li et al., 2022) techniques for
seq2seq model compression. Recently, Zhou et al.
(2023) proposed dynamic in-context learning for ef-
ficient text generation with prompting. These lines
of work are orthogonal to knowledge distillation,
pseudo labeling, and Modular Transformers and the
approaches can be combined in a straightforward
manner.

3 Methodology

In this section, we describe the proposed Modular
Transformers framework in detail. We first recap
module replacing in §3.1. We then describe the ar-
chitecture design and training method for Modular
Transformers in §3.2 and §3.3, respectively. Then,
we present the idea of dynamic assembling in §3.4.
Finally, we discuss the relationship between Modu-
lar Transformers and vanilla module replacing in
§3.5.

3.1 Preliminary: Module Replacing

The goal of module replacing is essentially simi-
lar to knowledge distillation: training a compact
model that behaves like the original large model.
Compared to knowledge distillation which trains
a student model to mimic a teacher model by min-
imizing the discrepancy between the predictions
or hidden representations of the student and the
teacher, the idea of module replacing is more di-
rect: a compact model should behave the same way
as the original model if all of its sub-networks are

interchangeable with those in the original model.
Specifically, for a desired compression ratio r,

we first specify a compact “successor” layer for
each r consecutive layer, which we refer to as sub-
networks, in the original model. Consider a model
T with n×r layers, we can define a compact model
S which has n layers. Let T = {t1, . . . , tn} de-
note the original model, ti and si denote the sub-
networks and layers in the original model and the
compact model, respectively. The output vectors
of the i-th sub-network or layer is denoted as yi.
During compression, in each step, we sample a
random variable ri+1 that determines whether the
(i+ 1)-th sub-network in the original model is re-
placed by the corresponding compact layer in this
step, from an independent Bernoulli distribution
with a probability p of success:

ri+1 ∼ Bernoulli(p) (1)

As such, the output of the (i+ 1)-th model is cal-
culated as:

yi+1 = ri+1 ∗ si(yi) + (1− ri+1) ∗ ti(yi) (2)

where ∗ denotes the element-wise multiplication
and ri+1 ∈ {0, 1}. In this way, the compact lay-
ers are trained to replace the corresponding sub-
networks in the original model. After convergence,
the compact layers are expected to be interchange-
able (thus having the same functionality) with the
original sub-networks. Moreover, the interaction
between compact layers and original sub-networks
and the random permutation of the hybrid model

10454

also adds extra regularization for the training of the
compact model.

After training, we collect all compact layers
and combine them to be the compressed model
S = {s1, . . . , sn}, which will be used for efficient
inference. Finally, we fine-tune the compact model
to bridge the gap between module-replacing train-
ing and actual inference with the compact model.

3.2 Modularized Seq2seq Models
Modular Transformers aims to train a set of mod-
ularized layers that can be flexibly assembled
into compact models with different performance-
efficiency trade-offs at test time. It can directly
adapted to meet different resource constraints with-
out re-training compact models of different sizes.
To achieve this goal, we propose to define modular-
ized layers with different capacities, i.e., capturing
the behavior of sub-networks of different sizes.

Specifically, given an encoder (or decoder) T =
{t1, . . . , tn} with n layers and a target range of
compression ratio from 1× to s× (we assume n
is divisible by s) , we define a suite of modular-
ized layers M = {mij , i ∈ [n], j ∈ {1, . . . , n/i}},
where [n] denotes all positive integer divisors (or
factors) of n except 1 and n itself, and mij de-
notes a modularized layer that will be trained to
match a sub-network that consists of i consecu-
tive layers starting from the i × (j − 1) + 1-th
layer in the original model. For example, for a
Transformer model with 12 encoder/decoder lay-
ers and a target maximum compression ratio of 6,
Modular Transformers defines 6/4/3/2 modularized
layers each corresponding to a sub-network repre-
senting 2/3/4/6 consecutive layers of the original
model. Overall, Modular Transformers consists of
15 modularized layers for the encoder as well as for
the decoder, which is comparable to the original
model size. After training, we can combine useful
modularized layers into a compact model to reach
a target compression ratio and a desired level of
inference efficiency (see section 3.4).

3.3 Multi-grained Module Replacing
After defining the modularized layers in Modu-
lar Transformers, we train them to have the same
functionality as the original sub-networks via a
combination of module replacing and knowledge
distillation.

First, we extend the vanilla module replacing
to multi-grained module replacing that can mix
modularized layers with different granularity (i.e.,

target sub-network size) during training. Since the
target sub-networks of modularized layers of dif-
ferent granularity often overlap with each other,
we can not simply sample a Bernoulli random
variable to determine the structure of the hybrid
model used for training in the current step. Instead,
we propose a greedy replacing strategy for multi-
grained module replacement. Specifically, we start
from the n-th (last) layer of the original model
and an empty hybrid model H . Assuming that we
reach the k-th layer, we sample a random variable
rk ∼ Bernoulli(p) where p represents the proba-
bility of replacing that layer. If rk = 0, we add tk
into the hybrid model H and move to the next layer.
Otherwise, we perform a module replacement and
sample a random variable rki ∼ Cat(p) where
i ∈ [n] denotes the granularity of the modularized
layer we want to add to the hybrid model. Cat(p)
denotes a categorical distribution on [n] (or Multi-
noulli distribution) and p is the probability vector
of the |[n]| possible outcomes. Then we determine
the nearest suitable modularized layer of granular-
ity i as mij , j = ⌊k/i⌋. If i divides k, we can
directly add mij into H and advance to the k− i-th
layer. Otherwise, we first append the original lay-
ers ti×j+1:k to H before adding mij . In this way,
for each training step, we sample a hybrid model
and train its modularized layers with a task-specific
objective (such as cross-entropy loss) to encourage
the modularized layers to mimic the behavior of
the replaced sub-networks in the original model.

In addition to module replacing, we also propose
to leverage attention and hidden representation dis-
tillation (Sun et al., 2019; Jiao et al., 2020) to better
align modularized layers and the corresponding
sub-networks. Specifically, we train a modularized
layer mij in the hybrid model to match the attention
distribution and the output hidden representation
of ti×j in the original model. During training, we
simply combine task-specific loss with distillation
loss with equal weights.

Moreover, we adopt the curriculum replacement
strategy from Xu et al. (2020) and progressively
increase the replacing probability p to 1 during
training. However, as opposed to vanilla module
replacing where the model becomes static as p = 1,
the hybrid model is still randomly combined with
modularized layers of different granularity. Also,
motivated by the fact that modularized layers of
larger granularity are more difficult to train, we
propose to train the modularized layers of different

10455

granularity in a coarse-to-fine fashion. Specifically,
for a 12-layer model (such that the modularized
layers are of granularity in {2,3,4,6}), we start the
training with p = [1, 0, 0, 0] so that only modular-
ized layers of granularity 2 will be sampled in the
hybrid model. We then progressively (linearly)
change p to [0.75, 0.25, 0, 0], [0.5, 0.25, 0.25, 0],
and finally to [0.25, 0.25, 0.25, 0.25] so that they
are sampled uniformly. We empirically set each
transition phase to a quarter of all training steps.

3.4 Flexible Assembling
We describe how we can use the trained mod-
ularized layers for flexible inference. The pro-
posed flexible assembling method starts with the
original model T and gradually replaces it with
modularized layers. In contrast to the random
replacing strategy used for sampling the hybrid
model during training, we need to take the target
compression/speed-up ratio into account while also
optimizing for the performance of the assembled
model. To this end, we propose a deterministic
decoder-first, top-down, fine-to-coarse replacing
strategy for flexible assembling. The decoder-first
and top-down strategy is inspired by the insight
from prior work on seq2seq compression and mod-
ule replacement. Specifically, Shleifer and Rush
(2020) and Kasai et al. (2020) revealed that within
a fixed parameter budget, seq2seq models with a
deep encoder and a shallow decoder generally per-
form the best, and Xu et al. (2020) showed that
top layers are more robust to module replacing,
whereas replacing bottom layers often leads to a
larger performance drop. The fine-to-coarse strat-
egy is motivated by our conjecture that modularized
layers with large granularity will more likely lead
to a larger drop in performance.

In general, there exist two common compression
strategies tailored for different kinds of resource
budgets. The first setting focuses on the size of
the compressed models and the second focuses on
the inference speed. We devise two variants of
our assembling strategy tailored for speed-first and
size-first compression. Inspired by the previous
observation of Shleifer and Rush (2020), we use
a more uniform replacing strategy for size-first as-
sembling while replacing decoder sub-networks
more aggressively for speed-first assembling.

We illustrate our approach on the T5-base model
with 12 encoder and 12 decoder layers. In the
size-first assembling, we first replace the decoder
from top to bottom with modularized layers m2j

corresponding to two consecutive layers. We then
do the same for the encoder. After T is entirely
replaced by m2j , we start replacing m2j with m3j

from decoder to encoder, from top to bottom. We
do this iteratively until the entire model consists
only of m6j layers. As for speed-first assembling,
we first replace decoder layers until they have all
been replaced by m4j layers. We then replace the
encoder with m2j and then replace the decoder with
m6j . Finally, we iteratively replace the encoder
until the whole model consists only of m6j layers.

During this process, each module replacing oper-
ation reduces the number of layers in the model by
1. As such, the compression ratio can be flexibly
adjusted from 1 to the maximum granularity of the
modularized layers according to different resource
constraints and performance-efficiency trade-offs.

3.5 Relation with Module Replacing

Our approach differs from vanilla module replac-
ing in four different ways: (1) module replacing
is limited to compressing BERT-like encoder-only
models in Xu et al. (2020) while Modular Trans-
formers works with encoder-decoder models; (2)
we propose to train modularized layers that can re-
place sub-networks of different sizes in the original
model and can be connected with others, whereas
the successor layers are mapped to sub-networks
of a fixed size; (3) we propose multi-grained mod-
ule replacing and use representation distillation to
better align modularized layers with their corre-
sponding sub-networks while vanilla module re-
placing only supports a fix compression ratio and
is trained with cross-entropy loss only; (4) we in-
troduce the idea of dynamic assembling that en-
ables flexible adjustment of performance-efficiency
trade-off, whereas the compression ratio in Xu et al.
(2020) is fixed since the successor layers are di-
rectly connected together. Essentially, we can view
module replacing as a method used for training
modularized layers so that they are interchangeable
with sub-networks in the original model.

4 Experiments

In this section, we empirically verify the effective-
ness of Modular Transformers by using it to com-
press T5 (Raffel et al., 2019), a popular pre-trained
seq2seq Transformer, on a number of representa-
tive natural language generation tasks and datasets.

10456

Summarization Question Gen Translation
CNN/DM XSum Squad En-De

Method #Layers Ratio RG-1 RG-2 RG-L RG-1 RG-2 RG-L B-4 M RG-L B-4

T5-base 12-12 1.0/1.0× 42.25 20.35 39.45 43.39 20.66 35.15 22.216 25.31 51.40 30.3

Compressed Models Focusing on Smaller Sizes

Pseudo Labeling 6-6 1.5/2.0× 41.08 19.24 38.15 42.34 19.91 34.09 21.36 24.52 50.55 29.1
SFT 6-6 1.5/2.0× 41.16 19.48 38.24 42.21 19.46 33.83 21.24 24.45 50.42 28.5
KD 6-6 1.5/2.0× 41.26 19.55 38.36 42.52 19.95 34.22 21.43 24.61 50.61 29.2
Head Prune 12-12 1.2/1.9× 38.86 17.83 36.75 39.73 17.45 31.92 19.45 23.41 48.63 27.2
LayerDrop 6-6 1.5/2.0× 37.45 16.38 35.62 38.62 16.61 30.78 18.86 22.82 47.25 25.1
Quant + KD 12-12 1.1/3.9× 41.18 19.65 38.37 42.05 19.51 33.89 21.38 24.45 50.43 29.0
Modular Transformers 6-6 1.5/2.0× 41.71 19.86 38.83 42.86 20.27 34.49 21.53 24.81 50.81 29.4

Compressed Models Focusing on Lower Latency

Pseudo Labeling 12-3 1.9/1.6× 41.25 19.38 38.27 42.49 20.01 34.26 21.40 24.45 50.47 29.3
SFT 12-3 1.9/1.6× 41.45 19.63 38.55 42.41 19.74 33.96 21.38 24.52 50.51 28.8
KD 12-3 1.9/1.6× 41.52 19.65 38.60 42.60 20.10 34.39 21.51 24.60 50.63 29.4
LayerDrop 12-3 1.9/1.6× 38.31 17.37 36.44 39.44 17.23 31.46 19.28 23.31 47.93 25.9
Modular Transformers 12-3 1.9/1.6× 41.75 19.88 38.98 42.99 20.35 34.59 21.75 24.95 50.91 29.6

Table 1: Static compression results with T5-base in both size-first (top) and speed-first (bottom) settings. For
compression ratio, a/b× means the model is a times faster and b times smaller than the original model. Head Prune
and Quant + KD are only considered in the size-first setting, as they cannot be adjusted for size-first or speed-first
and their speed-up ratio is relatively low.

4.1 Experimental Settings

4.1.1 Models and Datasets

We conduct experiments with the T5-base and T5-
large models, which have 220M and 774M parame-
ters respectively, as the backbone models for base-
size and large-size experiments.

As for tasks and datasets, we evaluate Modular
Transformers on text summarization, question gen-
eration, and machine translation. For summariza-
tion, we select the CNN/DailyMail (Hermann et al.,
2015) and XSUM (Narayan et al., 2018) datasets.
We use the SQUAD (Rajpurkar et al., 2016) follow-
ing the split in Du and Cardie (2018) for question
generation and use the WMT-14 (Callison-Burch
et al., 2009) En-De split for machine translation.

4.1.2 Baselines

We compare Modular Transformers with the fol-
lowing seq2seq compression methods: (1) Pseudo
Labeling (PL) (Kim and Rush, 2016), also called
sequence-level knowledge distillation, which uses
the original model to generate pseudo labeled data
for training compact models; (2) Shrink and Fine-
tune (SFT) (Shleifer and Rush, 2020), which sim-
ply shrinks the teacher model to student size and re-
fine-tunes the shrunk model; (3) Knowledge Distil-
lation (KD) (Hinton et al., 2015), which combines
logit distillation, hidden representation distillation,
and attention distillation, to train a compact stu-
dent model; (4) Head Prune (Michel et al., 2019),

which prunes attention heads in the model with
gradient-based head importance score; (5) Layer-
Drop (Fan et al., 2020), which randomly drops
Transformer layers during fine-tuning, and selec-
tively prunes certain layers for efficient inference;
and (6) Quant + KD (Li et al., 2022), which com-
bines quantization-aware training and knowledge
distillation to train a quantized seq2seq model.

4.1.3 Training Details

We define modularized layers of granularity
{2,3,4,6} for both T5-base and T5-large.1 We
train Modular Transformers and all related mod-
els with a warm-up ratio of 0.05, a label smooth-
ing (Szegedy et al., 2016) rate of 0.1, and learning
rate in {3e-5, 5e-5, 7e-5}. For Modular Transform-
ers, we use a batch size of 128 and a max epoch
of 24 for summarization and question generation
datasets, and a batch size of 256 and a max epoch
of 60 for machine translation datasets. We use the
same batch size for all methods and the same num-
ber of epochs for all methods with KD. We train
non-KD baselines with half the number of epochs
which leads to similar performance and faster con-
vergence. For method-specific hyperparameters,
we adopt the values provided in the original contri-
bution.

1We do not include granularity 12 for T5-large because it
leads to negative impact on overall performance, and a model
with a compression ratio of 12 has very poor performance.

10457

Summarization Question Gen Translation
CNN/DM XSum SQUAD En-De

Method #Layers Ratio RG-1 RG-2 RG-L RG-1 RG-2 RG-L B-4 M RG-L B-4

T5-large 24-24 1.0/1.0× 42.61 20.72 39.81 43.83 21.05 35.44 22.75 25.45 51.62 31.2

Compressed Models Focusing on Smaller Sizes

Pseudo Labeling 12-12 1.5/2.0× 41.54 19.61 38.51 42.75 20.23 34.44 21.61 24.73 50.65 29.6
SFT 12-12 1.5/2.0× 41.57 19.66 38.62 42.60 20.01 34.21 21.45 24.61 50.60 29.2
KD 12-12 1.5/2.0× 41.62 19.73 38.70 42.83 20.21 34.55 21.59 24.75 50.71 29.9
Quant + KD 24-24 1.1/3.9× 41.64 19.78 38.67 42.52 19.95 34.05 21.57 24.66 50.61 29.2
Modular Transformers 12-12 1.5/2.0× 41.92 19.97 39.01 43.22 20.51 34.76 21.79 24.95 50.86 30.1

Compressed Models Focusing on Lower Latency

Pseudo Labeling 24-6 1.9/1.6× 41.76 19.79 38.68 42.92 20.28 34.51 21.72 24.94 50.81 30.1
SFT 24-6 1.9/1.6× 41.85 19.95 38.85 42.83 20.14 34.43 21.41 24.57 50.65 29.4
KD 24-6 1.9/1.6× 41.92 20.01 38.94 42.97 20.35 34.53 21.45 24.64 50.70 30.3
Modular Transformers 24-6 1.9/1.6× 42.12 20.26 39.25 43.33 20.68 34.81 21.79 25.01 50.95 30.3

Table 2: Static compression results with T5-large. For compression ratio, a/b× means the model is a times faster and
b times smaller than the original model. We only include methods that are competitive in the T5-base experiments.

4.1.4 Evaluation
Following previous work, we report ROUGE (Lin,
2004) and BLEU (Papineni et al., 2002) for text
summarization and machine translation, and report
BLEU-4, METEOR (Banerjee and Lavie, 2005),
and ROUGE-L for question generation. We com-
pare Modular Transformers with baseline methods
in both fixed and flexible compression ratio scenar-
ios. In the fixed budget scenario, we experiment
with both the size-first and speed-first settings. The
size-first setting focuses on the size of the com-
pressed models and compresses both the encoder
and the decoder by half, while the speed-first set-
ting focuses on the inference speed and compresses
the decoder by 3/4 but leaves the encoder uncom-
pressed. The baselines are trained twice while
Modular Transformers can adjust to the two dif-
ferent trade-offs by simply varying the two afore-
mentioned assembling strategies. In the flexible
compression setting, we present both the trade-off
between size-performance and speed-performance
of Modular Transformers and compare it with sev-
eral common static compression settings trained
with pseudo labeling.

4.2 Experimental Results

4.2.1 Static Compression Results
We present static compression results with T5-base
and T5-large as the teacher model in Table 1 and
Table 2, respectively. We can see that Modular
Transformers consistently outperforms all com-
pared baselines in both size-first and speed-first
settings without the need of re-training the model.
We also find that while previous literature (Kim

and Rush, 2016; Shleifer and Rush, 2020) observes
that logits-based knowledge distillation underper-
forms pseudo labeling and SFT baselines, adding
attention distillation and hidden representation dis-
tillation makes KD performs slightly better than
these baselines. Moreover, we find LayerDrop, the
other baseline that does not require re-training for
different compression ratios, performs poorly when
the number of layers to be dropped is relatively
large, which is consistent with previous observa-
tions (Fan et al., 2020). Combining quantization
and knowledge distillation performs well in terms
of size-performance trade-off, which is consistent
with a concurrent work by Li et al. (2022). How-
ever, the speed-up of this approach is much smaller
compared to other baselines, which we believe can
be partially attributed to common GPUs not being
optimized for quantized models.

In addition, we find that models with 12-3 en-
coder/decoder layers consistently outperform their
6-6 counterparts while also leading to larger speed-
ups. This is consistent with previous observations
of Shleifer and Rush (2020) and it confirms the
effectiveness of the speed-first assembling strategy.

4.2.2 Flexible Compression Results
Similar to the static compression experiments, we
also compare Modular Transformers with the KD
baseline, which is the current best-performing
method, for both size-performance and speed-
performance trade-offs. We present the results in
Figure 2. The left figure measures the trend of
Modular Transformers’s performance after each re-
placing operation in the size-first assembling strat-
egy. The right figure illustrates the performance of

10458

3 6 9 12 15 18
Layer Removed

37

38

39

40

RO
UG

E-
L

CNN/DailyMail

T5
ModSeq
KD

1.0 1.25 1.5 1.75 2.0 2.25 2.5
Speed-Up Ratio

37

38

39

40

RO
UG

E-
L

CNN/DailyMail

T5
ModSeq
KD

Figure 2: Flexible compression results of Mod-
ular Transformers and KD with T5-base on the
CNN/DailyMail dataset in both size-first (left) and
speed-first (right) settings.

3 6 9 12 15 18
Layer Removed

37

38

39

40

RO
UG

E-
L

CNN/DailyMail

T5
Ours
Oracle
Random

1.0 1.25 1.5 1.75 2.0 2.25 2.5
Speed-Up Ratio

37

38

39

40

RO
UG

E-
L

CNN/DailyMail

T5
Ours
Oracle
Random

Figure 3: Comparison between our flexible assembling
method, random assembling baseline, and oracle perfor-
mance with T5-base on the CNN/DailyMail dataset in
both size-first (left) and speed-first (right) settings.

Modular Transformers and the KD baseline with
configurations that correspond to a speed-up ra-
tio from approximately 1.25× to 2.5×. We can
see that Modular Transformers retains the perfor-
mance of the original model very well when only
reducing a few layers or assembling for a relatively
small speed-up ratio. More importantly, Modu-
lar Transformers consistently outperforms the KD
baseline, which is trained 6 times (once for each
specific compression ratio), and the improvement
is even larger in the extreme compression regime.
This confirms the effectiveness of our approach for
flexible seq2seq compression and its robustness to
relatively large compression ratios.

4.3 Analysis
We then conduct a series of analyses to better under-
stand the effectiveness of Modular Transformers.
All experiments are conducted with T5-base on the
CNN/DailyMail dataset.

Impact of Assembling Strategy We first analyze
the impact of the proposed assembling strategies
which replace layers from fine to coarse, from en-
coder to decoder, and from top to bottom. We
compare our strategies in both the size-first and

Methods RG-1 RG-2 RG-L

Ours 41.53 19.74 38.62
- w/o random replacing 41.25 19.52 38.31
- w/o curriculum replacing 41.35 19.62 38.43
- w/o knowledge distillation 41.42 19.60 38.49

Table 3: Ablation study results with T5-base on the
CNN/DailyMail dataset in the size-first setting.

speed-first settings with the random baseline and
the oracle where we exhaustively search all possi-
bilities. The results are shown in Figure 3. We can
see that our strategy is relatively close to the oracle,
especially in the low compression ratio regime. In
contrast, the random assembling baseline performs
substantially worse, demonstrating the effective-
ness of our assembling strategies.

Impact of Random Replacing Since the assem-
bling strategy at test time is deterministic, one may
question the need for a random module replacing
scheme during training. To this end, we compare
Modular Transformers with the baseline where we
only sample model structures used during infer-
ence. The results are shown in Table 3. We can
see that this variant performs substantially worse
than the random replacing method. We believe that
this is due to the interaction between well-trained
original layers and the modularized layers and is
crucial for improving performance.

Impact of Knowledge Distillation We then
study the impact of combining knowledge distil-
lation with module replacing for training Modu-
lar Transformers. We compare the variant trained
without knowledge distillation in Table 3. We find
that incorporating knowledge distillation for train-
ing modularized layers improves the overall perfor-
mance. This confirms the complementary nature
of knowledge distillation and module replacement
for the first time.

Impact of Curriculum Replacing In addition,
we also analyze the impact of curriculum replacing
which progressively increases the probability of
including coarse-grain modularized layers in the
hybrid model during training. We train a uniform
sampling variant for comparison. In Table 3, we
find that the uniform variant performs worse than
Modular Transformers, demonstrating the effec-
tiveness of curriculum replacing.

10459

5 Conclusion

We introduce Modular Transformers, a framework
for flexible and accurate seq2seq compression that
adapts to different performance-efficiency trade-
offs, which has important practical implications
such as reducing the computation cost and environ-
mental impact of deployed systems. Our method
defines a set of modularized layers with different
granularity and trains them to share the same func-
tionality as the sub-networks of the original model
they replace. We combine multi-grained module
replacing and knowledge distillation, and design
two flexible assembling strategies for size-first and
speed-first inference. Empirical results on vari-
ous text generation tasks show that our approach
consistently outperforms previous methods while
alleviating the need to re-train the compact model
in order to adapt to new memory and inference time
constraints.

Limitations

Our experiments focus on the T5-base and T5-large
models as these are widely used, representative pre-
trained seq2seq models. However, there are other
pre-trained seq2seq models such as BART that we
did not experiment with. It would also be inter-
esting to experiment with pre-trained models with
more layers such as T5-3B and T5-11B. We have
not conducted these experiments due to resource
constraints.

Ethics Statement

Our method is used to compress seq2seq Trans-
former models. Therefore, ethical considerations
of text generation models generally apply to our
method. We encourage users to assess potential
biases before deploying text generation models.

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical

Machine Translation, pages 1–28, Athens, Greece.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xinya Du and Claire Cardie. 2018. Harvest-
ing paragraph-level question-answer pairs from
Wikipedia. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1907–1917, Mel-
bourne, Australia. Association for Computational
Linguistics.

Cristóbal Eyzaguirre, Felipe del Río, Vladimir Araujo,
and Álvaro Soto. 2021. Dact-bert: Differentiable
adaptive computation time for an efficient bert infer-
ence. ArXiv preprint, abs/2109.11745.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155, Online. Association for Com-
putational Linguistics.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. ArXiv preprint,
abs/1603.08983.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 1693–
1701.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. ArXiv
preprint, abs/1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

10460

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W09-0401
https://aclanthology.org/W09-0401
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1177
https://doi.org/10.18653/v1/P18-1177
https://doi.org/10.18653/v1/P18-1177
https://arxiv.org/abs/2109.11745
https://arxiv.org/abs/2109.11745
https://arxiv.org/abs/2109.11745
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

Marcin Junczys-Dowmunt. 2019. Microsoft translator
at WMT 2019: Towards large-scale document-level
neural machine translation. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 225–233, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A Smith. 2020. Deep encoder, shallow de-
coder: Reevaluating the speed-quality tradeoff in ma-
chine translation. ArXiv preprint, abs/2006.10369.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. 2021.
Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational
Linguistics, 9:1442–1459.

Zheng Li, Zijian Wang, Ming Tan, Ramesh Nallapati,
Parminder Bhatia, Andrew Arnold, Bing Xiang, and
Dan Roth. 2022. Dq-bart: Efficient sequence-to-
sequence model via joint distillation and quantization.
ArXiv preprint, abs/2203.11239.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020a. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 14014–14024.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. ArXiv preprint, abs/1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv
preprint, abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020a. Green ai. Communications of the
ACM, 63(12):54–63.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020b. The right tool for the job: Matching
model and instance complexities. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6640–6651,
Online. Association for Computational Linguistics.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low pre-
cision quantization of BERT. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI

10461

https://doi.org/10.18653/v1/W19-5321
https://doi.org/10.18653/v1/W19-5321
https://doi.org/10.18653/v1/W19-5321
https://arxiv.org/abs/2006.10369
https://arxiv.org/abs/2006.10369
https://arxiv.org/abs/2006.10369
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1162/tacl_a_00436
https://arxiv.org/abs/2203.11239
https://arxiv.org/abs/2203.11239
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aaai.org/ojs/index.php/AAAI/article/view/6409

2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8815–8821. AAAI
Press.

Sam Shleifer and Alexander M Rush. 2020. Pre-
trained summarization distillation. ArXiv preprint,
abs/2010.13002.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for Com-
putational Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 2818–2826. IEEE
Computer Society.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464–2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Tiannan Wang, Wangchunshu Zhou, Yan Zeng, and Xin-
song Zhang. 2022. Efficientvlm: Fast and accurate
vision-language models via knowledge distillation
and modal-adaptive pruning.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-theseus: Com-
pressing BERT by progressive module replacing. In
Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP),
pages 7859–7869, Online. Association for Computa-
tional Linguistics.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Ke Xu, Julian
McAuley, and Furu Wei. 2021a. Beyond preserved
accuracy: Evaluating loyalty and robustness of BERT
compression. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10653–10659, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jingjing Xu, Wangchunshu Zhou, Zhiyi Fu, Hao Zhou,
and Lei Li. 2021b. A survey on green deep learning.
ArXiv preprint, abs/2111.05193.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36–39. IEEE.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 11328–11339. PMLR.

Shengqiang Zhang, Xingxing Zhang, Hangbo Bao, and
Furu Wei. 2021. Attention temperature matters in ab-
stractive summarization distillation. ArXiv preprint,
abs/2106.03441.

Wangchunshu Zhou, Tao Ge, Canwen Xu, Ke Xu, and
Furu Wei. 2021. Improving sequence-to-sequence
pre-training via sequence span rewriting. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 571–582,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ryan Cot-
terell, and Mrinmaya Sachan. 2023. Efficient prompt-
ing via dynamic in-context learning.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J.
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

10462

https://arxiv.org/abs/2010.13002
https://arxiv.org/abs/2010.13002
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2210.07795
http://arxiv.org/abs/2210.07795
http://arxiv.org/abs/2210.07795
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2021.emnlp-main.832
https://doi.org/10.18653/v1/2021.emnlp-main.832
https://doi.org/10.18653/v1/2021.emnlp-main.832
https://arxiv.org/abs/2111.05193
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://arxiv.org/abs/2106.03441
https://arxiv.org/abs/2106.03441
https://doi.org/10.18653/v1/2021.emnlp-main.45
https://doi.org/10.18653/v1/2021.emnlp-main.45
http://arxiv.org/abs/2305.11170
http://arxiv.org/abs/2305.11170
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html

Wangchunshu Zhou, Canwen Xu, and Julian McAuley.
2022. BERT learns to teach: Knowledge distillation
with meta learning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7037–
7049, Dublin, Ireland. Association for Computational
Linguistics.

10463

https://doi.org/10.18653/v1/2022.acl-long.485
https://doi.org/10.18653/v1/2022.acl-long.485

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitation section

�3 A2. Did you discuss any potential risks of your work?
ethical statement

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
abstract and introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
experiment section

�3 B1. Did you cite the creators of artifacts you used?
experiment section

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
they’re commonly used datasets

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
they’re commonly used datasets

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
they’re commonly used datasets

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
they’re commonly used datasets

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
they’re commonly used datasets

C �3 Did you run computational experiments?
experiment

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
experiment

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10464

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
experiment

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
experiment

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
experiment

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10465

