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Abstract
Syntactically controlled paraphrase generation
requires language models to generate para-
phrases for sentences according to specific syn-
tactic structures. Existing fine-tuning methods
for this task are costly as all the parameters
of the model need to be updated during the
training process. Inspired by recent studies on
parameter-efficient learning, we propose Parse-
Instructed Prefix (PIP), a novel adaptation of
prefix-tuning to tune large pre-trained language
models on syntactically controlled paraphrase
generation task in a low-data setting with sig-
nificantly less training cost. We introduce two
methods to instruct a model’s encoder prefix to
capture syntax-related knowledge: direct ini-
tiation (PIP-Direct) and indirect optimization
(PIP-Indirect). In contrast to traditional fine-
tuning methods for this task, PIP is a compute-
efficient alternative with 10× times less learn-
able parameters. Compared to existing prefix-
tuning methods, PIP excels at capturing syn-
tax control information, achieving significantly
higher performance at the same level of learn-
able parameter count.

1 Introduction

Syntactically controlled paraphrase generation
(SCPG) has attracted increasing attention as it can
diversify the generated paraphrases (Iyyer et al.,
2018; Huang and Chang, 2021; Sun et al., 2021).
Given an input sentence and a target syntax spec-
ification, an SCPG model aims to generate para-
phrases that satisfy the specific syntax requirement.
Such generation systems are promising in benefit-
ing multiple application areas in natural language
processing (NLP), such as text summarization (Fan
et al., 2018), dialogue systems (Niu and Bansal,
2018; Gao et al., 2020), diverse question genera-
tion (Yu and Jiang, 2021), creative generation (Tian
et al., 2021), and improving the robustness of mod-
els (Iyyer et al., 2018; Huang and Chang, 2021).

However, prior studies on SCPG mainly explore
fine-tuning strategies, which require updating the

parameters of the entire language model to adapt
to the newly included syntax information. There-
fore, many previously proposed methods suffer
from tremendous training cost (Lewis et al., 2019;
Raffel et al., 2020; Brown et al., 2020). With
the recent rise of larger pre-trained language mod-
els (PLMs), this problem has become even more
imminent. Nevertheless, a lightweight and more
resource-efficient tuning method would allow eas-
ier application of large PLMs on the SCPG task.

Resource-efficient training methods such as
prompt-tuning and prefix-tuning (Li and Liang,
2021; Lester et al., 2021) have proven to be ef-
fective in tuning large PLMs on various NLP tasks,
such as text classification (Liu et al., 2021a), se-
quence labeling (Liu et al., 2021a), and summariza-
tion (Li and Liang, 2021). Prefix-tuning freezes
a PLM’s parameters and optimizes a small task-
oriented continuous prefix that is prepended to the
model’s Transformer layers. It is a promising al-
ternative to fine-tuning in a low-data setting with
significantly fewer learnable parameters. However,
no previous literature has explored the potential of
prefix-tuning on the SCPG task.

In light of the lack of previous studies, we
are amongst the first to study the application of
resource-efficient training methods on the SCPG
task. Our work has two main contributions.
To begin with, we are among the first to study
prefix-tuning’s application on the SCPG task as
a compute-efficient alternative for fine-tuning. Sec-
ondly, we propose parse-instructed prefix (PIP),
a novel adaptation of prefix-tuning for enhanced
syntax control in paraphrase generation. Similar
to prefix-tuning, PIP freezes all parameters of a
PLM and only optimizes the prefix parameters, re-
ducing the number of tune-able parameters to al-
most 10× less than that required for fine-tuning.
Prefix-tuning methods initialize the prefix as con-
tinuous and completely free parameters. For the
SCPG task, this means that the prefix would need

10372



to learn the syntax control from scratch, since the
PLMs were not pre-trained on any syntax-related
task. In contrast, PIP provides syntax-related guid-
ance to the prefix, allowing for better capturing of
syntax knowledge. Specifically, we introduce two
methods to guide the process of syntax knowledge
capturing: direct initiation and indirect optimiza-
tion. We prove that prefix-tuning-based methods
achieve promising performance in a low-data set-
ting with significantly fewer learnable parameters.
In addition, our proposed PIP methods outperform
prefix-tuning at the same level of training cost.1

2 Related Work

Syntactically controlled paraphrase generation.
For the SCPG task, given a source sentence and a
target syntax structure, a language model is trained
to output a paraphrase sentence of the source sen-
tence that (1) is semantically similar to the source
sentence, and (2) conforms to the given target syn-
tax structure, or the “syntax control”. Prior works
mainly adopted encoder-decoder model structures
and used sequence-to-sequence training for the
SCPG task (Iyyer et al., 2018; Kumar et al., 2020;
Huang and Chang, 2021; Sun et al., 2021), while
exploring different means to include syntax control
signal during training. The first type of approach
encodes the source sentence and the target syntactic
tree separately, then concatenates them at decoder
input (Iyyer et al., 2018; Kumar et al., 2020). The
second type of approach concatenates linearized
target constituency parse and source sentence at
model input (Huang and Chang, 2021; Huang et al.,
2022; Sun et al., 2021). However, the aforemen-
tioned methods require updating all model parame-
ters during tuning at a high training cost.

Prompt-tuning and prefix-tuning. Prompting
(Brown et al., 2020; Sun and Lai, 2020) provides
PLMs with a discrete task-specific “prompt” to
generate task-related outputs without task-specific
fine-tuning. Prompt-tuning-based methods (Liu
et al., 2021b; Qin and Eisner, 2021; Lester et al.,
2021; Vu et al., 2022; Min et al., 2021), Prefix-
Tuning (Li and Liang, 2021) and P-Tuning v2 (Liu
et al., 2021a) derived from prompting and propose
to only optimize a small sequence of continuous
vectors. However, since prefix-tuning learns a pre-
fix that was initiated as a continuous vector with
completely free parameters, the prefix would need

1Our code for this work is available at https://github.
com/uclanlp/PIP

Figure 1: Structure of the prefix-tuning method.

to learn task information from scratch during train-
ing. In addition, the training process for prefix-
tuning does not allow for incorporation of any task-
specific guidance. In summary, existing prefix-
based methods fail to consider both specific task
instruction and model-learned knowledge.

3 Method

Problem formulation. Following previous stud-
ies (Iyyer et al., 2018; Huang and Chang, 2021;
Huang et al., 2022), we use an encoder-decoder
model structure and utilize the constituency parse
as the control signal. Denote the source sentence
as ssrc, the target parse as t, and the target sentence
as stgt. The goal of an SCPG model is to generate
the target sentence stgt that is semantically similar
to ssrc while conforming to the syntax of t. In our
study, the model is provided with ssrc and t at in-
put, and is supervised by the target sentence stgt at
output during training. Notice that previous meth-
ods (Sun et al., 2021; Huang et al., 2022) mainly
fine-tune all PLM parameters and therefore suffer
from high training costs.

Prefix-tuning. We investigate a resource-
efficient method for training an SCPG model
based on the prefix-tuning method (Li and Liang,
2021; Liu et al., 2021a). Li and Liang (2021)
freezes all pre-trained LM parameters and only
optimizes a small sequence of continuous prefixes
that are then prepended to keys and values of the
attention module in the input layer of the model’s
encoder and decoder. Liu et al. (2021a) further
extends this approach and applies prefixes to
every layer of the model encoder and decoder.
We follow the previous approach (Li and Liang,
2021) and consider prepending additional prefix
parameters to the key and value matrices of each
Transformer layer in the PLM. Specifically, we
establish a prefix p with length |p| for a PLM
with l layers and hidden dimension dim(h) and
produce a set of key prefixes Kp = {k1, k2, ..., kl}
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(a) Direct Parse-Instructed Prefix (PIP-Direct). (b) Indirect Parse-Instructed Prefix (PIP-Indirect).

Figure 2: Structure of the proposed PIP-Direct and PIP-Indirect Models. Note that we only visualize the encoder of
the BART model. The model decoder follows the regular prefix-tuning setting without modifications. In (a), the
value prefix of the last encoder layer is directly initiated by the model encoding of the target parse. In (b), the Parse
Encoding Loss (PEL) is calculated between the prefix-attended parse encoding and the model parse encoding.

and a set of value prefixes Vp = {v1, v2, ..., vl},
where ki, vi ∈ |p| × dim(h) denotes the key and
value prefixes of layer i, respectively. For an
encoder-decoder PLM, the key and value prefixes
will then influence the model’s encoding and
decoding process through the attention mechanism,
where the prefixes directly attend with the hidden
states of the model. Figure 1 visualizes structure
of the prefix-tuning method.

3.1 Parse-Instructed Prefix

Intuition. In prefix-tuning, the learned prefix acts
as a context that influences the encoding of inputs
through extracting task-related information from
the PLM (Li and Liang, 2021). However, as prefix-
tuning optimizes a prefix with completely free pa-
rameters, the prefix is learned from scratch and is
unable to receive task-specific guidance during tun-
ing. Since we use the constituency parse of target
paraphrase as the control signal, which the PLM
has never seen during pre-training, it will take a
long time for the prefix to adapt to and learn the
encoding for the control syntax. Specifically, for
the SCPG task, the prefix will need to learn to:
(1) capture semantic and syntax information from
model input, and (2) combine the extracted seman-
tic and syntax knowledge to produce an encoding
for paraphrase generation under target syntax con-
trol. Since the prefix is implemented as pre-pended
parameters for keys and values in Transformer lay-
ers, it first retrieves semantic and syntax informa-
tion by attending to the source sentence and target
parse in model input. Ideally, the prefix will then
combine both the retrieved semantic and syntax in-
formation by influencing the output encoding. The
combined information will then be captured by the
decoder to output a paraphrase that conforms to

the syntactic control. Therefore, guiding the prefix
at encoder output to capture and leverage syntax
knowledge will enhance the syntax control signal
for improved performance on the SCPG task.

Therefore, we propose parse-instructed prefix
(PIP) at the model’s last encoder layer to “instruct”
and augment the prefix’s ability to capture task-
specific syntax control for paraphrase generation.
Specifically, we introduce two PIP-based methods
for better capturing of syntax control information:
Direct Parse-Instructed Prefix (PIP-Direct) and In-
direct Parse-Instructed Prefix (PIP-Indirect). Differ-
ent from prefix-tuning, where all prefix parameters
are learned from scratch, PIP instructs the value pre-
fix vm of the last encoder layer with task-specific
information. Through the attention mechanism, the
instructed value prefix will help to better capture
syntax information in the model’s encoding output.

Direct parse-instructed prefix. We propose Di-
rect Parse-Instructed Prefix (PIP-Direct) as an intu-
itive way to enhance knowledge on syntax control
at model encoding. PIP-Direct directly updates the
parameters of the value prefix at the last encoder
layer with the model’s encoding of the target parse.
That is, for an input with target syntax t and an
LM encoder with m layers, we first retrieve the
model’s encoding output of the target parse, which
we denote as e(t). Then, for the set of model en-
coder’s value prefixes Vp = {v1, v2, ..., vm}, we
replace the value prefix of the last encoder layer
with the parse encoding e(t). The final value prefix
prepended to the LM value state is then:

v∗i =

{
e(t), if i = m
vi, otherwise

This method directly augments syntax-related in-
formation at the last model encoder layer, which
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Dataset Model # Params BLEU ↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ TMA↑ TED-3↓

ParaNMT

Seq2seq 139.42M 57.17 79.20 64.31 78.81 89.94 0.59

Prefix-Tuning 15.83M 47.75 73.85 55.76 73.17 82.75 1.12
PIP-Direct 15.83M 49.61 74.84 57.39 74.26 85.81 0.90
PIP-Indirect 18.78M 50.82 75.58 58.46 75.00 86.20 0.87

Pan

Seq2seq 139.42M 42.68 68.50 47.59 67.45 76.61 1.54

Prefix-Tuning 15.83M 38.11 66.29 43.66 64.47 66.75 2.41
PIP-Direct 15.83M 39.72 67.29 45.24 65.73 72.75 1.95
PIP-Indirect 18.78M 40.44 67.38 45.48 65.91 72.95 1.98

MRPC

Seq2seq 139.42M 48.17 71.95 53.06 70.15 87.24 1.33

Prefix-Tuning 15.83M 43.21 69.63 49.00 66.90 77.34 2.42
PIP-Direct 15.83M 45.00 70.13 50.66 68.04 83.65 1.88
PIP-Indirect 18.78M 45.33 70.47 50.71 68.15 83.49 1.89

Quora

Seq2seq 139.42M 49.93 78.45 58.29 77.54 79.64 0.84

Prefix-Tuning 15.83M 42.4 74.94 51.21 73.49 70.69 1.40
PIP-Direct 15.83M 46.33 77.20 55.55 76.00 76.00 1.07
PIP-Indirect 18.78M 45.78 76.68 54.36 75.39 77.34 1.04

Table 1: Experiment results. “# Params” denotes the number of learnable parameters for each method. The PIP
methods achieve highest performance amongst the three prefix-based methods on all valid and test datasets.

enables the key prefix of the same layer to cap-
ture the augmented syntax knowledge through at-
tention. Structure of the direct initiation PIP is
demonstrated on the left of Figure 2a.

Indirect parse-instructed prefix. We propose
Indirect Parse-Instructed Prefix (PIP-Indirect) as
an alternative way to guide the capturing of target
syntax knowledge at the last encoder layer. In-
stead of directly replacing the prefix parameters,
we utilize the Parse Encoding Loss (PEL) to indi-
rectly augment the prefix’s ability to capture syntax
knowledge. Given a parse input, the prefix will
influence the original model encoding by attending
to the parse input, resulting in a modified encoding
of the parse information. We can therefore aug-
ment the prefix’s syntax information capturing by
improving the ability to reconstruct the original
parse encoding from the prefix-modified encoding.
For a target parse t with encoding e(t), we can
obtain its prefix-modified encoding through an ad-
ditional prefix self-attention layer A(·), in which
the prefix directly attends to the parse encoding
e(t). The prefix attention layer has the same struc-
ture as a prefix Transformer layer in the model,
with the key prefix km and value prefix vm of the
last encoder layer m prepended to the attention
key and value. We denote the output encoding of
this prefix self-attention layer as A(km, vm, e(t)).
To examine the ability to reconstruct the original
parse encoding e(t) from the prefix-modified en-
coding A(km, vm, e(t)), we leverage a learnable

projection head, denoted by H(·) : dim(h) →
dim(h), to approximate the process of reconstruc-
tion. We denote the output of the projection head as:
ϕ(km, vm, e(t)) = H(A(km, vm, e(t))). Then, we
establish the PEL loss by measuring the projected
output’s cosine distance, or the reconstructed parse
encoding, with the original model encoding of tar-
get parse, e(t). The PEL loss is mathematically
formulated as:

LPEL = Distcos(ϕ(km, vm, e(t)), e(t)),

where Distcos denotes the cosine distance. By
integrating the PEL loss with the LM output loss
during optimization, we can indirectly guide the
prefix to better capture syntax-related information
in model encoding. The structure of PIP-Indirect is
demonstrated on the right of Figure 2b.

4 Experiments

We conducted experiments on our proposed PIP-
Direct and PIP-Indirect methods, as well as two
baseline methods for comparison. All four training
methods are implemented on the BART-base model
(Lewis et al., 2019). For all models, we concatenate
the source sentence and target parse as input, and
train the models to output a paraphrase that follows
the given target syntax.

Dataset. We use ParaNMT (Chen et al., 2019) as
the training and validation dataset for all models.
Specifically, we sample 30,000 and 6,400 data en-
tries from ParaNMT as our training set and dev set,
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respectively. To test the models’ abilities to gener-
ate paraphrases with syntax control in unseen do-
mains, we follow previous work (Huang and Chang,
2021; Huang et al., 2022) and apply the trained
models on three mainstream test datasets: Quora
(Iyer et al., 2017), MRPC (Dolan et al., 2004), and
PAN (Madnani et al., 2012).

Evaluation metrics. Conforming to prior works
(Huang et al., 2022; Sun et al., 2021), we evaluate
generations of models on both alignment-based and
syntactic conformation metrics. Alignment-based
metrics measure the similarity between target para-
phrases and model-generated paraphrases. We con-
sider 4 alignment-based evaluation metrics: BLEU
(Papineni et al., 2002), ROUGE-1, ROUGE-2, and
ROUGE-L (Lin, 2004). Syntactic conformation
metrics measure the quality of syntactic control in
generated paraphrases. We consider 2 syntactic
conformation evaluation metrics: Template Match-
ing accuracy (TMA) and Tree-Edit Distances score
(Zhang and Shasha, 1989) at height three (TED-3).

Baselines. We establish 2 baseline training meth-
ods for our study. The first baseline is the vanilla
fine-tuning method that updates all parameters in
the PLM, which we denote as Seq2Seq, In addition,
we consider prefix-tuning, which freezes the PLM
and learns a small set of parameters as the prefix, as
the second baseline. Experiments on prefix-tuning
in this study are based on our implementation of Li
and Liang and Liu et al.’s work.

Implementation details. We train all baselines
and our proposed PIP methods for 10 epochs with
batch size 64. At decoding stage, we use beam
search with beam size 4. We use the AdamW op-
timizer (Loshchilov and Hutter, 2017) and apply
gradient clipping for training all models. For fine-
tuning, we set learning rate to 10−5 with a linear
scheduler. For prefix-tuning and PIP methods, we
set learning rate to 3× 10−4.

Results. Results of experiments show that our
proposed PIP methods outperform prefix-tuning
on the validation dataset and all test datasets by a
significant margin in a low-data setting and at the
same level of training cost. Note that we separate
results of the “Seq2Seq” model just for reference.
We observe that PIP-Indirect achieves highest per-
formance across all metrics among the 3 prefix-
tuning-based approaches on the validation set of
ParaNMT, as well as on testsets Pan and MRPC.

Model BLEU ↑ TMA↑ TED-3↓
PIP-Direct 49.61 85.81 0.90
PIP-Indirect 50.82 86.20 0.87
Prefix-Tuning 47.75 82.75 1.12
Prefix-Tuning-Large 47.67 82.94 1.10

Table 2: Ablation experiment results.

PIP-Direct outperforms other prefix-tuning-based
methods for the Quora dataset.

Analysis. We conduct additional ablation exper-
iments to further validate experimental results.
Specifically, we examine if PIP-Indirect’s perfor-
mance gain is due to the effectiveness of design
or the slightly higher parameter count compared
to prefix-tuning. We experiment on prefix-tuning
with an additional linear layer during prefix con-
struction, denoted as Prefix-Tuning-Large. Prefix-
Tuning-Large has 31.56M learnable parameters,
12.78M more than the PIP-Indirect method.

Table 2 demonstrates results of the ablation ex-
periment on ParaNMT’s validation dataset. We ob-
serve that although having more parameters, Prefix-
Tuning-Large fails to outperform the PIP methods.
In addition, Prefix-Tuning-Large even fails to out-
perform the original Prefix-Tuning method, which
only has 15.83M parameters. This provides further
insights that 1) a larger number of parameters in
prefix-tuning-based methods does not guarantee
performance gain on downstream tasks, and 2) out-
standing performance of the PIP methods on SCPG
task is due to the effectiveness of method design.

5 Conclusion

This research is amongst the first to study resource-
efficient training methods for syntactically con-
trolled paraphrase generation tasks. In this
work, we proposed Parse-Instructed Prefix (PIP), a
compute-efficient method that only requires 10×
less learnable parameters than traditional fine-
tuning methods. We introduce Direct and Indi-
rect PIP methods to further improve prefix-tuning’s
performance by providing task-specific guidance
and augmenting task-related knowledge at the fine-
tuning stage. Through extensive experiments, we
find out that both PIP-Direct and PIP-Indirect out-
perform prefix-tuning in a low-data setting at the
same level of parameter count, and are promising
as a resource-efficient alternative to fine-tuning.
With ablation studies, we further validate that the
performance gain of the proposed PIP methods is
due to the effectiveness of the design.
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Limitations

We identify some limitations of our study. First,
due to a lack of computing resources, we were
not able to experiment with even larger pre-trained
language models such as GPT-2 and GPT-3. In
future explorations, we would like to seek the op-
portunity to investigate the potential of instructed
prefix-tuning on even larger-scale language models
across a variety of generation tasks. Second, since
our work are amongst the first to explore the appli-
cation of prefix-tuning on the task of syntactically-
controlled paraphrase generation, we were not able
to identify state-of-the-art prior works on the same
subject in the field to establish comparison with.
We believe, however, that with our demonstration
of promising application of prefix-tuning for SCPG,
researchers will soon propose new ideas to utilize
prefix for tuning large PLMs on this task at even
lower training costs.

Ethics Considerations

The experimented and proposed model in this study
is based on large-scale Pre-trained Language Mod-
els (PLM). Recent studies have revealed that large
PLMs that are trained on large textual corpora
might learn or even amplify the bias existing in
its training dataset. Therefore, since our method is
established on top of a large PLM that is potentially
at risk of demonstrating or amplifying bias, we
recommend that potential harm and biases be eval-
uated before deploying our method in real-world
situations.
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