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Abstract

Linguistic annotations, especially for controver-
sial topics like hate speech detection, are fre-
quently contested due to annotator backgrounds
and positionalities. In such situations, pre-
serving this disagreement through the machine
learning pipeline can be important for down-
stream use cases. However, capturing disagree-
ment can increase annotation time and expense.
Fortunately, for many tasks, not all examples
are equally controversial; we develop an ac-
tive learning approach, Disagreement Aware
Active Learning (DAAL) that concentrates an-
notations on examples where model entropy
and annotator entropy are the most different.
Because we cannot know the true entropy of an-
notations on unlabeled examples, we estimate
a model that predicts annotator entropy trained
using very few multiply-labeled examples. We
find that traditional uncertainty-based active
learning underperforms simple passive learn-
ing on tasks with high levels of disagreement,
but that our active learning approach is able to
successfully improve on passive learning, re-
ducing the number of annotations required by
at least 24% on average across several datasets.

1 Introduction

Disagreement in annotations is natural for humans,
often depending on one’s background, identity, and
positionality. This is especially salient when build-
ing classifiers for hate speech, toxicity, stereotypes,
and offensiveness, where recent work has shown
the importance of modeling annotator diversity
and accounting for the full distribution of annota-
tions rather than just a “majority vote” label (Plank,
2022; Sap et al., 2022; Uma et al., 2021a; Zhang
et al., 2021b). However, collecting annotations in
high-disagreement scenarios is expensive in time,
effort, and money, because modeling annotator un-
certainty may require collecting many labels for
each example.

∗Equal contribution.
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Figure 1: Utility of annotations when annotators dis-
agree/agree (rows) and when the model is unconfi-
dent/confident (columns). When model uncertainty is
well-calibrated with annotator uncertainty, no more an-
notations are needed. However, additional annotation(s)
can be advantageous when the model is underconfident
(e.g., uncertain on high agreement examples early in
training) or overconfident (i.e., overly certain on high
disagreement examples). Examples are edited to remove
swears and slurs, and the high annotator uncertainty ex-
ample is lightly paraphrased for anonymity.

To decrease labeling costs, we turn to active
learning, a machine learning framework that selec-
tively elicits annotations on examples that are most
likely to improve a model’s performance while min-
imizing annotation costs (Hanneke, 2014; Settles,
2009, i.a.). Many active learning approaches select
examples to label based on some measure of model
uncertainty, with the aim of driving down model
uncertainty as quickly as possible.
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However, in the case of potential annotator dis-
agreement, uncertainty-based sampling is not ob-
viously a good strategy. Intuitively, an algorithm
should collect annotations on examples for which
the model uncertainty is significantly different from
the annotator uncertainty, so these new annotations
are able to help calibrate the model. Similarly, an
active learning algorithm might plausibly request
new labels on already labeled samples to better
model the full distribution of possible annotations.
This raises a “Goldilocks problem”: on examples
with complete annotator agreement, we do not need
more than one annotation, while on examples with
complete disagreement, no annotations are needed;
it is precisely those examples in the middle—some,
but not perfect agreement—on which multiple an-
notations are potentially useful.

In this paper, we develop DAAL (Disagreement
Aware Active Learning),1 an active learning al-
gorithm for training classifiers to predict full la-
bel distributions on tasks with likely disagreement.
DAAL first builds an entropy predictor that esti-
mates, for a given example, how much annotator
disagreement there is likely to be on that example.
Then, using this entropy predictor, DAAL trains a
task predictor that queries examples for which the
current task predictor’s current entropy is most dif-
ferent from its estimated human entropy (Figure 1).
We evaluate DAAL on several text classification
problems related to English hate speech and toxic-
ity detection, finding that:

1. Traditional uncertainty-based active learning
algorithms under-perform pure random sam-
pling, especially on tasks with high annotator
disagreement, and especially when the goal is
to estimate the full label distribution (rather
than just the majority vote label);

2. It is possible to estimate a high quality en-
tropy predictor using a much smaller number
of samples than is needed to learn the task
predictor, making DAAL a feasible approach.

3. DAAL can effectively reduce the number of
needed annotations by at least 24% on average
to achieve the same predictive performance,
in comparison to the strongest competitor.

4. DAAL automatically selectively re-annotates
the same example multiple times, and also
sometimes re-annotates examples specifically
to increase the task predictor’s uncertainty,
both typically during later phases of learning.

1https://github.com/ctbaumler/daal

2 Related Work

Data collection has always been a challenge in NLP,
especially for subjective and ambiguous topics such
as stereotypes, biases, hate speech, and toxicity.
It has been shown that examples annotators dis-
agree on can be valuable inputs to classifiers, and
that disagreement is more than just noise (Basile
et al., 2021; Leonardelli et al., 2021; Larimore et al.,
2021; Pavlick and Kwiatkowski, 2019; Palomaki
et al., 2018). Moreover, having a diverse annotator
pool can be crucial to performance (Almanea and
Poesio, 2022; Akhtar et al., 2021; Sotnikova et al.,
2021). Baan et al. (2022) and Plank (2022) demon-
strate that, when the goal is to produce full label dis-
tributions, evaluating classifiers against the major-
ity vote can give misleading results. Both argue that
dataset developers should release un-aggregated la-
bels with datasets. Recent approaches to learning
to predict full-label distributions—rather than just
majority vote labels—often train on “soft labels,”
treating each annotation as a separate example, in-
stead of majority vote labels (Davani et al., 2022;
Fornaciari et al., 2021; Uma et al., 2021b; Klenner
et al., 2020; Aroyo and Welty, 2013).

One of the most commonly deployed approaches
to minimize the number of collected annotations to
train a model is active learning, where the main idea
is to collect only those annotations that might be
helpful for improving model performance. Active
learning algorithms operate iteratively, where in
each round a small number (often one) of examples
are requested to be annotated. These annotated
examples are added to a training set, a model is
trained on that dataset, and then the process repeats.
One popular strategy for selecting which exam-
ples to have annotated in each round is uncertainty
sampling, where the model queries on examples
on which it is the least certain (Ramirez-Loaiza
et al., 2017; Culotta and McCallum, 2005; Lewis,
1995), with uncertainty often measured by the cur-
rent entropy of the label distribution produced by
the model at the current round.

3 Learning with Annotator Disagreement

In this section, we motivate and formalize the prob-
lem we aim to solve, describe passive and active
learning baselines, and introduce our algorithm,
DAAL (Disagreement Aware Active Learning).
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3.1 Motivation

When considering a task and dataset with (poten-
tial) annotator disagreement, we aim to capture
this disagreement by training a classifier that pre-
dicts a full-label distribution, rather than a single
label. When classifiers are part of a larger system,
predicting full-label distributions enables classifier
uncertainty to be used directly in that system, for
instance to trade-off false positives and false nega-
tives under deployment-specific cost models.

Beyond simply learning a classifier that can pre-
dict label distributions, we also aim to minimize the
number of samples annotated. There are standard
reasons for doing so, namely that annotation costs
time and money. Beyond that, however, annotation
of data related to hate speech, toxic language, and
related tasks, comes with an additional burden to
annotator mental health. And so we also wish to
minimize the burden on annotators.

3.2 Task Definition

To formalize the task at hand, let X be an input
space (e.g., over social media posts), Y be an out-
put space (e.g., over levels of toxicity), and let
∆(Y ) be the space of distributions over Y (i.e., dis-
tribution over toxicity levels, possibly obtained by
querying multiple annotators).

The learning problem is defined by a fixed but un-
known distribution PX(x) over X—representing
the sampling distribution of inputs—and an ora-
cle labeling distribution PY |X(y|x) over labels y
given an input x, where the distribution reflects the
fact that different annotators may provide different
labels. In general, the learning goal is to learn a
task predictor fθ : X → ∆(Y ) that minimizes an
expected loss over xs drawn from PX and labels
drawn from PY |X given that x. Because we are in-
terested in predicting a soft label distribution, and
not a single label, we measure loss using a distribu-
tion measure: Jensen-Shannon divergence between
PY |X and fθ on each x:

L(fθ) = Ex∼PX
JS

(
PY |X(·|x), fθ(x)

)
(1)

JS(p1, p2) = 1
2

(
KL(p1||p̄) + KL(p2||p̄)

)
(2)

where p̄(z) = 1
2

(
p1(z) + p2(z)

)

The active learning variant of this problem sup-
poses that we have access to a pool of unlabeled
data U ⊂ X sampled from PX , a query budget
B, as well as query access to PY |X : given an x,
we can draw a single label y ∼ PY |X(·|x), at a
cost. The task is: given U , B, and sample access to

PY |X , learn a soft classifier fθ : X → ∆(Y ) that
minimizes Eq 1 using at most B queries to PY |X .

3.3 Passive Learning Baseline
The simplest approach to learning a classifier in the
framework described in the previous subsection is
passive learning: pick a random subset of examples
from U , label them all, and train a classifier on the
resulting dataset. There is, however, a subtlety in
the disagreement case even for passive learning: is
it better to select B examples and to query PY |X
once for each one, or is it better to select B/N ex-
amples and to query PY |X N times for each?2 We
consider both modes, which we refer to as “single”
(one at a time) and “batched” (N at a time).

Formally, passive learning first selects a pool
DX ⊂ U uniformly at random of size B/N , and,
for each x ∈ D, queries PY |X(·|x) independently

N times to obtain labels y(x)1 , . . . , y
(x)
N . Following

standard practice (see § 2), we then construct a
labeled dataset D = {(x, y(x)n ) : x ∈ DX , 1 ≤
n ≤ N} and train a classifier fθ on D.

3.4 Entropy-Based Active Learning Baseline
Entropy-based active learning repeatedly queries
the oracle PY |X each round, selecting an example
for annotation based on the entropy of the current
classifier. This is formally specified in Alg. 1. At
each of B rounds, a single example xb is selected
as the one on which the current classifier has
maximum uncertainty. This example is then given
to the oracle PY |X and a label yb is sampled. This
labeled example is added to the dataset D and
the process repeats. Similar to passive learning,
entropy-based active learning can be run either
in “single” mode (one annotation at a time) or
“batched” (N at a time).

In practice, entropy-based active learning can be
computationally infeasible: training a new clas-
sifier after every new sample is costly, and re-
evaluating the entropy of all of U after every new
sample is also costly. To reduce this computational
cost—at the price of some loss in performance—we
only retrain the classifier and re-evaluate entropy
every 10 rounds. (This is equivalent to selecting
the 10 examples with the highest entropy in each
round.)

2This conundrum applies even in the setting without dis-
agreement because of label noise and has been studied theo-
retically (Khetan et al., 2018) and empirically (Zhang et al.,
2021a; Dong et al., 2021).
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Algorithm 1: Entropy-Based AL
Input: Unlabeled data U , budget size B

1 D1 ← {}
2 for b = 1 . . . B do
3 fθ ← task classifier trained on Db

4 xb ← argmaxx∈U H( fθ(x) )
5 yb ∼ PY |X(·|xb) – query oracle
6 Db+1 ← Db ∪ {(xb, yb)}
7 return fθ

3.5 Our Approach:
Disagreement Aware Active Learning

The intuition behind entropy-based active learning
is that driving down the entropy of fθ is a good
idea and that the most effective way to drive down
that entropy is to elicit labels on samples on which
fθ currently has high entropy. Unfortunately,
while entropy-based active learning has been
incredibly effective at reducing labeling cost on
relatively unambiguous labels, we find that it often
performs worse than passive learning on tasks
where annotators disagree (§ 5.1). This likely
happens because when the goal is to predict a label
distribution, and the ground truth entropy of that
distribution is non-zero, then attempting to drive
the entropy of fθ to zero is potentially misguided.

Consequently, we need a new approach that
treats annotator uncertainty as a first-class citizen.
To gain an intuition of what such an algorithm
should do, consider an example where annotators
agree. Here, new labels will be the same as ex-
isting labels and thus only reinforce the model’s
predictions when added to training data. For an ex-
ample where annotators disagree, new labels will
potentially be quite different. When a newly sam-
pled label is surprising given the model’s current
predicted label distribution, this will increase the
model’s belief in the new label and decrease the
model’s certainty.

Querying based on different levels of annotator
uncertainty can affect model confidence, but this
is only necessary when the model’s level of con-
fidence is incorrect. If the model is certain on an
example that annotators agree on, then this is a war-
ranted level of confidence, and there is no need to
reinforce the correct distribution with more labels.
In the opposite case, the model’s uncertainty on
an example where humans disagree is justified, so
even if collecting more annotations could help in-
crease model certainty, this would be undesirable.

Therefore, the useful examples to query on are
those with a mismatch between the level of annota-
tor uncertainty and model uncertainty, rather than

Algorithm 2: DAAL
Input: Unlabeled data U , budget size B,

entropy-predictor budget Bent and number of
entropy annotations N

1 DX ← Bent random samples from U

2 for x ∈ DX , n = 1 . . . N , sample y
(x)
n ∼ PY |X(·|x)

3 DH ← {(x,H({y(x)
n }Nn=1) : x ∈ X}

4 fent ← entropy predictor trained on DH

5 D1 ← {(x, y(x)
n ) : x ∈ X,n = 1 . . . N}

6 for b = 1 . . . B −Bent ×N do
7 fθ ← task classifier trained on Db

8 xb ← argmaxx∈U |H(fθ(x))− fent(x)|
9 yb ∼ PY |X(·|xb)

10 Db+1 ← Db ∪ {(xb, yb)}
11 return fθ

just high model uncertainty. This suggests a vari-
ation of entropy-based active learning (Alg. 1) in
which xb is selected not to maximize model un-
certainty, H(fθ(x)) but to maximize the difference
between model uncertainty and human uncertainty:

argmax
x∈U

|H
(
fθ(x)

)
−H

(
PY |X(·|x)

)
| (3)

Task model’s predicted label dist. on x

Ground truth label distribution on x

Unfortunately, we cannot compute Eq 3 because
we do not know H(PY |X(·|x)) and to estimate
it would require querying PY |X multiple times—
exactly what we are trying to avoid. To address this,
DAAL trains an entropy predictor that estimates
H(PY |X(·|x)) for any x, and uses this estimated
entropy in place of the true entropy in Eq 3. For-
tunately, we find that this entropy predictor can be
trained with a sufficiently small number of samples
so as not to overshadow the benefits of using active
learning (see §5.3).

Our proposed algorithm is detailed in Alg. 2. In
the beginning, DAAL builds an initial dataset for
estimating an entropy predictor by querying N an-
notations for Bent random samples, similar to pas-
sive learning. This entropy predictor is a regressor
trained to predict the observed empirical entropy of
those N annotations given an input x. The remain-
der of DAAL is parallel to entropy-based active
learning (Alg. 1). In each round, an example is
selected based on the absolute difference between
model entropy and estimated human entropy:

xb = argmax
x

|H
(
fθ(x)

)
− fent(x) | (4)

Task model’s predicted label dist. on x

Predicted annotator entropy on x

Every time DAAL queries for more annotations,
a new fθ is trained from scratch, and the proce-
dure is repeated until the annotation budget is ex-
hausted. If needed, DAAL may query the same
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Measuring Hate Speech Wikipedia

Characteristics Respect Dehumanize Genocide Toxicity Toxicity-5

Number of Total Examples 17, 282 17, 282 17, 282 20, 000 20, 000
Avg Number of Annotations per Example 3.35 3.35 3.35 10.0 5.0
Number of Examples Test Set 1, 778 1, 778 1, 778 2, 000 2, 000
Probability Two Annotators Disagree 0.520 0.689 0.371 0.524 0.522

Table 1: Dataset statistics for MHS and Wikipedia tasks.

examples multiple times, but it is not required to
waste the annotation budget on examples where all
useful information is learned after one annotation
(or zero). When the annotator entropy is zero (i.e.,
all annotators agree on a single label), DAAL re-
duces to simple uncertainty sampling. As in the
case of entropy-based active learning, retraining fθ
and recomputing model entropy after every sample
is computationally expensive, so in practice, we
retrain and re-evaluate only after every 10 rounds.

4 Experimental Setup

In this section, we introduce the datasets we use
and experimental details.

4.1 Datasets

We conduct experiments in simulation by start-
ing with datasets with multiple annotations per
example and returning one of these at random
when the oracle is called. We choose two datasets
with multiple labels for each attribute: Measuring
Hate Speech (MHS) (Sachdeva et al., 2022) and
Wikipedia Talk (Wulczyn et al., 2017); basic data
statistics are summarized in Table 1.

The MHS dataset was collected from YouTube,
Twitter, and Reddit examples. It has nine scale
attributes that contribute to their definition of hate
speech, from which we select three for our experi-
ments: Dehumanize (which has high levels of hu-
man disagreement), Respect (which has medium
levels), and Genocide (which has low levels).
Each attribute is labeled for every example on a
five-point Likert scale from strongly disagree to
strongly agree. There are 50k examples, each of
which is annotated between 1 and 6 times in the
main dataset (see Figure 17); for our simulated
experiments we only consider those with 3− 6 an-
notations, resulting in around 20k total examples.

The Wikipedia dataset was created as a result
of the Wikipedia Detox Project.3 It has three at-

3https://meta.wikimedia.org/wiki/Research:
Detox/Data_Release

tributes of which we select one for experiments—
Toxicity—which is also rated on a five-point Lik-
ert scale from very toxic to very healthy. This data
consists of 100k examples with 10 annotations per
example in almost all cases; we randomly downse-
lect to 20k examples for congruity with MHS.

4.2 Experimental Details

We measure the classifier’s performance accord-
ing to Jensen-Shannon divergence (JS), defined
in Eq 2.4 We introduce an oracle trained on the
full dataset for each task to calibrate model perfor-
mance against the best possible.

For each method, we finetune RoBERTa-base
(Liu et al., 2020). We finetune the task model each
round from scratch, which worked better than con-
tinuing training in preliminary experiments. We
use early stopping with a tolerance of 1 based
on the KL divergence between the model’s pre-
dicted distribution and the distribution of annotator
votes on a held-out set, training for a maximum
of 50 epochs. For DAAL’s entropy predictor, we
also finetune a RoBERTa-base model and use early
stopping with a tolerance of 5 based on the mean
squared error on the held-out set.

Each experiment’s result is averaged over 5 runs,
and we present 95% confidence intervals based on
these runs. For all algorithms, we disallow query-
ing on examples where all available annotations
are already in the training set.5

5 Results and Analysis

In this section, we present results for baseline meth-
ods (§5.1) and DAAL (§5.2). We also investigate
how the budget size and the number of annotations
per example affect the entropy predictor’s perfor-
mance (§5.3). In addition, we discuss in which sit-

4We additionally report total variational distance as well
as Macro F1 and accuracy in the Appendix.

5This issue only arises in simulation: in a real condition,
one could always query more. In practice, we found that re-
annotation queries were not frequent enough to raise concerns.
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Figure 2: JS divergence scores for two attributes from the MHS dataset for passive learning baselines and entropy-
based active learning (AL) baselines. For these experiments, we define N ≈ 3, which means that there are
approximately 3 annotations per example available in the data pool.6 Both baselines have two variations when
querying: “Batched” receives all 3 annotations per example while “Single” receives only one.

uations the models request additional annotations
for already-seen examples over new ones (§5.4).

5.1 How Do Levels of Disagreement Impact
Baselines?

To start, we seek to understand how levels of dis-
agreement impact the efficacy of passive and active
learner baselines. To do this, we compare high
and low disagreement attributes (Dehumanize and
Genocide). Learning curves on these tasks are
shown in Figure 2. First, we see that the level of
disagreement affects which approach is more ef-
fective. When annotators generally agree—as in
Genocide—the active learner works well, outper-
forming passive learning for a distribution measure,
JS divergence (Figure 2, right). Second, we see that
on the high disagreement attribute (Dehumanize),
active learning is worse than passive learning by a
significant gap (Figure 2, left). We find a similar
but weaker effect on accuracy-based measures in
§A.1. We also show that using hard labels signif-
icantly hurts baseline performance on our task in
§A.2.

In Figure 2, we can also compare the “batched”
mode (when the model queries examples with
N = 3 annotations simultaneously) and the “single”
mode (when the model queries annotations individ-
ually). We can see that, for the low disagreement
attribute, “single” active learning achieves compa-
rable JS to “batched”, but on average requires fewer
annotations to reach the minimum. For the high

Passive Active H(fθ)

Dataset Batch Single Batch Single

Dehumanize 2.05 1.80 > 7.60 > 2.32
Respect 1.44 1.25 3.52 > 1.47
Genocide > 4.20 > 1.25 > 2.80 > 1.28
Toxicity 1.46 > 1.20 0.97 > 1.32
Toxicity-5 > 4.18 > 1.25 0.90 > 1.36

Average > 2.67 > 1.35 > 3.16 > 1.55

Table 2: How many times more annotations the base-
lines require to achieve the same JS as DAAL.

disagreement attribute, the trend is less clear, but
in the next section, we show that indeed querying
a single annotation at a time is more effective for
DAAL.

5.2 Is DAAL Effective at Learning
Distributions?

To compare results with the baselines, for each
task we select the single strongest baseline from
passive learning and entropy-based active learning
to compare against.7 We measure improvement in
terms of the number of annotations needed for the
model to achieve within 5% of its best possible JS
divergence. Results are in Figure 3 and Table 2.

As we can see in Figure 3, DAAL achieves
competitive JS on fewer annotations on aver-

6As discussed in §4.1, we use a portion of the MHS dataset
that does not have a consistent number of annotations per
example. For simplicity, we report results on this dataset as
N = 3 as nearly 2

3
of examples had 3 annotations.
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Figure 3: Jensen-Shannon divergence vs the number of required annotations. The lines in red show DAAL’s
improvement in the number of annotations. They connect the first measurement where DAAL was within 5%
of its best JS to the point where the baseline achieves the same performance (if available). We compare DAAL
with the empirically determined best budget size (See §5.3) and best performing baseline. We show in the legend
labels whether the task model receives single or batched annotations for queried examples, the number of available
annotations per example, and (for DAAL) the size of the entropy predictor’s budget in annotations. The x-axis
includes the annotations in the entropy predictor’s budget.

age than all baselines. Other approaches might
achieve the same performance but require at least
26% more annotations on average. For instance,
DAAL achieves 0.225 JS divergence for the
Dehumanize attribute after approximately 566 an-
notations, while the best baseline needs 1022 an-
notations to achieve the same performance (80%
more). The one exception is on the Toxicity
dataset, which we explore in §5.3.

In some cases, as with the Genocide attribute,
the baseline models never get to the same perfor-
mance as DAAL. We observe no strong pattern
for DAAL working better or worse for high ver-
sus low disagreement attributes, suggesting that
it’s a “safe” option that can also be used in more

7Beyond the two simple active and passive learning base-
lines discussed in §3.3 and §3.4, we also considered BADGE
(Ash et al., 2020), an active learning method that samples a
diverse set of uncertain examples to annotate based on the
magnitude of the gradient in the final hidden layer. Using
BADGE’s default hyperparameters and with 200 epochs per
round (vs a limit of 50 for DAAL and the other baselines),
we found that with both BERT and RoBERTa BADGE never
outperformed our other baselines on datasets with annotator
disagreement. For example, the final JS divergence of BADGE
was 28% worse that the strongest baseline on MHS Respect,
and 7% worse on MHS Dehumanize.

traditional learning settings where there may not
be much disagreement.

5.3 Size of the Entropy Budget, Bent

We explore different budgets for the annotator en-
tropy predictor described in §3.5. We experiment
with budgets of 25, 100, and 200 examples on
MHS Respect. Since the entropy predictor must
be trained on multiply-annotated examples, our
goal is to ensure it can be trained with a very small
budget. The comparison of performances is shown
in Figure 4. In general, we see that the entropy
predictor can, indeed, be learned with relatively
few examples and that a budget of 100 examples is
near optimal. We confirm that this finding extends
to the Toxicity dataset in §A.4.

In §5.2, we noted a situation on the Toxicity
dataset when DAAL performs slightly worse (re-
quires about 4% to 11% more annotations) than
entropy-based active learning (Table 2). This
dataset has markedly more annotations per exam-
ple (Table 1), which is an artifact of the simulation
used for the experiment. For a direct comparison,
we repeat this experiment where we fix the total
number of annotations to smaller values. Results
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Figure 4: Comparison of JS Divergence when using
different budgets for annotator entropy predictors de-
scribed in § 3.5 on the MHS Respect attribute. We
compare budgets of 25, 100, and 200 examples with
pre-collected annotations. For MHS (N = 3), this
translates to budget sizes of 75, 300, and 600 annota-
tions

are shown in Figure 5. We see that having more an-
notations per example gives better performance on
the entropy predictor. (We show task model results
on 3, 5, and 10 annotation per example DAAL in
§A.4.) We notice that the optimal number of anno-
tations is 5 per example, which suggests 5 might be
a reasonable cap for the maximum number of times
a single example could be queried in a real-world
deployment.

5.4 fent vs H(fθ) and Re-annotation Strategy
DAAL chooses examples to query based on the
absolute difference between model and annotator
entropy (See §3.5). This means that the model can
select two kinds of examples depending on which
term is larger. When H(fθ) > fent, the model is
unsure of the correct label but predicts that annota-
tors will agree on the label. When fent > H(fθ),
the model is overconfident in its label prediction
given its prediction of annotator agreement levels.

In Figure 6, we consider which of these two
kinds of examples the model is querying on at dif-
ferent points in learning. We find that our model
begins by querying overwhelmingly on cases with
H(fθ) > fent but that the reverse is true later
in training. This can be interpreted as beginning
with “easy” examples where annotators are likely
to agree and then choosing examples with higher
disagreement later to correct overconfidence.

We also consider how often DAAL re-annotates
an already annotated example. In Figure 7, we
see that early in training, DAAL mostly chooses

2 3 4 5 6 7 8 9 10
Annotations per Example

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

Annotation Budget
max
100
200
300
1000

Figure 5: Entropy predictor performance on Toxicity
on varying the total annotation budget and the number
of annotations per example. We find that decreasing the
annotations per example to 5 and the budget to 200 is
generally sufficient.

to query on new examples, but in the second half,
about 2/3 of annotations are re-annotations.

Combining this change in re-annotation rate with
the change in which term dominates the query func-
tion, we can see a more clear strategy. Early in
training, when the model is focusing on examples
with low fent, there is no need to query for multi-
ple labels. Once the model starts considering more
examples with high fent, re-annotations become
necessary to better capture the annotator distribu-
tion. These re-annotations are largely not given to
examples with low fent, as these are not likely to
require more than one annotation.

6 Conclusion

In this paper, we emphasize the importance of ac-
counting for disagreement present in data. We pro-
pose DAAL, an active learning approach, which
incorporates both annotator and model uncertain-
ties, aiming to reduce the cost of annotation. This
cost includes both time and money, but also an
often overlooked cost related to the repeated ex-
posure of annotators to toxic and harmful content.
When the annotation is performed on crowdsourc-
ing platforms, where workers are often from vul-
nerable populations who may require more flexible
employment options—such as those with disabili-
ties or who have caregiver roles (Berg, 2016)—this
mental health cost compounds existing marginal-
ization.

In our experiments on training classifiers for
hate speech and toxicity detection, we show that
DAAL achieves comparable Jensen-Shannon di-
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Figure 6: Re-annotation rate and fent vs H(fθ) strat-
egy for DAAL on Toxicity. Like Figure 7, the
re-annotation rate increases over time (green). Ad-
ditionally, the selection strategy goes from choosing
mostly examples where fent(x) ≤ H(fθ(x)) to choos-
ing the opposite (blue). Later in training, these in-
creased re-annotations largely go to examples where
fent(x) > H(fθ(x)) (red).

vergence with the classic baselines’ performance
but requires an average of 1.235× fewer annota-
tions in the worst case. It is also equally effective
when there is little annotator disagreement, making
it a strong general solution candidate even when
one does not know ahead of time how much anno-
tator disagreement is likely for a given task.

7 Limitations

There are several limitations to our experiments:
we work only with English data and with datasets
concerning hate speech and toxicity. Frequently
such data do not represent i.i.d. samples from the
data that we might encounter in real life. In ad-
dition, experiments are all conducted in the sim-
ulation with these existing datasets. The annota-
tions in the simulated experiments were already
checked for quality by the original dataset creators
(Sachdeva et al., 2022; Wulczyn et al., 2017). In
real-world deployment, further steps would need
to be taken to ensure that the entropy in annota-
tions truly comes from disagreements and not other
kinds of noise.

While DAAL is designed to capture disagree-
ment due to annotator positionalities, the datasets
used may not have had a diverse enough pool of
annotators to fully test this. In the portion of the
MHS dataset used in our experiments, 67.9% of an-
notators were cisgender, straight, and white, while
only 0.4% of examples targeted this same popula-
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Figure 7: Re-annotation rate for single annotation strate-
gies on Toxicity. We find that our method has a con-
sistently higher re-annotation rate than the baselines and
that the rate increases over time.

tion. The Wikipedia Talk dataset does not provide
demographic information about its annotators.

A classifier for toxic text or hate speech trained
on a pool of annotators whose backgrounds do not
reflect anywhere near the full diversity of human
identities (and especially the identities of the tar-
gets of the text being classified) is inherently lim-
ited. Applying such a classifier, whether it predicts
a single label or a distribution, to text from and
about marginalized populations not represented in
the annotator pool carries inherent risks to the well-
being of these populations. Such a classifier could
systematically fail to flag content that annotators
from privileged groups do not find harmful or incor-
rectly flag innocuous speech written by members
of marginalized groups.
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A Appendix

A.1 Baseline Results on Accuracy, Macro F1, TDV, JS Divergence
Building on the results in §5.1, we further investigate the effect of the level of disagreement on the passive
and active learner baselines. In Figure 8, we compare these two baselines using both accuracy-based and
distribution-based metrics.
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Figure 8: Comparison of passive and active leaner baselines on a high and low disagreement MHS attribute.

On the high disagreement attribute, Dehumanize, we see that passive learning still outperforms active
learning when using accuracy-based measures, Macro F1 and Accuracy, though the effect is more subtle
than with the distributions-based measures, JS Divergence and TVD.

For the low disagreement attribute, Genocide, we see that passive learning achieves the same perfor-
mance as active learning in fewer annotations when considering Accuracy, JS Divergence, and TVD. For
Macro F1, we see a much stronger trend, with the performance of the passive learner plateauing before the
active learner. Noting how quickly all baselines achieved high accuracies, we argue that these trends are
caused by the heavy class imbalance in the Genocide attribute which is heavily skewed to non-genocidal
examples (See §A.5).
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Figure 9: Standard training vs training on only examples with full annotator agreement on MHS Respect.
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To more directly investigate the effect of the level of disagreement on baseline model performance, we
consider alternative train sets containing only examples with full annotator agreement. In other words, we
use a subset of the original unlabeled data where all N available annotations have the same label value y.

When querying for all available annotations (Figure 9a), the passive learner outperforms the active
learner when they have access to the full training set. When they can only access training examples with
full annotator agreement, the relationship is reversed.

When querying for single annotations at a time (Figure 9b), we still find that the passive learner
performs better on the full training set. Using the training set with full annotator agreement, the active
learner performs better earlier in training, but the final performance is not significantly different.

These results further show that model entropy alone isn’t a good metric when humans disagree, which
leads the passive approach, which simply picks at random, to perform better than the active learner.

A.2 Majority Vote
As we discussed in §3.1, we choose to use soft labels over majority vote labels which obscure disagreement.
We compare training on majority votes to training directly on crowd annotations by treating each annotation
as a separate learning instance (Uma et al., 2021b) for both passive learning and simple entropy-based
active learning.
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Figure 10: Comparison of training on hard labels via majority vote vs soft labels with N annotations on MHS
Respect

For both metrics distribution-based and accuracy-based metrics, we see a significant disadvantage when
using hard labels. Considering Macro F1 (Figure 10a), using majority votes decreases the performance of
the passive and active learners by 7.43% and 10.6% respectively. Considering Jensen-Shannon Divergence
(Figure 10b), using majority votes decreases the performances by 6.25% and 14.4% respectively.

For both metrics, we see that by the end of training, using soft vs hard labels, not the querying method,
determines which methods will be most successful. We see that the active batched model (weaker than
its passive counterpart) does as good or better than the passive majority vote model. This confirms that
aggregating annotation by majority vote can hurt performance when annotators disagree.
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A.3 DAAL Improvements on Accuracy, Macro F1, TDV, JS Divergence
In this section, we show the full graphs of the JS Divergence results listed in Table 2 as well as for
accuracy, macro F1, and total variational distance.

In Figure 11, we compare to the active learning baselines. For the MHS datasets, this tended to be
the weaker baseline, with DAAL strongly outperforming both baselines on distribution-based metrics.
Results on accuracy-based metrics were weaker on average, especially for Genocide. We see similar
trends with Toxicity-5, though the JS Divergence is slightly worse on average at the optimal point.
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Figure 11: Comparison of DAAL (green, purple, or pink based on annotations per example) and entropy-based
active learning (orange). The lines in red show DAAL’s improvement in number of annotations. They connect
the first measurement where DAAL was withing 5% of its best performance to the point where the batched active
learning baseline achieves the same performance (if available).
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In Figure 12, we compare to the passive learning baselines. The overall effects are similar to those in
Figure 11. However, since the random baseline generally performed better than simple active learning in
high disagreement settings (e.g., MHS Dehumanize), the improvements are generally weaker.
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Figure 12: Comparison of DAAL (green, purple, or pink based on annotations per example) and passive learning
(blue). The lines in red show DAAL’s improvement in number of annotations. They connect the first measurement
where DAAL was withing 5% of its best performance to the point where the batched passive learning baseline
achieves the same performance (if available).
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A.4 Annotations per Example

Here, we continue § 5.3’s discussion of the effects of budget sizes and annotations per example. In
Figure 5, we showed how the entropy predictor’s performance on Toxicity does not significantly degrade
until fewer than 5 annotations per example are available. In Figure 13, we can see that the 5 annotations
passive learner sees a performance decrease. However, the baselines’ overall performance did not drop
significantly. On the other hand, in Figure 13b, we can see that the effect of decreasing to 3 annotations
per example is much more significant.
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Figure 13: Baseline Toxicity results varying the number of annotations per example. We find that decreasing the
annotations to 5 per example causes a small decrease in performance. Decreasing to 3 (a similar ammount to MHS)
Significantly decreases the performance of the Batch AL model.
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Figure 14: Comparison of performances on Toxicity when using different budgets for annotator entropy predictors
described in the §3.5.

We find similar trends in DAAL when decreasing the number of annotations per example in 14. When
we compare DAAL and entropy-based active learning using different numbers of annotations per example
(Figure 15), we find a small trend of DAAL performing better in comparison to the baseline when the
number of annotations per example is small, especially with as few annotations as MHS.
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Figure 15: DAAL vs AL H(fθ) Single (orange) on varied annotations per example. On average DAAL can
perform slightly worse than the baseline when the number of potential annotations is high.

A.5 Datasets’ Vote Distributions

We show the vote distributions for the MHS dataset with Respect, Dehumanize, and Genocide attributes
and the Wikipedia dataset with Toxicity attribute Figure 16.
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Figure 16: Label distributions for MHS and Wikipedia Toxicity datasets.

Here, we have diverse settings. For instance, Genocide has the lowest level of disagreement between
two random annotators (See Table 1), and we can see the majority of labels concentrate between two labels
with the most examples of non-Genocide data. The Respect and Toxicity attributes have approximately
the same level of disagreement with almost a 50% chance that two random annotators disagree. However,
the distributions are quite different. The Toxicity label distribution has mostly two labels in use:
neutral and toxic. This is similar to Genocide with the majority votes distributed between two labels:
“strongly disagree” and “disagree” that text relates to genocide. The Respect attribute has annotations
distributed between all labels, forming a left-skewed distribution, showing more different perspectives
on this attribute. Dehumanize has the highest disagreement level. There is almost a 70% chance of two
annotators disagreeing and the label distribution is almost uniform. This shows that there are enough
examples that are seen differently by annotators (See Table 1).
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Figure 17: Annotations per example on our used portion of the MHS dataset. This excludes reference set examples
(with > 200 annotations) and examples with less than 3 annotations.
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The original MHS dataset contains both a reference set containing examples with more than 200
annotations per example and a larger set of examples with 1-6 annotations. As we discussed in §4.1, we
use in our experiments a subset of the MHS dataset with 3-6 annotations (with an average of 3.35). The
distribution of annotations per example in the data used in our experiments is shown in Figure 17.

A.6 Additional Experimental Details
For both our task and entropy prediction models, we use RoBERTa-Base models with 354 million
parameters (Liu et al., 2020). They are trained using HuggingFace’s transformers library.

The time it takes to train DAAL depends on the number of annotations per example, as each annotation
is treated as a separate training instance. For the MHS dataset (average 3.35 annotations per example), it
generally took < 15 hours to train DAAL on 1280 annotations. The bulk of this time is spent in inference,
finding the task model’s uncertainty on the ∼ 15000 training examples. Our experiments were run on a
single Intel Xeon E5405 GPU.

The two datasets used in our experiments, the MHS and Wikipedia Talk, are released under released
under CC-by-4.0 and CC0 licenses respectively.
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