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Abstract

We have investigated methods utilizing hierar-
chical structure information representation in
the semantic parsing task and have devised a
method that reinforces the semantic awareness
of a pre-trained language model via a two-step
fine-tuning mechanism: hierarchical structure
information strengthening and a final specific
task. The model used is better than existing
ones at learning the contextual representations
of utterances embedded within its hierarchi-
cal semantic structure and thereby improves
system performance. In addition, we created
a mechanism using inductive grammar to dy-
namically prune the unpromising directions in
the semantic structure parsing process. Finally,
through experiments1 on the TOP and TOPv2
(low-resource setting) datasets, we achieved
state-of-the-art (SOTA) performance, confirm-
ing the effectiveness of our proposed model.

1 Introduction

Task-oriented dialog systems are computer sys-
tems designed to perform a specific task (Bai et al.,
2022). These systems have a wide range of appli-
cations in modern business (Zhang et al., 2020b)
and daily lives (Yan et al., 2017), and so on. The
semantic parsing model at the core of these sys-
tems plays an essential role in converting user ut-
terances into machine-understandable representa-
tions for use in capturing the semantic meaning
and returning appropriate responses. The introduc-
tion of hierarchical representation by Gupta et al.
(2018) demonstrated the importance of nested sub-
logic composition in a task-oriented dialog system.
Although this representation is flexible enough to
capture the meaning of complicated queries, it also
challenges models to identify labels and select the
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1 The source code of this work is released at https://

github.com/truongdo619/StructSP

corresponding spans of constituent semantics in the
natural sentence.

Input: What is going on right now

Candidates:  [ IN:GET_LOCATION, IN:GET_EVENT, ... ] 
Tree: What is going on right now 

Candidates:  [ SL:DATE_TIME, SL:NAME_EVENT, ... ] 
Tree: [IN:GET_EVENT What is going on right now ] 

Label: IN:GET_EVENT
Span: (0, 4)

Step 1

Full Tree: [IN:GET_EVENT What is going on [SL:DATE_TIME right now ] ] 

Label: SL:DATE_TIME
Span: (4, 5)

Step 2

Figure 1: Example of the parsing process in our frame-
work. Each tree is a linearized representation, where
IN:, SL: represent the intent and slot, respectively. Logi-
cal tokens are highlighted in red.

Pre-trained language models (e.g., BERT (De-
vlin et al., 2019)) have recently achieved impres-
sive results on many tasks, including semantic pars-
ing (Ziai, 2019; Herzig and Berant, 2021; Rubin
and Berant, 2021). Among them, the Recursive
INsertion-based Encoding (RINE) model (Mansi-
mov and Zhang, 2022) produces SOTA results by
using recursive insertion-based mechanism that di-
rectly injects the decoded tree from the previous
steps as input to the current step. Although many
semantic parsing systems have shown impressive
results, there is still much room for improvement
in their overall performance.

A promising way to improve the performance
of a task-oriented dialog system is to use a pre-
trained language model based on the characteristics
of this task. The language models is pre-trained
on large-scale unstructured text, which means that
it does not explicitly learn the logical structure of
any sentences. Since information about sentence
structures is crucial in the semantic parsing task.
Besides, the hierarchical semantic representation
in a task-oriented dialog system usually follows a
grammar based on a specific task or domain. For
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Figure 2: System architecture of StructSP framework.

example, the parent node of slot SL:NAME_EVENT is
always the intent IN:GET_EVENT, etc. However, ex-
isting methods ignore this information (Mansimov
and Zhang, 2022). We thus focused on making two
improvements: strengthening the hierarchical struc-
ture awareness of the pre-trained language model
and using dynamically pruning the unpromising
decoding directions by using inductive grammar
(Figure 2).

In this paper, we introduce StructSP, a frame-
work for effectively embedding the structured logic
information of utterances into a pre-trained lan-
guage model and thereby enhancing the perfor-
mance of the semantic parsing system. Our method
is generalized and can be adapted to any logi-
cal structure, such as a logical form, by using λ-
calculus or Prolog syntax (Dong and Lapata, 2016).
In particular, we exploit the hierarchical representa-
tion, a deep fine-grained structure widely used in se-
mantic parsing (Zhao et al., 2022b; Desai and Aly,
2021; Louvan and Magnini, 2020). Our method
consists of two phases: structure-aware boosting
and grammar-based RINE. The structure-aware
boosting phase aims to enhance the structured
information of the pre-trained language models
and includes two subtasks. The first is structure-
focused mask language modeling (MLM), which
extends the standard MLM task (Devlin et al.,
2019) by focusing more on the logical units in the
linearized hierarchical representation. The second
subtask is relative tree agreement where relative
trees are the trees parsed in the middle steps of the
parsing process (Figure 1). This subtask enables
the model to represent the relative trees with closer
hidden vectors and learn the hidden relationship

between them. The second phase, grammar-based
RINE uses the grammar extracted from annotated
data to support node label prediction. Incorporating
structure information into the model enabled our
StructSP to achieve an exact match score on the
TOP dataset 0.61 points better than with a SOTA
method and demonstrated similar potential results
on the TOPv2 datasets (low-resource setting).

This work makes three contributions: (1) an ef-
fective fine-tuning approach is introduced for incor-
porating hierarchical semantic structured informa-
tion into a pre-trained language model; (2) the use
of grammar is introduced in the parsing process
to reduce unpromising node label prediction; (3)
the StructSP framework is shown to outperform
existing models in task-oriented semantic parsing
on two datasets, TOP and TOPv2.

2 Related Work

Overview Task-oriented parsing (TOP) (Gupta
et al., 2018) and its variant TOPv2 (Chen et al.,
2020) were created as benchmarks for assessing
the performance of task-oriented semantic pars-
ing models. Various approaches have been pro-
posed for tackling the semantic parsing task on
these datasets. Zhu et al. (2020) introduced a
non-autoregressive sequence-to-sequence semantic
parsing model, which is based on the Insertion
Transformer model (Stern et al., 2019). Agha-
janyan et al. (2020) introduced an extension of
the hierarchical representation, “decoupled repre-
sentation”, and used sequence-to-sequence (S2S)
models based on the pointer generator architecture
to parse this representation. Rongali et al. (2020)
introduced a unified architecture based on S2S mod-
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els and a pointer-generator network for semantic
parsing. Einolghozati et al. (2019) introduced a
shift-reduce parser based on recurrent neural net-
work grammars (RNNGs) with three improvements
to the base RNNG model: incorporating contextu-
alized embeddings, ensembling, and pairwise re-
ranking based on a language model. Additionally,
Zhao et al. (2022a) showed that compositional TOP
could be formulated as abstractive question answer-
ing (QA), where the parse tree nodes are generated
by posing queries to a QA model. The RINE model
(Mansimov and Zhang, 2022) splits the work of
parsing an utterance into multiple steps, where the
input of each step is the output of the previous step.
However, even SOTA methods ignored the hier-
archical structure information during the parsing
process. We thus focused on utilizing the hier-
archical structure information by using inductive
grammar extracted from annotated data to guide
the node label predictions.

Pre-trained Language Model Adaptation Sev-
eral recent studies have demonstrated the value of
adapting pre-trained language models to specific
tasks with different training objectives, such as in
summarization (Zhang et al., 2020a) and knowl-
edge inference (Sun et al., 2019; Liu et al., 2020).
In the realm of semantic parsing, the SCORE pre-
training method (Yu et al., 2020b) focuses on in-
ducing representations that capture the alignment
between dialogue flow and structural context in
conversational semantic parsing tasks. Grappa (Yu
et al., 2020a) is a pre-training approach designed
for table semantic parsing and seeks to learn an
inductive compositional bias through the joint rep-
resentation of textual and tabular data. Bai et al.
(2022) introduced a semantic-based pre-training
approach that uses abstract meaning representation
(AMR) as explicit semantic knowledge to capture
the core semantic information of utterances in dia-
logues. In comparison, to strengthening hierarchi-
cal structure information, we continue training the
model by using only annotated data for the fine-
tuning task instead of generating (or augmenting)
a large artificial dataset to learn structure informa-
tion (Yu et al., 2020b,a). This enables the model
to effectively performs the hierarchical semantic
parsing task using fewer computational resources.

Grammar-Constrained Neural Network Mod-
els Incorporating constraint grammar in text gen-
eration tasks using neural networks is a topic of

interest to researchers. Yin and Neubig (2017)
proposed an approach using a grammar model to
generate an abstract syntax tree by a series of ac-
tions. Krishnamurthy et al. (2017) presented a type-
constrained semantic parsing model, which ensures
that the decoder only generates well-typed logical
forms. Shin et al. (2021) demonstrated that the
constrained decoding process with an intermediate
sub-language mapped by a large language model
can support parsing the target language. More re-
cently, Baranowski and Hochgeschwender (2021)
extracted context-free grammar from the target log-
ical form of the semantic parsing task. These gram-
mar constraints were then enforced with an LR
parser to maintain syntactically valid sequences
throughout decoding. In comparison, our approach
utilizes grammar as additional structured informa-
tion during training with a conditional loss function.
This key difference sets our approach apart from
previous works.

3 Method

3.1 Overview

Our StructSP framework consists of two fine-
tuning phases: structure-aware boosting and
grammar-based RINE (Figure 2). In the first phase,
Structure-Aware Boosting, we use a pre-trained
RoBERTa model (Liu et al., 2019) as a backbone
and continue to train it in a multi-task setting.
This improves the model’s ability to express struc-
tured information of hierarchical representation
by using two sub-tasks: structure-focused MLM
(section 3.2.1) and relative tree agreement (sec-
tion 3.2.2).

In the next phase, we use grammar-based RINE,
which uses the RINE approach (Mansimov and
Zhang, 2022) augmented by grammar rules to
tackle the problem of the hierarchical semantic
parsing task. The parsing process is split into multi-
ple steps, where the input of each step is the output
of the previous one. The structure-aware model
from the previous phase is used as an encoder to
make predictions. Especially, an inductive gram-
mar synthesized using training data is used to prune
the unpromising decoding directions. The grammar
rules not only correct the parsing process but also
reduce resource usage by eliminating unnecessary
predictions.
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3.2 Structure-aware Boosting

3.2.1 Structure-focused MLM
Before introducing our proposed structure-focused
masking strategy, we describe the original
MLM (Devlin et al., 2019).

Original MLM Given a sequence of tokens X =
[x1, x2, ..., xm], probability T = [t1, t2, ..., tm]
corresponding to the input sequence is generated,
where ti indicates the probability that token xi will
be chosen for masking. Following Devlin et al.
(2019), all ti are equal to 15%, meaning that every
token has the same probability of being chosen in
the masking process. Let D be the set of tokens ran-
domly chosen for masking (e.g., D = {x2}), and
let X ′ be the sentence with masked tokens (e.g.,
X ′ = [x1, [MASK], ...xm]). The cross-entropy loss
function is computed for all masked tokens:

Lmlm = − 1

|D|

|D|∑

i=1

|V|∑

j=1

xij log p(xij | X ′) (1)

where |D| is the total number of masked tokens in a
sentence, |V| is the size of vocabulary of language
model, and p(xij | X ′) is the probability that the
model assigns to the token xi belong to token jth

in vocabulary given the context provided by the
masked sequence. The model is trained to mini-
mize this loss function, which measures how well
it can predict the masked tokens on the basis of the
context provided by the unmasked ones

Structure-focused MLM In the linearized hier-
archical representation of an utterance (Table 1),
there are two types of tokens: normal and logi-
cal. The logical tokens can be divided into two
sub-categories: bracket tokens ("[" or "]") indicate
the span of a label, and label tokens represent the
label itself (e.g., IN:GET_EVENT). The correct pre-
diction of a masked bracket token demonstrates
the model’s understanding of the label span. Simi-
larly, the correct prediction of a masked label token
demonstrates the model’s understanding of the la-
bel type. Therefore, masking logical tokens to train
the model for learning the hierarchical structure
is a reasonable approach (Bai et al., 2022). How-
ever, the original MLM treats all tokens equally,
regardless of whether they are normal or logical.

In our approach, we modify the original MLM
approach by assigning a higher masking probabil-
ity to logical tokens, thereby pushing the model to
pay more attention to the hierarchical structure (the

logical token) information. This enables the model
to learn the structural characteristic of natural sen-
tences while retaining the knowledge learned from
the original MLM (Yu et al., 2020a). More specif-
ically, our structure-focused MLM strategy gives
logical tokens a higher masking probability, defined
as α (with α > 15%). Let T ′ = [t′1, t

′
2, ..., t

′
m]

be the revised sequence of masking probabilities,
where t′i = α if the corresponding ith token is
a logical one. The structured-focused MLM loss
(Lstr_mlm) function of masked tokens is computed
similarly to the original MLM loss.

3.2.2 Relative Tree Agreement
In hierarchical representation, leaf nodes are
words, while non-terminal nodes are semantic
tokens: either intents or slots. We define
a non-terminal list as an ordered list of non-
terminal nodes by using a breadth-first search.
For example, using the tree shown in Figure 2,
we obtain the non-terminal list [IN:GET_EVENT,
SL:CATE_EVENT, SL:NAME_EVENT]. This list is
then used to form positive training samples.

The goal of this task is to improve the ability
of the model to produce similar representations
for trees in the same parsing process, enabling it to
effectively perform the recursive insertion-based se-
mantic parsing task. To achieve this goal, a pruned
tree is generated at each training iteration by ran-
domly selecting a node from the non-terminal list
of the full tree (i.e., the annotated tree) and pruning
all non-terminal nodes to the right of it in the list.
This pruned tree is relative to the full tree. For-
mally, we denote the linearized representation of
the full tree as Pfull and that of the pruned tree
as Ppruned. The hidden vector representations of
these two trees (hfull and hpruned) are encoded
using a pre-trained language model:

hfull = RoBERTa(Pfull)

hpruned = RoBERTa(Ppruned)
(2)

We use contrastive learning (Frosst et al., 2019;
Gao et al., 2021; Bai et al., 2022; Luo et al., 2022)
to train our model for this task. The aim is to align
the representations of positive pairs in the latent
space by minimizing the distance between them
while simultaneously maximizing the distance be-
tween negative pairs. Specifically, we define a con-
trastive loss function that measures the similarity
between the hidden states hfull and hpruned. This
information is then used to update the model’s pa-
rameters. Minimizing this loss function enables
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our model to learn how to produce more similar
representations for the full and pruned trees. In
particular, given a training batch B, the positive
pair at the ith position is (h(i)full, h

(i)
pruned), and the

negative pairs are the other samples in the batch.
The training objective is given as follows:

Lcontrastive = −log
exp(sim(h

(i)
full, h

(i)
pruned)/τ)∑

j∈B exp(sim(h
(i)
full, h

(j)
pruned)/τ)

(3)

where sim is the similarity function based on co-
sine distance, h

(i)
full and h

(i)
pruned are the hidden

states for the full and pruned trees, respectively,
at the ith position in the batch indexes. τ is a tem-
perature hyperparameter (Gao et al., 2021), and B
is the set of samples in the mini-batch.

3.2.3 Objective Function
We combine the objectives of the two sub-tasks
to formulate the structure-aware boosting loss
(Lsab).

Lsab = Lcontrastive + λ ∗ Lstr_mlm (4)

where λ is a hyperparameter that balances the con-
tributions of the two objectives. As proposed else-
where (Lee et al., 2020; Nandy et al., 2021; Bai
et al., 2022), we do not train our model from
scratch. Instead, we use a pre-trained language
model to initialize its parameters. This enables
us to leverage the knowledge contained in the lan-
guage model.

3.3 Grammar-based RINE

RINE In this phase, we use a recursive insertion-
based approach (Mansimov and Zhang, 2022), with
our structure-aware boosted model created in the
previous phase serving as the backbone. The
parsing process can be formally represented as a
chain of incremental sub-parsed trees, denoted as
P = [P0,P1, ...,Pgold] (Table 1).

Table 1: Example chain of incremental trees in parsing
process using RINE.

Tree Linearized representation

P0 Concerts by Chris Rock

P1 [IN:GET_EVENT Concerts by Chris Rock ]

P2 [IN:GET_EVENT [SL:CATE_EVENT Concerts ] by Chris Rock ]

P3 [IN:GET_EVENT [SL:CATE_EVENT Concerts ] by
[SL:NAME_EVENT Chris Rock ] ]

At the ith step, the model receives the tree in the
previous step Pi−1 as input and predicts the current
node label and its span to decode the tree Pi. The
tree Pi is updated to include a new prediction node

and processing recursively moves to the next step
i+ 1 until a special end-of-prediction signal (EOP)
is found.

Grammar constraint Observation revealed that
the relationships between nodes in the seman-
tic tree are important information in the parsing
process. For example, the intent IN:GET_EVENT
typically comes with slots for event informa-
tion, SL:CATE_EVENT or SL:NAME_EVENT. There-
fore, we introduce a grammar integration mech-
anism into RINE to reduce movement in un-
promising decoding directions. Particularly,
we construct grammar G = {A → B |
A,B are non-terminal nodes} on the basis of train-
ing data (e.g., IN:GET_EVENT → SL:CATE_EVENT
). Integrating grammar into the RINE model means
that the parser considers only the potential nodes
in a candidate set (e.g., C = G(A)) on the basis of
the parent node (e.g., B ∈ C) at each step of node
label prediction.

Modeling For mathematical modeling, given sub-
tree Pi at the ith step, our model first encodes this
tree as a sequence and obtains the corresponding
hidden states fused by context. Following Mansi-
mov and Zhang (2022), we use hidden states of the
[CLS] token in the last transformer encoder layer
to predict the label of the next node. Furthermore,
to predict the range of this node, we use all hid-
den states in the last two layers to compute the
probabilities of the start and end positions.

pnodeLb = softmax(Wlbh
(l)
[CLS] + blb) (5)

pstartk = softmax(Wsh
(l)
wk

+ bs) (6)

pendk = softmax(Weh
(l−1)
wk

+ be) (7)

where W · and b· are the learnable parameters, l is
the number of transformer encoder layers in the
pre-trained language model, and wk is the kth to-
ken (word) index of the input sequence. We use
a special penalty score (spenalty) injected into the
loss function to cause the unpromising label node
predictions to be ignored:

spenalty =

{
0 if nodeLb ∈ C
+∞ otherwise

(8)

where C is the candidates generated from the gram-
mar and the parent node. Finally, the cross-entropy
(CE) losses are synthesized in accordance with the
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gold label (gnodeLb) and these output probabilities:

LnodeLb = CE(gnodeLb, pnodeLb) + spenalty (9)

Lstart =
∑

k

CE(gstartk , pstartk ) (10)

Lend =
∑

k

CE(gendk , pendk ) (11)

Lfinal = LnodeLb + Lstart + Lend (12)

Inference challenge In the inference step, the
challenge with the approach is a lack of informa-
tion about which node is the parent node at the
current step to be used to generate the candidate
set. We propose a simple strategy to meet this
challenge: use the result of span prediction to de-
termine the parent node. For example, considering
the 3rd step in Table 1 and given input P2, we
have no information about the next node to be pre-
dicted and do not know whether the parent node
is IN:GET_EVENT or SL:CATE_EVENT. We predict
the span first and obtain the position of “Chris
Rock”. We thus determine that the parent of the
current node is IN:GET_EVENT, and can generate
candidates C by using this node.

4 Experiment

To verify the effectiveness of our proposed method,
we conducted experiments on datasets TOP2 and
TOPv23 (low-resource setting). Following Mansi-
mov and Zhang (2022), we conducted three random
seeds for each experimental setting and reported
the average results with standard deviation.

4.1 Datasets and Evaluation Metric

The TOP dataset (Gupta et al., 2018) is a collection
of utterances divided into two domains: naviga-
tion and event. Twenty-fine intents and 36 slots
are used to represent the utterances. The mean
depth of the trees in the dataset is 2.54, and the
mean length of the utterances is 8.93 tokens. Fol-
lowing previous works (Einolghozati et al., 2019;
Rongali et al., 2020; Zhu et al., 2020; Mansimov
and Zhang, 2022), we removed utterances with the
UNSUPPORTED intent, resulting in 28,414 training,
4,032 valid, and 8,241 test utterances.

The TOPv2 dataset (Chen et al., 2020) focuses
on scenarios with low resources. We followed Man-
simov and Zhang (2022) by using low-resource ver-
sions of the reminder and weather domains. The

2 Provided under the CC-BY-SA license
3 Provided under the CC BY-NC 4.0 license

reminder domain contains 19 intents and 32 slots
while the weather domain contains 7 intents and 11
slots. The low-resource data were created by select-
ing a fixed number of training samples per intent
and slot (SPIS) from the original dataset. If an in-
tent or slot occurred fewer times than the specified
number of samples, all of the parse trees containing
that intent or slot were included in the low-resource
data. Specifically, we used the training, validation,
and test data at 500 and 25 SPIS. At 500 SPIS,
the reminder domain has 4788 training and 1871
validation samples, and the weather domain has
2372 training and 1202 validation samples. At 25
SPIS, the reminder domain has 493 training and
337 validation samples, and the weather domain
has 176 training and 147 validation samples. For
both SPIS settings, the test sets for the reminder
and weather domains contained 5767 and 5682 test
samples, respectively.

Identical to previous studies (Einolghozati et al.,
2019; Rongali et al., 2020; Zhu et al., 2020; Mansi-
mov and Zhang, 2022), we used exact match (EM)
as performance metric. The EM score was calcu-
lated as the number of utterances for which fully
parsed trees were correctly predicted.

4.2 Experimental setting

Structure-aware boosting: We used the
RoBERTa (Liu et al., 2019) model as our backbone.
With the TOP dataset, we used a peak learning
rate of 1e-05 and continued training for ten epochs
using the Adam optimizer (Kingma and Ba, 2014)
with epsilon 1e-08 and a batch size of 16 sequences
with 512 tokens. For the hyperparameters, we set
τ = 1.0 and selected λ from {0.5, 1.0}4 . With the
TOPv2 dataset, we used the same settings as for
the TOP dataset except we increased the number of
training epochs to 50 for the 25 SPIS setting. The
training process on a single NVIDIA A100 GPU.

Grammar-based RINE: we used the model
trained from the structure-aware boosting phase
as an encoder. For the TOP dataset, we set the num-
ber of warmup steps to 1000, selected the learning
rate from {1e-05, 2e-05}, and performed training
for 50 epochs. The best checkpoint was chosen on
the basis of the model’s performance on the vali-
dation set. We utilized the Adam optimizer and a
batch size of 32 sequences containing 512 tokens.
For the TOPv2 dataset, we used the same settings

4 The values resulting in the best performance are bold.
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except for adjusting the batch size to 16 for the 500
SPIS setting and 8 for the 25 SPIS setting.

Baseline: We reproduced the RINE model (Man-
simov and Zhang, 2022) as a strong baseline model
and kept the same hyperparameter values as the
original paper (Mansimov and Zhang, 2022).

4.3 Main Results

TOP dataset We evaluated the performance of
our proposed StructSP method on the TOP dataset
and compared it with that of the other works. The
results are shown in Table 2.

Table 2: Performance comparison for TOP test set.

Method Pre-trained EM

Seq2seq (Bai et al., 2022) SARA-ROBERTA 82.78

RNNG ensem. + SVMRank (Einol-
ghozati et al., 2019)

ELMo 87.25

Non-AR S2S-Ptr (Shrivastava et al.,
2021)

RoBERTabase 85.07

S2S-Ptr (Rongali et al., 2020) RoBERTabase 86.67

Decoupled S2S-Ptr (Aghajanyan et al.,
2020)

RoBERTalarge 87.10

Insertion Transformer + S2S-Ptr (Zhu
et al., 2020)

RoBERTabase 86.74

RINE (Mansimov and Zhang, 2022) RoBERTalarge 87.57 ± 0.03

Non-grammar StructSP (ours) RoBERTalarge 87.89 ± 0.08

StructSP (ours) RoBERTalarge 88.18 ± 0.24

Our model outperformed all the other models.
Specifically, it achieved a higher score than the au-
toregressive seq2seq model with pointer (Rongali
et al., 2020) by 1.51 EM and outperformed the best
method of previous works, RINE (Mansimov and
Zhang, 2022) by 0.61 EM scores. These results
show the effectiveness of our proposed method in
injecting prior semantic hierarchical structure in-
formation of a natural sentence into the pre-trained
language model. Besides, our result outperformed
the result of Bai et al. (2022) by a large margin,
although the authors also strengthened the struc-
ture information of pre-trained models using a gen-
eral AMR structure. Additionally, using gram-
mar improved the performance of our model by
0.29 points compared with a version of the model
trained without using grammar. This demonstrates
the value of incorporating grammar into our model
when using the TOP dataset.

TOPv2 dataset We evaluated the performance of
our proposed StructSP method on the low-resource
data of the reminder and weather domains of the
TOPv2 dataset and compared it with that of the
other methods. The results are shown in Table 3.

Our model outperformed the others for all SPIS set-
tings. At the 25 SPIS setting, our StructSP outper-
forms the baseline by 0.93 EM and 1.02 EM in the
weather and reminder domains. Notice that, with
these low-resource settings, in the structure-aware
boosting phase, the model also only continues to
train with limited data but still achieves impressive
improvements.

In addition, at the 25 SPIS setting of the weather
domain, we observed that the performance of the
StructSP was improved when it was trained without
using grammar. We argue that this was due to
the size of the training set at this setting being
extremely small (176 samples), and the extracted
grammar from this training set is not expressive
enough to cover the grammar in the validation and
the test set.

5 Analysis

5.1 Ablation Study

To evaluate the effect of using each component in
our framework, we compared the model’s perfor-
mance for each combination of component settings
with that of the RINE baseline model on the valida-
tion set of the TOP dataset (Table 4).

We found that using grammar in the second
phase grammar-based RINE led to improved per-
formance on the TOP dataset (EM score 0.12 points
higher than with the baseline model). Additionally,
using the structure-aware boosting phase substan-
tially improved the EM score compared with the
baseline (0.52 points higher). To further under-
stand the contributions of each training subtask in
the structure-aware boosting phase, we conducted
two additional experiments. The results show that
using the structure-focused mask language mod-
eling subtask improves EM performance by 0.36
points compared with the baseline while using the
relative tree agreement subtask leads to only a 0.05
improvement.

Furthermore, we conducted a t-test (Lehmann
and Romano, 1986) with the null hypothesis that
the expected values of our full-setting model
(StructSP) and the baseline model (RINE) are iden-
tical (Table 4). Based on the experimental out-
comes, the p-value was found to be below 0.05,
which suggests that the proposed method outper-
forms the baseline model significantly.
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Table 3: Performance comparison using exact match score for our StructSP method and previous works on TOPv2
test set.

Method Pre-trained Model
Exact Match

Weather Reminder

25 SPIS 500 SPIS 25 SPIS 500 SPIS

LSTM Seq2Seq-Ptr (Chen et al., 2020) _ 46.2 78.6 21.5 65.9

Seq2seq-Ptr (Chen et al., 2020) RoBERTabase _ 83.5 _ 71.9

Seq2seq-Ptr (Chen et al., 2020) BARTlarge 71.6 84.9 55.7 71.9

RINE (Mansimov and Zhang, 2022) RoBERTabase 74.53 ± 0.86 87.80 ± 0.04 68.71 ± 0.46 80.30 ± 0.04

RINE (Mansimov and Zhang, 2022) RoBERTalarge 77.03 ± 0.16 87.50 ± 0.28 71.10 ± 0.63 81.31 ± 0.22

Non-grammar StructSP RoBERTalarge 78.24 ± 0.47 88.00 ± 0.47 72.07 ± 1.24 81.57 ± 0.27

StructSP RoBERTalarge 77.96 ± 0.92 88.08 ± 0.11 72.12 ± 1.13 82.28 ± 0.24

Table 4: Results of ablation study on validation set of TOP dataset. Denotations ✓ and ✗ indicate whether
corresponding component was used or not, respectively. ∆ denotes difference in EM scores between the full-setting
model with other models.

Method
Settings

EM ∆
T-test

(Significantly better
at 95%?)

Structure-aware boosting
GrammarStructure focused MLM Relative tree agreement

StructSP

✓ ✓ ✓ 88.26 _ yes

✗ ✗ ✓ 87.69 -0.57 no

✓ ✓ ✗ 88.09 -0.17 yes

✓ ✗ ✗ 87.93 -0.33 yes

✗ ✓ ✗ 87.62 -0.64 no

Baseline ✗ ✗ ✗ 87.57 -0.69 _

Table 5: Comparison of outputs5 of baseline (RINE) and our StructSP model on the validation set of TOP dataset.

Type Ouput

Input Where is the nearest Tom Thumb
Ground-Truth [IN:GET_LOCATION Where is the [SL:LOCATION_MODIFIER nearest ] [SL:POINT_ON_MAP Tom Thumb ] ]
Baseline [IN:GET_LOCATION Where is the [SL:LOCATION_MODIFIER nearest ] [SL:NAME_EVENT Tom Thumb ] ]
StructSP [IN:GET_LOCATION Where is the [SL:LOCATION_MODIFIER nearest ] [SL:POINT_ON_MAP Tom Thumb ] ]

Input What to do after a Pacers game
Ground-Truth [IN:GET_EVENT What to do [SL:DATE_TIME [IN:GET_EVENT after a [SL:NAME_EVENT Pacers ] [SL:CATEGORY_EVENT game ] ] ] ]
Baseline [IN:GET_EVENT What to do after a [SL:NAME_EVENT Pacers ] [SL:CATEGORY_EVENT game ] ]
StructSP [IN:GET_EVENT What to do [SL:DATE_TIME [IN:GET_EVENT after a [SL:NAME_EVENT Pacers ] [SL:CATEGORY_EVENT game ] ] ] ]

Input traffic near me right now

Ground-Truth
[IN:GET_INFO_TRAFFIC traffic [SL:LOCATION [IN:GET_LOCATION [SL:LOCATION_MODIFIER [IN:GET_LOCATION [SL:SEARCH_
RADIUS near ] [SL:LOCATION_USER me ] ] ] ] ] [SL:DATE_TIME right now ] ]

Baseline
[IN:GET_INFO_TRAFFIC traffic [SL:LOCATION [IN:GET_LOCATION [SL:SEARCH_RADIUS near ] [SL:LOCATION_USER me ] ] ]
[SL:DATE_TIME right now ] ]

StructSP
[IN:GET_INFO_TRAFFIC traffic [SL:LOCATION [IN:GET_LOCATION [SL:SEARCH_RADIUS near ][SL:LOCATION_USER me ] ] ]
[SL:DATE_TIME right now ] ]

5.2 Effect of masking probability α

In another experiment, we analyzed the effect of
the logical-token masking probability (α in Sec-
tion 3.2.1) in the structured-aware boosting phase
on overall performance (Figure 3). High perfor-
mance was achieved when α was set to 0.3 or 0.4.
We attribute this to our mechanism pushing the
model to pay more attention to the logical tokens,
helping it to better capture the structure. In sum-

mary, these results show that our StructSP method
achieved better performance than the baseline for
all values of α, which demonstrates the robustness
of our approach.

5.3 Case Study

Table 5 presents several example utterances from
the TOP dataset. In the first example, our model

5 Please refer to Appendix C for tree representation.
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Figure 3: Effect of logical-token masking probability
(α) on system performance.

predicted the slot SL:POINT_ON_MAP after the
intent IN:GET_LOCATION, whereas the baseline
model predicted the slot SL:NAME_EVENT. This dif-
ference occurred because the extracted grammar
does not contain the constraint (IN:GET_LOCATION
=> SL:NAME_EVENT). This demonstrates the effec-
tiveness of incorporating grammar into our model.
The second example presents a ground-truth tree
with a complex structure, requiring the model to
identify the span "after a Pacers game" as a date
time slot (SL:DATE_TIME) and then correctly parse
the structure within this span. Our model was able
to correctly return the tree, whereas the baseline
model was not. The final example is a particularly
challenging one, the tree has a depth of 5, indicat-
ing that the tree structure is highly complex. Both
models failed to return the correct predictions, sug-
gesting that learning to handle such complicated
queries is an interesting topic for future work.

6 Conclusion

We have presented a novel approach to improving
the performance of SOTA semantic parsing models
on hierarchical representation datasets. In this ap-
proach, a model is created that incorporates knowl-
edge of the utterance structures into the semantic
parsing process. This is achieved by learning con-
textual representations from the hierarchical rep-
resentation of utterances with objective functions
targeted at the semantic parsing task as well as by
using grammar rules containing knowledge about
the structure of the data for training and label pre-
diction. In experiments on the TOP and TOPv2
datasets, our model outperforms previous SOTA
approaches.

7 Limitations

There are two main limitations to our works.
(1) Grammar constraint: The results of the

StructSP method at the 25 SPIS setting in the
TOPv2 dataset (Table 3) suggest that the results

of using grammar with low-resource data can be
uncertain. The reason is that the extracted gram-
mar from training data for low-resource setting is
not general enough to capture the grammar of the
new coming data (validation or test set). Therefore,
for our StructSP method to work effectively, the
provided grammar should cover all grammar rules
if possible.

(2) Prediction time: A recursive insertion-based
strategy is used for prediction. This means that the
output of the previous parsing step is used as input
for the current parsing step, and this process con-
tinues until a terminal signal is encountered. As
a result, parsing a complex tree with multiple in-
tents/slots (labels) can be a lengthy process due to
the recursive nature of this method. Future work
includes improving parsing prediction time by pre-
dicting all labels at the same level in the parsed tree
rather than predicting them one by one.
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A Data Pre-processing

Before training our models, we perform the follow-
ing data processing steps:

• Step 1: Extract the grammar using the full
trees of the training samples, with the con-
straint "parent node -> child node" (Eg.
IN:GET_LOCATION -> SL:NAME_EVENT).

• Step 2: Convert the ground-truth full trees
into multiple sub-parsed trees, each repre-
sented as a triple (Current parsed tree, Label,
Label span) (Figure 1).

• Step 3: Extract the set of label types from the
training samples.

With the above data, we then proceed to train our
models in two phases.
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B Model Hyper-Parameters

The hyper-parameters used in our models in the
TOP dataset are shown in Table 6. In the TOPv2
dataset, we use the same hyper-parameters with the
following exceptions: for the 25 SPIS setting in the
structure-aware boosting phase, the training epoch
was adjusted to 50; for the 500 SPIS and 25 SPIS
settings in the label prediction phase, the batch size
was adjusted to 16 and 8, respectively. The hyper-
parameters used in our models in the TOP dataset
Our framework is implemented using Pytorch6 and
HuggingFace Transformers.7 . Our source code
and extracted grammar can be found at: [masked]
(access will be granted upon acceptance).

Table 6: Hyper-parameters of our models in TOP dataset

Phase Hyper-Parameter Value

Structure

Enhancement

Batch size 16

Learning Rate 1e-5

Sequence length 300

MLM Weight (θ) 0.5

Training Epoch 10

Label

Prediction

Batch Size 32

Optimizer Adam

Learning Rate 1e-5

Warmup Step 1000

Max Training Epoch 50

Max length 512

Logical Token Masking Prob. (α) 0.3

RoBERTa Attention Dropout 0.2

MLP Dropout 0.5

C Case study outputs with tree
representation

Figure 5 presents the example of the parsing pro-
cess described in Section 1 using tree representa-
tion. Additionally, Figure 5 displays the outputs
of examples discussed in Section 5.3 using tree
representation.

6 https://github.com/pytorch/pytorch
7 https://github.com/huggingface/transformers
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Figure 4: Example of parsing process with tree representation.
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Figure 5: Case study outputs with tree representation.
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