
Findings of the Association for Computational Linguistics: ACL 2023, pages 10206–10220
July 9-14, 2023 ©2023 Association for Computational Linguistics

StructSP: Efficient Fine-tuning of Task-Oriented Dialog System by Using
Structure-aware Boosting and Grammar Constraints

Dinh-Truong Do∗ and Minh-Phuong Nguyen∗ and Le-Minh Nguyen+

Japan Advanced Institute of Science and Technology, Japan
{truongdo,phuongnm,nguyenml}@jaist.ac.jp

Abstract

We have investigated methods utilizing hierar-
chical structure information representation in
the semantic parsing task and have devised a
method that reinforces the semantic awareness
of a pre-trained language model via a two-step
fine-tuning mechanism: hierarchical structure
information strengthening and a final specific
task. The model used is better than existing
ones at learning the contextual representations
of utterances embedded within its hierarchi-
cal semantic structure and thereby improves
system performance. In addition, we created
a mechanism using inductive grammar to dy-
namically prune the unpromising directions in
the semantic structure parsing process. Finally,
through experiments1 on the TOP and TOPv2
(low-resource setting) datasets, we achieved
state-of-the-art (SOTA) performance, confirm-
ing the effectiveness of our proposed model.

1 Introduction

Task-oriented dialog systems are computer sys-
tems designed to perform a specific task (Bai et al.,
2022). These systems have a wide range of appli-
cations in modern business (Zhang et al., 2020b)
and daily lives (Yan et al., 2017), and so on. The
semantic parsing model at the core of these sys-
tems plays an essential role in converting user ut-
terances into machine-understandable representa-
tions for use in capturing the semantic meaning
and returning appropriate responses. The introduc-
tion of hierarchical representation by Gupta et al.
(2018) demonstrated the importance of nested sub-
logic composition in a task-oriented dialog system.
Although this representation is flexible enough to
capture the meaning of complicated queries, it also
challenges models to identify labels and select the

*Equal contribution
+Corresponding author
1 The source code of this work is released at https://

github.com/truongdo619/StructSP

corresponding spans of constituent semantics in the
natural sentence.

Input: What is going on right now

Candidates: [IN:GET_LOCATION, IN:GET_EVENT, ...]
Tree: What is going on right now

Candidates: [SL:DATE_TIME, SL:NAME_EVENT, ...]
Tree: [IN:GET_EVENT What is going on right now]

Label: IN:GET_EVENT
Span: (0, 4)

Step 1

Full Tree: [IN:GET_EVENT What is going on [SL:DATE_TIME right now]]

Label: SL:DATE_TIME
Span: (4, 5)

Step 2

Figure 1: Example of the parsing process in our frame-
work. Each tree is a linearized representation, where
IN:, SL: represent the intent and slot, respectively. Logi-
cal tokens are highlighted in red.

Pre-trained language models (e.g., BERT (De-
vlin et al., 2019)) have recently achieved impres-
sive results on many tasks, including semantic pars-
ing (Ziai, 2019; Herzig and Berant, 2021; Rubin
and Berant, 2021). Among them, the Recursive
INsertion-based Encoding (RINE) model (Mansi-
mov and Zhang, 2022) produces SOTA results by
using recursive insertion-based mechanism that di-
rectly injects the decoded tree from the previous
steps as input to the current step. Although many
semantic parsing systems have shown impressive
results, there is still much room for improvement
in their overall performance.

A promising way to improve the performance
of a task-oriented dialog system is to use a pre-
trained language model based on the characteristics
of this task. The language models is pre-trained
on large-scale unstructured text, which means that
it does not explicitly learn the logical structure of
any sentences. Since information about sentence
structures is crucial in the semantic parsing task.
Besides, the hierarchical semantic representation
in a task-oriented dialog system usually follows a
grammar based on a specific task or domain. For

10206

https://github.com/truongdo619/StructSP
https://github.com/truongdo619/StructSP

Training data

[IN:GET_EVENT [SL:CATE_EVENT Concerts]
by [SL:NAME_EVENT Chris Rock]]

Phase 1: Structure-
aware boosting

Lstr_mlm

Structure-aware
Boosted Model

Optimize

Recursive Insertion-
based Encoder

(with conditional loss by
Grammar rules)

Semantic Parsing
Model

Lcontrastive

Phase 2: Grammar-
based RINE

IN:GET_EVENT

SL:CATE_EVENT by SL:NAME_EVENT

Concerts Chris Rock

Grammar

Structure-focused MLM
[IN:GET_EVENT [SL:CATE_EVENT Concerts ...]]

0.3 0.3 0.15 ...

Text:

Masking Prob.:

Masked Text: [MASK] [SL:CATE_EVENT Concerts ...]]

Relative Tree Agreement

...

Full trees

Labels
id: f01

id: f02

synthesize

...

Pruned trees
id: s01

id: s02

Prunning

f01-s01: True
f01-s02: False
f01-s03: False...
f02-s01: False
f02-s02: True
f02-s03: False

1

642

5

8 9

7

1

342

5 6

8

9

7

3...

∅
IN:GET_EVENT

SL:CATE_EVENT
...

IN:GET_DISTANCE
...

...

Legend

Non-terminal node

Terminal node

Figure 2: System architecture of StructSP framework.

example, the parent node of slot SL:NAME_EVENT is
always the intent IN:GET_EVENT, etc. However, ex-
isting methods ignore this information (Mansimov
and Zhang, 2022). We thus focused on making two
improvements: strengthening the hierarchical struc-
ture awareness of the pre-trained language model
and using dynamically pruning the unpromising
decoding directions by using inductive grammar
(Figure 2).

In this paper, we introduce StructSP, a frame-
work for effectively embedding the structured logic
information of utterances into a pre-trained lan-
guage model and thereby enhancing the perfor-
mance of the semantic parsing system. Our method
is generalized and can be adapted to any logi-
cal structure, such as a logical form, by using λ-
calculus or Prolog syntax (Dong and Lapata, 2016).
In particular, we exploit the hierarchical representa-
tion, a deep fine-grained structure widely used in se-
mantic parsing (Zhao et al., 2022b; Desai and Aly,
2021; Louvan and Magnini, 2020). Our method
consists of two phases: structure-aware boosting
and grammar-based RINE. The structure-aware
boosting phase aims to enhance the structured
information of the pre-trained language models
and includes two subtasks. The first is structure-
focused mask language modeling (MLM), which
extends the standard MLM task (Devlin et al.,
2019) by focusing more on the logical units in the
linearized hierarchical representation. The second
subtask is relative tree agreement where relative
trees are the trees parsed in the middle steps of the
parsing process (Figure 1). This subtask enables
the model to represent the relative trees with closer
hidden vectors and learn the hidden relationship

between them. The second phase, grammar-based
RINE uses the grammar extracted from annotated
data to support node label prediction. Incorporating
structure information into the model enabled our
StructSP to achieve an exact match score on the
TOP dataset 0.61 points better than with a SOTA
method and demonstrated similar potential results
on the TOPv2 datasets (low-resource setting).

This work makes three contributions: (1) an ef-
fective fine-tuning approach is introduced for incor-
porating hierarchical semantic structured informa-
tion into a pre-trained language model; (2) the use
of grammar is introduced in the parsing process
to reduce unpromising node label prediction; (3)
the StructSP framework is shown to outperform
existing models in task-oriented semantic parsing
on two datasets, TOP and TOPv2.

2 Related Work

Overview Task-oriented parsing (TOP) (Gupta
et al., 2018) and its variant TOPv2 (Chen et al.,
2020) were created as benchmarks for assessing
the performance of task-oriented semantic pars-
ing models. Various approaches have been pro-
posed for tackling the semantic parsing task on
these datasets. Zhu et al. (2020) introduced a
non-autoregressive sequence-to-sequence semantic
parsing model, which is based on the Insertion
Transformer model (Stern et al., 2019). Agha-
janyan et al. (2020) introduced an extension of
the hierarchical representation, “decoupled repre-
sentation”, and used sequence-to-sequence (S2S)
models based on the pointer generator architecture
to parse this representation. Rongali et al. (2020)
introduced a unified architecture based on S2S mod-

10207

els and a pointer-generator network for semantic
parsing. Einolghozati et al. (2019) introduced a
shift-reduce parser based on recurrent neural net-
work grammars (RNNGs) with three improvements
to the base RNNG model: incorporating contextu-
alized embeddings, ensembling, and pairwise re-
ranking based on a language model. Additionally,
Zhao et al. (2022a) showed that compositional TOP
could be formulated as abstractive question answer-
ing (QA), where the parse tree nodes are generated
by posing queries to a QA model. The RINE model
(Mansimov and Zhang, 2022) splits the work of
parsing an utterance into multiple steps, where the
input of each step is the output of the previous step.
However, even SOTA methods ignored the hier-
archical structure information during the parsing
process. We thus focused on utilizing the hier-
archical structure information by using inductive
grammar extracted from annotated data to guide
the node label predictions.

Pre-trained Language Model Adaptation Sev-
eral recent studies have demonstrated the value of
adapting pre-trained language models to specific
tasks with different training objectives, such as in
summarization (Zhang et al., 2020a) and knowl-
edge inference (Sun et al., 2019; Liu et al., 2020).
In the realm of semantic parsing, the SCORE pre-
training method (Yu et al., 2020b) focuses on in-
ducing representations that capture the alignment
between dialogue flow and structural context in
conversational semantic parsing tasks. Grappa (Yu
et al., 2020a) is a pre-training approach designed
for table semantic parsing and seeks to learn an
inductive compositional bias through the joint rep-
resentation of textual and tabular data. Bai et al.
(2022) introduced a semantic-based pre-training
approach that uses abstract meaning representation
(AMR) as explicit semantic knowledge to capture
the core semantic information of utterances in dia-
logues. In comparison, to strengthening hierarchi-
cal structure information, we continue training the
model by using only annotated data for the fine-
tuning task instead of generating (or augmenting)
a large artificial dataset to learn structure informa-
tion (Yu et al., 2020b,a). This enables the model
to effectively performs the hierarchical semantic
parsing task using fewer computational resources.

Grammar-Constrained Neural Network Mod-
els Incorporating constraint grammar in text gen-
eration tasks using neural networks is a topic of

interest to researchers. Yin and Neubig (2017)
proposed an approach using a grammar model to
generate an abstract syntax tree by a series of ac-
tions. Krishnamurthy et al. (2017) presented a type-
constrained semantic parsing model, which ensures
that the decoder only generates well-typed logical
forms. Shin et al. (2021) demonstrated that the
constrained decoding process with an intermediate
sub-language mapped by a large language model
can support parsing the target language. More re-
cently, Baranowski and Hochgeschwender (2021)
extracted context-free grammar from the target log-
ical form of the semantic parsing task. These gram-
mar constraints were then enforced with an LR
parser to maintain syntactically valid sequences
throughout decoding. In comparison, our approach
utilizes grammar as additional structured informa-
tion during training with a conditional loss function.
This key difference sets our approach apart from
previous works.

3 Method

3.1 Overview

Our StructSP framework consists of two fine-
tuning phases: structure-aware boosting and
grammar-based RINE (Figure 2). In the first phase,
Structure-Aware Boosting, we use a pre-trained
RoBERTa model (Liu et al., 2019) as a backbone
and continue to train it in a multi-task setting.
This improves the model’s ability to express struc-
tured information of hierarchical representation
by using two sub-tasks: structure-focused MLM
(section 3.2.1) and relative tree agreement (sec-
tion 3.2.2).

In the next phase, we use grammar-based RINE,
which uses the RINE approach (Mansimov and
Zhang, 2022) augmented by grammar rules to
tackle the problem of the hierarchical semantic
parsing task. The parsing process is split into multi-
ple steps, where the input of each step is the output
of the previous one. The structure-aware model
from the previous phase is used as an encoder to
make predictions. Especially, an inductive gram-
mar synthesized using training data is used to prune
the unpromising decoding directions. The grammar
rules not only correct the parsing process but also
reduce resource usage by eliminating unnecessary
predictions.

10208

3.2 Structure-aware Boosting

3.2.1 Structure-focused MLM
Before introducing our proposed structure-focused
masking strategy, we describe the original
MLM (Devlin et al., 2019).

Original MLM Given a sequence of tokens X =
[x1, x2, ..., xm], probability T = [t1, t2, ..., tm]
corresponding to the input sequence is generated,
where ti indicates the probability that token xi will
be chosen for masking. Following Devlin et al.
(2019), all ti are equal to 15%, meaning that every
token has the same probability of being chosen in
the masking process. Let D be the set of tokens ran-
domly chosen for masking (e.g., D = {x2}), and
let X ′ be the sentence with masked tokens (e.g.,
X ′ = [x1, [MASK], ...xm]). The cross-entropy loss
function is computed for all masked tokens:

Lmlm = − 1

|D|

|D|∑

i=1

|V|∑

j=1

xij log p(xij | X ′) (1)

where |D| is the total number of masked tokens in a
sentence, |V| is the size of vocabulary of language
model, and p(xij | X ′) is the probability that the
model assigns to the token xi belong to token jth

in vocabulary given the context provided by the
masked sequence. The model is trained to mini-
mize this loss function, which measures how well
it can predict the masked tokens on the basis of the
context provided by the unmasked ones

Structure-focused MLM In the linearized hier-
archical representation of an utterance (Table 1),
there are two types of tokens: normal and logi-
cal. The logical tokens can be divided into two
sub-categories: bracket tokens ("[" or "]") indicate
the span of a label, and label tokens represent the
label itself (e.g., IN:GET_EVENT). The correct pre-
diction of a masked bracket token demonstrates
the model’s understanding of the label span. Simi-
larly, the correct prediction of a masked label token
demonstrates the model’s understanding of the la-
bel type. Therefore, masking logical tokens to train
the model for learning the hierarchical structure
is a reasonable approach (Bai et al., 2022). How-
ever, the original MLM treats all tokens equally,
regardless of whether they are normal or logical.

In our approach, we modify the original MLM
approach by assigning a higher masking probabil-
ity to logical tokens, thereby pushing the model to
pay more attention to the hierarchical structure (the

logical token) information. This enables the model
to learn the structural characteristic of natural sen-
tences while retaining the knowledge learned from
the original MLM (Yu et al., 2020a). More specif-
ically, our structure-focused MLM strategy gives
logical tokens a higher masking probability, defined
as α (with α > 15%). Let T ′ = [t′1, t

′
2, ..., t

′
m]

be the revised sequence of masking probabilities,
where t′i = α if the corresponding ith token is
a logical one. The structured-focused MLM loss
(Lstr_mlm) function of masked tokens is computed
similarly to the original MLM loss.

3.2.2 Relative Tree Agreement
In hierarchical representation, leaf nodes are
words, while non-terminal nodes are semantic
tokens: either intents or slots. We define
a non-terminal list as an ordered list of non-
terminal nodes by using a breadth-first search.
For example, using the tree shown in Figure 2,
we obtain the non-terminal list [IN:GET_EVENT,
SL:CATE_EVENT, SL:NAME_EVENT]. This list is
then used to form positive training samples.

The goal of this task is to improve the ability
of the model to produce similar representations
for trees in the same parsing process, enabling it to
effectively perform the recursive insertion-based se-
mantic parsing task. To achieve this goal, a pruned
tree is generated at each training iteration by ran-
domly selecting a node from the non-terminal list
of the full tree (i.e., the annotated tree) and pruning
all non-terminal nodes to the right of it in the list.
This pruned tree is relative to the full tree. For-
mally, we denote the linearized representation of
the full tree as Pfull and that of the pruned tree
as Ppruned. The hidden vector representations of
these two trees (hfull and hpruned) are encoded
using a pre-trained language model:

hfull = RoBERTa(Pfull)

hpruned = RoBERTa(Ppruned)
(2)

We use contrastive learning (Frosst et al., 2019;
Gao et al., 2021; Bai et al., 2022; Luo et al., 2022)
to train our model for this task. The aim is to align
the representations of positive pairs in the latent
space by minimizing the distance between them
while simultaneously maximizing the distance be-
tween negative pairs. Specifically, we define a con-
trastive loss function that measures the similarity
between the hidden states hfull and hpruned. This
information is then used to update the model’s pa-
rameters. Minimizing this loss function enables

10209

our model to learn how to produce more similar
representations for the full and pruned trees. In
particular, given a training batch B, the positive
pair at the ith position is (h(i)full, h

(i)
pruned), and the

negative pairs are the other samples in the batch.
The training objective is given as follows:

Lcontrastive = −log
exp(sim(h

(i)
full, h

(i)
pruned)/τ)∑

j∈B exp(sim(h
(i)
full, h

(j)
pruned)/τ)

(3)

where sim is the similarity function based on co-
sine distance, h

(i)
full and h

(i)
pruned are the hidden

states for the full and pruned trees, respectively,
at the ith position in the batch indexes. τ is a tem-
perature hyperparameter (Gao et al., 2021), and B
is the set of samples in the mini-batch.

3.2.3 Objective Function
We combine the objectives of the two sub-tasks
to formulate the structure-aware boosting loss
(Lsab).

Lsab = Lcontrastive + λ ∗ Lstr_mlm (4)

where λ is a hyperparameter that balances the con-
tributions of the two objectives. As proposed else-
where (Lee et al., 2020; Nandy et al., 2021; Bai
et al., 2022), we do not train our model from
scratch. Instead, we use a pre-trained language
model to initialize its parameters. This enables
us to leverage the knowledge contained in the lan-
guage model.

3.3 Grammar-based RINE

RINE In this phase, we use a recursive insertion-
based approach (Mansimov and Zhang, 2022), with
our structure-aware boosted model created in the
previous phase serving as the backbone. The
parsing process can be formally represented as a
chain of incremental sub-parsed trees, denoted as
P = [P0,P1, ...,Pgold] (Table 1).

Table 1: Example chain of incremental trees in parsing
process using RINE.

Tree Linearized representation

P0 Concerts by Chris Rock

P1 [IN:GET_EVENT Concerts by Chris Rock]

P2 [IN:GET_EVENT [SL:CATE_EVENT Concerts] by Chris Rock]

P3 [IN:GET_EVENT [SL:CATE_EVENT Concerts] by
[SL:NAME_EVENT Chris Rock]]

At the ith step, the model receives the tree in the
previous step Pi−1 as input and predicts the current
node label and its span to decode the tree Pi. The
tree Pi is updated to include a new prediction node

and processing recursively moves to the next step
i+ 1 until a special end-of-prediction signal (EOP)
is found.

Grammar constraint Observation revealed that
the relationships between nodes in the seman-
tic tree are important information in the parsing
process. For example, the intent IN:GET_EVENT
typically comes with slots for event informa-
tion, SL:CATE_EVENT or SL:NAME_EVENT. There-
fore, we introduce a grammar integration mech-
anism into RINE to reduce movement in un-
promising decoding directions. Particularly,
we construct grammar G = {A → B |
A,B are non-terminal nodes} on the basis of train-
ing data (e.g., IN:GET_EVENT → SL:CATE_EVENT
). Integrating grammar into the RINE model means
that the parser considers only the potential nodes
in a candidate set (e.g., C = G(A)) on the basis of
the parent node (e.g., B ∈ C) at each step of node
label prediction.

Modeling For mathematical modeling, given sub-
tree Pi at the ith step, our model first encodes this
tree as a sequence and obtains the corresponding
hidden states fused by context. Following Mansi-
mov and Zhang (2022), we use hidden states of the
[CLS] token in the last transformer encoder layer
to predict the label of the next node. Furthermore,
to predict the range of this node, we use all hid-
den states in the last two layers to compute the
probabilities of the start and end positions.

pnodeLb = softmax(Wlbh
(l)
[CLS] + blb) (5)

pstartk = softmax(Wsh
(l)
wk

+ bs) (6)

pendk = softmax(Weh
(l−1)
wk

+ be) (7)

where W · and b· are the learnable parameters, l is
the number of transformer encoder layers in the
pre-trained language model, and wk is the kth to-
ken (word) index of the input sequence. We use
a special penalty score (spenalty) injected into the
loss function to cause the unpromising label node
predictions to be ignored:

spenalty =

{
0 if nodeLb ∈ C
+∞ otherwise

(8)

where C is the candidates generated from the gram-
mar and the parent node. Finally, the cross-entropy
(CE) losses are synthesized in accordance with the

10210

gold label (gnodeLb) and these output probabilities:

LnodeLb = CE(gnodeLb, pnodeLb) + spenalty (9)

Lstart =
∑

k

CE(gstartk , pstartk) (10)

Lend =
∑

k

CE(gendk , pendk) (11)

Lfinal = LnodeLb + Lstart + Lend (12)

Inference challenge In the inference step, the
challenge with the approach is a lack of informa-
tion about which node is the parent node at the
current step to be used to generate the candidate
set. We propose a simple strategy to meet this
challenge: use the result of span prediction to de-
termine the parent node. For example, considering
the 3rd step in Table 1 and given input P2, we
have no information about the next node to be pre-
dicted and do not know whether the parent node
is IN:GET_EVENT or SL:CATE_EVENT. We predict
the span first and obtain the position of “Chris
Rock”. We thus determine that the parent of the
current node is IN:GET_EVENT, and can generate
candidates C by using this node.

4 Experiment

To verify the effectiveness of our proposed method,
we conducted experiments on datasets TOP2 and
TOPv23 (low-resource setting). Following Mansi-
mov and Zhang (2022), we conducted three random
seeds for each experimental setting and reported
the average results with standard deviation.

4.1 Datasets and Evaluation Metric

The TOP dataset (Gupta et al., 2018) is a collection
of utterances divided into two domains: naviga-
tion and event. Twenty-fine intents and 36 slots
are used to represent the utterances. The mean
depth of the trees in the dataset is 2.54, and the
mean length of the utterances is 8.93 tokens. Fol-
lowing previous works (Einolghozati et al., 2019;
Rongali et al., 2020; Zhu et al., 2020; Mansimov
and Zhang, 2022), we removed utterances with the
UNSUPPORTED intent, resulting in 28,414 training,
4,032 valid, and 8,241 test utterances.

The TOPv2 dataset (Chen et al., 2020) focuses
on scenarios with low resources. We followed Man-
simov and Zhang (2022) by using low-resource ver-
sions of the reminder and weather domains. The

2 Provided under the CC-BY-SA license
3 Provided under the CC BY-NC 4.0 license

reminder domain contains 19 intents and 32 slots
while the weather domain contains 7 intents and 11
slots. The low-resource data were created by select-
ing a fixed number of training samples per intent
and slot (SPIS) from the original dataset. If an in-
tent or slot occurred fewer times than the specified
number of samples, all of the parse trees containing
that intent or slot were included in the low-resource
data. Specifically, we used the training, validation,
and test data at 500 and 25 SPIS. At 500 SPIS,
the reminder domain has 4788 training and 1871
validation samples, and the weather domain has
2372 training and 1202 validation samples. At 25
SPIS, the reminder domain has 493 training and
337 validation samples, and the weather domain
has 176 training and 147 validation samples. For
both SPIS settings, the test sets for the reminder
and weather domains contained 5767 and 5682 test
samples, respectively.

Identical to previous studies (Einolghozati et al.,
2019; Rongali et al., 2020; Zhu et al., 2020; Mansi-
mov and Zhang, 2022), we used exact match (EM)
as performance metric. The EM score was calcu-
lated as the number of utterances for which fully
parsed trees were correctly predicted.

4.2 Experimental setting

Structure-aware boosting: We used the
RoBERTa (Liu et al., 2019) model as our backbone.
With the TOP dataset, we used a peak learning
rate of 1e-05 and continued training for ten epochs
using the Adam optimizer (Kingma and Ba, 2014)
with epsilon 1e-08 and a batch size of 16 sequences
with 512 tokens. For the hyperparameters, we set
τ = 1.0 and selected λ from {0.5, 1.0}4 . With the
TOPv2 dataset, we used the same settings as for
the TOP dataset except we increased the number of
training epochs to 50 for the 25 SPIS setting. The
training process on a single NVIDIA A100 GPU.

Grammar-based RINE: we used the model
trained from the structure-aware boosting phase
as an encoder. For the TOP dataset, we set the num-
ber of warmup steps to 1000, selected the learning
rate from {1e-05, 2e-05}, and performed training
for 50 epochs. The best checkpoint was chosen on
the basis of the model’s performance on the vali-
dation set. We utilized the Adam optimizer and a
batch size of 32 sequences containing 512 tokens.
For the TOPv2 dataset, we used the same settings

4 The values resulting in the best performance are bold.

10211

except for adjusting the batch size to 16 for the 500
SPIS setting and 8 for the 25 SPIS setting.

Baseline: We reproduced the RINE model (Man-
simov and Zhang, 2022) as a strong baseline model
and kept the same hyperparameter values as the
original paper (Mansimov and Zhang, 2022).

4.3 Main Results

TOP dataset We evaluated the performance of
our proposed StructSP method on the TOP dataset
and compared it with that of the other works. The
results are shown in Table 2.

Table 2: Performance comparison for TOP test set.

Method Pre-trained EM

Seq2seq (Bai et al., 2022) SARA-ROBERTA 82.78

RNNG ensem. + SVMRank (Einol-
ghozati et al., 2019)

ELMo 87.25

Non-AR S2S-Ptr (Shrivastava et al.,
2021)

RoBERTabase 85.07

S2S-Ptr (Rongali et al., 2020) RoBERTabase 86.67

Decoupled S2S-Ptr (Aghajanyan et al.,
2020)

RoBERTalarge 87.10

Insertion Transformer + S2S-Ptr (Zhu
et al., 2020)

RoBERTabase 86.74

RINE (Mansimov and Zhang, 2022) RoBERTalarge 87.57 ± 0.03

Non-grammar StructSP (ours) RoBERTalarge 87.89 ± 0.08

StructSP (ours) RoBERTalarge 88.18 ± 0.24

Our model outperformed all the other models.
Specifically, it achieved a higher score than the au-
toregressive seq2seq model with pointer (Rongali
et al., 2020) by 1.51 EM and outperformed the best
method of previous works, RINE (Mansimov and
Zhang, 2022) by 0.61 EM scores. These results
show the effectiveness of our proposed method in
injecting prior semantic hierarchical structure in-
formation of a natural sentence into the pre-trained
language model. Besides, our result outperformed
the result of Bai et al. (2022) by a large margin,
although the authors also strengthened the struc-
ture information of pre-trained models using a gen-
eral AMR structure. Additionally, using gram-
mar improved the performance of our model by
0.29 points compared with a version of the model
trained without using grammar. This demonstrates
the value of incorporating grammar into our model
when using the TOP dataset.

TOPv2 dataset We evaluated the performance of
our proposed StructSP method on the low-resource
data of the reminder and weather domains of the
TOPv2 dataset and compared it with that of the
other methods. The results are shown in Table 3.

Our model outperformed the others for all SPIS set-
tings. At the 25 SPIS setting, our StructSP outper-
forms the baseline by 0.93 EM and 1.02 EM in the
weather and reminder domains. Notice that, with
these low-resource settings, in the structure-aware
boosting phase, the model also only continues to
train with limited data but still achieves impressive
improvements.

In addition, at the 25 SPIS setting of the weather
domain, we observed that the performance of the
StructSP was improved when it was trained without
using grammar. We argue that this was due to
the size of the training set at this setting being
extremely small (176 samples), and the extracted
grammar from this training set is not expressive
enough to cover the grammar in the validation and
the test set.

5 Analysis

5.1 Ablation Study

To evaluate the effect of using each component in
our framework, we compared the model’s perfor-
mance for each combination of component settings
with that of the RINE baseline model on the valida-
tion set of the TOP dataset (Table 4).

We found that using grammar in the second
phase grammar-based RINE led to improved per-
formance on the TOP dataset (EM score 0.12 points
higher than with the baseline model). Additionally,
using the structure-aware boosting phase substan-
tially improved the EM score compared with the
baseline (0.52 points higher). To further under-
stand the contributions of each training subtask in
the structure-aware boosting phase, we conducted
two additional experiments. The results show that
using the structure-focused mask language mod-
eling subtask improves EM performance by 0.36
points compared with the baseline while using the
relative tree agreement subtask leads to only a 0.05
improvement.

Furthermore, we conducted a t-test (Lehmann
and Romano, 1986) with the null hypothesis that
the expected values of our full-setting model
(StructSP) and the baseline model (RINE) are iden-
tical (Table 4). Based on the experimental out-
comes, the p-value was found to be below 0.05,
which suggests that the proposed method outper-
forms the baseline model significantly.

10212

Table 3: Performance comparison using exact match score for our StructSP method and previous works on TOPv2
test set.

Method Pre-trained Model
Exact Match

Weather Reminder

25 SPIS 500 SPIS 25 SPIS 500 SPIS

LSTM Seq2Seq-Ptr (Chen et al., 2020) _ 46.2 78.6 21.5 65.9

Seq2seq-Ptr (Chen et al., 2020) RoBERTabase _ 83.5 _ 71.9

Seq2seq-Ptr (Chen et al., 2020) BARTlarge 71.6 84.9 55.7 71.9

RINE (Mansimov and Zhang, 2022) RoBERTabase 74.53 ± 0.86 87.80 ± 0.04 68.71 ± 0.46 80.30 ± 0.04

RINE (Mansimov and Zhang, 2022) RoBERTalarge 77.03 ± 0.16 87.50 ± 0.28 71.10 ± 0.63 81.31 ± 0.22

Non-grammar StructSP RoBERTalarge 78.24 ± 0.47 88.00 ± 0.47 72.07 ± 1.24 81.57 ± 0.27

StructSP RoBERTalarge 77.96 ± 0.92 88.08 ± 0.11 72.12 ± 1.13 82.28 ± 0.24

Table 4: Results of ablation study on validation set of TOP dataset. Denotations ✓ and ✗ indicate whether
corresponding component was used or not, respectively. ∆ denotes difference in EM scores between the full-setting
model with other models.

Method
Settings

EM ∆
T-test

(Significantly better
at 95%?)

Structure-aware boosting
GrammarStructure focused MLM Relative tree agreement

StructSP

✓ ✓ ✓ 88.26 _ yes

✗ ✗ ✓ 87.69 -0.57 no

✓ ✓ ✗ 88.09 -0.17 yes

✓ ✗ ✗ 87.93 -0.33 yes

✗ ✓ ✗ 87.62 -0.64 no

Baseline ✗ ✗ ✗ 87.57 -0.69 _

Table 5: Comparison of outputs5 of baseline (RINE) and our StructSP model on the validation set of TOP dataset.

Type Ouput

Input Where is the nearest Tom Thumb
Ground-Truth [IN:GET_LOCATION Where is the [SL:LOCATION_MODIFIER nearest] [SL:POINT_ON_MAP Tom Thumb]]
Baseline [IN:GET_LOCATION Where is the [SL:LOCATION_MODIFIER nearest] [SL:NAME_EVENT Tom Thumb]]
StructSP [IN:GET_LOCATION Where is the [SL:LOCATION_MODIFIER nearest] [SL:POINT_ON_MAP Tom Thumb]]

Input What to do after a Pacers game
Ground-Truth [IN:GET_EVENT What to do [SL:DATE_TIME [IN:GET_EVENT after a [SL:NAME_EVENT Pacers] [SL:CATEGORY_EVENT game]]]]
Baseline [IN:GET_EVENT What to do after a [SL:NAME_EVENT Pacers] [SL:CATEGORY_EVENT game]]
StructSP [IN:GET_EVENT What to do [SL:DATE_TIME [IN:GET_EVENT after a [SL:NAME_EVENT Pacers] [SL:CATEGORY_EVENT game]]]]

Input traffic near me right now

Ground-Truth
[IN:GET_INFO_TRAFFIC traffic [SL:LOCATION [IN:GET_LOCATION [SL:LOCATION_MODIFIER [IN:GET_LOCATION [SL:SEARCH_
RADIUS near] [SL:LOCATION_USER me]]]]] [SL:DATE_TIME right now]]

Baseline
[IN:GET_INFO_TRAFFIC traffic [SL:LOCATION [IN:GET_LOCATION [SL:SEARCH_RADIUS near] [SL:LOCATION_USER me]]]
[SL:DATE_TIME right now]]

StructSP
[IN:GET_INFO_TRAFFIC traffic [SL:LOCATION [IN:GET_LOCATION [SL:SEARCH_RADIUS near][SL:LOCATION_USER me]]]
[SL:DATE_TIME right now]]

5.2 Effect of masking probability α

In another experiment, we analyzed the effect of
the logical-token masking probability (α in Sec-
tion 3.2.1) in the structured-aware boosting phase
on overall performance (Figure 3). High perfor-
mance was achieved when α was set to 0.3 or 0.4.
We attribute this to our mechanism pushing the
model to pay more attention to the logical tokens,
helping it to better capture the structure. In sum-

mary, these results show that our StructSP method
achieved better performance than the baseline for
all values of α, which demonstrates the robustness
of our approach.

5.3 Case Study

Table 5 presents several example utterances from
the TOP dataset. In the first example, our model

5 Please refer to Appendix C for tree representation.

10213

0.2 0.3 0.4 0.5 0.6

87.6
87.8
88

α

EM
StructSP
RINE (Baseline)

Figure 3: Effect of logical-token masking probability
(α) on system performance.

predicted the slot SL:POINT_ON_MAP after the
intent IN:GET_LOCATION, whereas the baseline
model predicted the slot SL:NAME_EVENT. This dif-
ference occurred because the extracted grammar
does not contain the constraint (IN:GET_LOCATION
=> SL:NAME_EVENT). This demonstrates the effec-
tiveness of incorporating grammar into our model.
The second example presents a ground-truth tree
with a complex structure, requiring the model to
identify the span "after a Pacers game" as a date
time slot (SL:DATE_TIME) and then correctly parse
the structure within this span. Our model was able
to correctly return the tree, whereas the baseline
model was not. The final example is a particularly
challenging one, the tree has a depth of 5, indicat-
ing that the tree structure is highly complex. Both
models failed to return the correct predictions, sug-
gesting that learning to handle such complicated
queries is an interesting topic for future work.

6 Conclusion

We have presented a novel approach to improving
the performance of SOTA semantic parsing models
on hierarchical representation datasets. In this ap-
proach, a model is created that incorporates knowl-
edge of the utterance structures into the semantic
parsing process. This is achieved by learning con-
textual representations from the hierarchical rep-
resentation of utterances with objective functions
targeted at the semantic parsing task as well as by
using grammar rules containing knowledge about
the structure of the data for training and label pre-
diction. In experiments on the TOP and TOPv2
datasets, our model outperforms previous SOTA
approaches.

7 Limitations

There are two main limitations to our works.
(1) Grammar constraint: The results of the

StructSP method at the 25 SPIS setting in the
TOPv2 dataset (Table 3) suggest that the results

of using grammar with low-resource data can be
uncertain. The reason is that the extracted gram-
mar from training data for low-resource setting is
not general enough to capture the grammar of the
new coming data (validation or test set). Therefore,
for our StructSP method to work effectively, the
provided grammar should cover all grammar rules
if possible.

(2) Prediction time: A recursive insertion-based
strategy is used for prediction. This means that the
output of the previous parsing step is used as input
for the current parsing step, and this process con-
tinues until a terminal signal is encountered. As
a result, parsing a complex tree with multiple in-
tents/slots (labels) can be a lengthy process due to
the recursive nature of this method. Future work
includes improving parsing prediction time by pre-
dicting all labels at the same level in the parsed tree
rather than predicting them one by one.

Acknowledgement

This work is partly supported by AOARD grant
FA23862214039

References

Armen Aghajanyan, Jean Maillard, Akshat Shrivastava,
Keith Diedrick, Michael Haeger, Haoran Li, Yashar
Mehdad, Veselin Stoyanov, Anuj Kumar, Mike Lewis,
and Sonal Gupta. 2020. Conversational semantic
parsing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5026–5035, Online. Association for
Computational Linguistics.

Xuefeng Bai, Linfeng Song, and Yue Zhang. 2022.
Semantic-based pre-training for dialogue understand-
ing. In Proceedings of the 29th International Confer-
ence on Computational Linguistics, pages 592–607,
Gyeongju, Republic of Korea. International Commit-
tee on Computational Linguistics.

Artur Baranowski and Nico Hochgeschwender. 2021.
Grammar-constrained neural semantic parsing with
LR parsers. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1275–1279, Online. Association for Computational
Linguistics.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100, Online. As-
sociation for Computational Linguistics.

10214

https://doi.org/10.18653/v1/2020.emnlp-main.408
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://aclanthology.org/2022.coling-1.49
https://aclanthology.org/2022.coling-1.49
https://doi.org/10.18653/v1/2021.findings-acl.108
https://doi.org/10.18653/v1/2021.findings-acl.108
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413

Shrey Desai and Ahmed Aly. 2021. Diagnosing trans-
formers in task-oriented semantic parsing. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 57–62, Online. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Arash Einolghozati, Panupong Pasupat, Sonal Gupta,
Rushin Shah, Mrinal Mohit, Mike Lewis, and
Luke Zettlemoyer. 2019. Improving semantic
parsing for task oriented dialog. arXiv preprint
arXiv:1902.06000.

Nicholas Frosst, Nicolas Papernot, and Geoffrey Hin-
ton. 2019. Analyzing and improving representations
with the soft nearest neighbor loss. In International
conference on machine learning, pages 2012–2020.
PMLR.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516–1526, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Erich Leo Lehmann and Joseph P Romano. 1986. Test-
ing statistical hypotheses, volume 3. Springer.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 2901–2908.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Samuel Louvan and Bernardo Magnini. 2020. Recent
neural methods on slot filling and intent classifica-
tion for task-oriented dialogue systems: A survey.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 480–496,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Yun Luo, Fang Guo, Zihan Liu, and Yue Zhang. 2022.
Mere contrastive learning for cross-domain senti-
ment analysis. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 7099–7111, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Elman Mansimov and Yi Zhang. 2022. Semantic pars-
ing in task-oriented dialog with recursive insertion-
based encoder. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11067–11075.

Abhilash Nandy, Soumya Sharma, Shubham Mad-
dhashiya, Kapil Sachdeva, Pawan Goyal, and NIloy
Ganguly. 2021. Question answering over electronic
devices: A new benchmark dataset and a multi-task
learning based QA framework. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4600–4609, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

10215

https://doi.org/10.18653/v1/2021.findings-acl.5
https://doi.org/10.18653/v1/2021.findings-acl.5
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.48550/ARXIV.1902.06000
https://doi.org/10.48550/ARXIV.1902.06000
http://proceedings.mlr.press/v97/frosst19a/frosst19a.pdf
http://proceedings.mlr.press/v97/frosst19a/frosst19a.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1609/AAAI.V34I03.5681
https://doi.org/10.1609/AAAI.V34I03.5681
https://doi.org/https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://aclanthology.org/2022.coling-1.620
https://aclanthology.org/2022.coling-1.620
https://doi.org/https://doi.org/10.1609/aaai.v36i10.21355
https://doi.org/https://doi.org/10.1609/aaai.v36i10.21355
https://doi.org/https://doi.org/10.1609/aaai.v36i10.21355
https://doi.org/10.18653/v1/2021.findings-emnlp.392
https://doi.org/10.18653/v1/2021.findings-emnlp.392
https://doi.org/10.18653/v1/2021.findings-emnlp.392
https://doi.org/https://doi.org/10.1145/3366423.3380064
https://doi.org/https://doi.org/10.1145/3366423.3380064
https://doi.org/https://doi.org/10.1145/3366423.3380064

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311–324, Online. Association for Computational Lin-
guistics.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Akshat Shrivastava, Pierce Chuang, Arun Babu, Shrey
Desai, Abhinav Arora, Alexander Zotov, and
Ahmed Aly. 2021. Span pointer networks for non-
autoregressive task-oriented semantic parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 1873–1886, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5976–5985. PMLR.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng,
Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
Hao Tian, and Hua Wu. 2019. ERNIE: enhanced
representation through knowledge integration. CoRR,
abs/1904.09223.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe
Zhou, and Zhoujun Li. 2017. Building task-oriented
dialogue systems for online shopping. In Thirty-first
AAAI conference on artificial intelligence.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020a. Grappa:
grammar-augmented pre-training for table semantic
parsing. arXiv preprint arXiv:2009.13845.

Tao Yu, Rui Zhang, Alex Polozov, Christopher Meek,
and Ahmed Hassan Awadallah. 2020b. Score: Pre-
training for context representation in conversational
semantic parsing. In International Conference on
Learning Representations.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 11328–11339.
PMLR.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie
Huang, and XiaoYan Zhu. 2020b. Recent advances
and challenges in task-oriented dialog systems. Sci-
ence China Technological Sciences, 63(10):2011–
2027.

Wenting Zhao, Konstantine Arkoudas, Weiqi Sun, and
Claire Cardie. 2022a. Compositional task-oriented
parsing as abstractive question answering. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4418–4427, Seattle, United States. Association for
Computational Linguistics.

Yingxiu Zhao, Yinhe Zheng, Zhiliang Tian, Chang
Gao, Bowen Yu, Haiyang Yu, Yongbin Li, Jian
Sun, and Nevin L Zhang. 2022b. Prompt condi-
tioned vae: Enhancing generative replay for lifelong
learning in task-oriented dialogue. arXiv preprint
arXiv:2210.07783.

Qile Zhu, Haidar Khan, Saleh Soltan, Stephen Rawls,
and Wael Hamza. 2020. Don’t parse, insert: Multilin-
gual semantic parsing with insertion based decoding.
In Proceedings of the 24th Conference on Computa-
tional Natural Language Learning, pages 496–506,
Online. Association for Computational Linguistics.

Amir Ziai. 2019. Compositional pre-training for neural
semantic parsing. arXiv preprint arXiv:1905.11531.

A Data Pre-processing

Before training our models, we perform the follow-
ing data processing steps:

• Step 1: Extract the grammar using the full
trees of the training samples, with the con-
straint "parent node -> child node" (Eg.
IN:GET_LOCATION -> SL:NAME_EVENT).

• Step 2: Convert the ground-truth full trees
into multiple sub-parsed trees, each repre-
sented as a triple (Current parsed tree, Label,
Label span) (Figure 1).

• Step 3: Extract the set of label types from the
training samples.

With the above data, we then proceed to train our
models in two phases.

10216

https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.findings-emnlp.161
https://doi.org/10.18653/v1/2021.findings-emnlp.161
https://proceedings.mlr.press/v97/stern19a.html
https://proceedings.mlr.press/v97/stern19a.html
http://arxiv.org/abs/1904.09223
http://arxiv.org/abs/1904.09223
https://doi.org/https://doi.org/10.1609/aaai.v31i1.11182
https://doi.org/https://doi.org/10.1609/aaai.v31i1.11182
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/https://doi.org/10.48550/arXiv.2009.13845
https://doi.org/https://doi.org/10.48550/arXiv.2009.13845
https://doi.org/https://doi.org/10.48550/arXiv.2009.13845
https://openreview.net/pdf?id=oyZxhRI2RiE
https://openreview.net/pdf?id=oyZxhRI2RiE
https://openreview.net/pdf?id=oyZxhRI2RiE
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/https://doi.org/10.1007/s11432-016-0037-0
https://doi.org/https://doi.org/10.1007/s11432-016-0037-0
https://aclanthology.org/2022.naacl-main.328
https://aclanthology.org/2022.naacl-main.328
https://doi.org/https://doi.org/10.48550/arXiv.2210.07783
https://doi.org/https://doi.org/10.48550/arXiv.2210.07783
https://doi.org/https://doi.org/10.48550/arXiv.2210.07783
https://doi.org/10.18653/v1/2020.conll-1.40
https://doi.org/10.18653/v1/2020.conll-1.40
https://doi.org/https://doi.org/10.48550/arXiv.1905.11531
https://doi.org/https://doi.org/10.48550/arXiv.1905.11531

B Model Hyper-Parameters

The hyper-parameters used in our models in the
TOP dataset are shown in Table 6. In the TOPv2
dataset, we use the same hyper-parameters with the
following exceptions: for the 25 SPIS setting in the
structure-aware boosting phase, the training epoch
was adjusted to 50; for the 500 SPIS and 25 SPIS
settings in the label prediction phase, the batch size
was adjusted to 16 and 8, respectively. The hyper-
parameters used in our models in the TOP dataset
Our framework is implemented using Pytorch6 and
HuggingFace Transformers.7 . Our source code
and extracted grammar can be found at: [masked]
(access will be granted upon acceptance).

Table 6: Hyper-parameters of our models in TOP dataset

Phase Hyper-Parameter Value

Structure

Enhancement

Batch size 16

Learning Rate 1e-5

Sequence length 300

MLM Weight (θ) 0.5

Training Epoch 10

Label

Prediction

Batch Size 32

Optimizer Adam

Learning Rate 1e-5

Warmup Step 1000

Max Training Epoch 50

Max length 512

Logical Token Masking Prob. (α) 0.3

RoBERTa Attention Dropout 0.2

MLP Dropout 0.5

C Case study outputs with tree
representation

Figure 5 presents the example of the parsing pro-
cess described in Section 1 using tree representa-
tion. Additionally, Figure 5 displays the outputs
of examples discussed in Section 5.3 using tree
representation.

6 https://github.com/pytorch/pytorch
7 https://github.com/huggingface/transformers

10217

https://github.com/pytorch/pytorch
https://github.com/huggingface/transformers

What is going on right now

What is going on right now

IN:GET_EVENT

What is going on

IN:GET_INFO_TRAFFIC

SL:DATE_TIME

right now

Step 1:
IN:GET_EVENT

Step 2:
SL:DATE_TIME

Full treeSub treeSub tree

Figure 4: Example of parsing process with tree representation.

IN:GET_LOCATION

Where is the

nearest Tom Thumb

Ground-Truth

SL:LOCATION_MODIFIER SL:POINT_ON_MAP

Baseline StructSP

(a) Example 1

IN:GET_EVENT

What to do

after a

game

Ground-Truth

SL:DATE_TIME

SL:CATEGORY_EVENT

(b) Example 2

IN:GET_EVENT

SL:NAME_EVENT

Pacers

IN:GET_EVENT

What to do after a

game

Baseline

SL:CATEGORY_EVENTSL:NAME_EVENT

Pacers

StructSP

IN:GET_INFO_TRAFFIC

traffic

near

Ground-Truth

SL:LOCATION

SL:SEARCH_RADIUS

(c) Example 3

SL:LOCATION_MODIFIER

IN:GET_LOCATION

me

Baseline StructSP

SL:LOCATION_USER

SL:DATE_TIME

right now

IN:GET_INFO_TRAFFIC

traffic

near

SL:LOCATION

SL:SEARCH_RADIUS

IN:GET_LOCATION

me

SL:LOCATION_USER

SL:DATE_TIME

right nowIN:GET_LOCATION

IN:GET_LOCATION

Where is the

nearest Tom Thumb

SL:LOCATION_MODIFIER SL:POINT_ON_MAP

IN:GET_LOCATION

Where is the

nearest Tom Thumb

SL:LOCATION_MODIFIER SL:NAME_EVENT

IN:GET_EVENT

What to do

after a

game

SL:DATE_TIME

SL:CATEGORY_EVENT

IN:GET_EVENT

SL:NAME_EVENT

Pacers

IN:GET_INFO_TRAFFIC

traffic

near

SL:LOCATION

SL:SEARCH_RADIUS

IN:GET_LOCATION

me

SL:LOCATION_USER

SL:DATE_TIME

right now

Figure 5: Case study outputs with tree representation.

10218

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�7 A2. Did you discuss any potential risks of your work?
Our research focuses on improving the performance of the semantic parsing task, which is experi-
mented on well-known published datasets.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4

�3 B1. Did you cite the creators of artifacts you used?
4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
4

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
This data is used by previous works.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10219

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10220

