
Findings of the Association for Computational Linguistics: ACL 2023, pages 9963–9977
July 9-14, 2023 ©2023 Association for Computational Linguistics

FedPETuning: When Federated Learning Meets the Parameter-Efficient
Tuning Methods of Pre-trained Language Models

Zhuo Zhang1,2,∗ Yuanhang Yang1,∗ Yong Dai4 Qifan Wang5 Yue Yu2

Lizhen Qu3,† Zenglin Xu1,2,†
1Harbin Institute of Technology, Shenzhen, China

2Peng Cheng Lab, Shenzhen, China
3Monash University, Melbourne, Australia

4Tencent, Shenzhen, China
5Meta AI, CA, USA

{iezhuo17, ysngkil}@gmail.com daiyongya@outlook.com wqfcr@fb.com
yuy@pcl.ac.cn Lizhen.Qu@monash.edu.cn xuzenglin@hit.edu.cn

Abstract

With increasing concerns about data privacy,
there is an increasing necessity of fine-tuning
pre-trained language models (PLMs) for adapt-
ing to downstream tasks located in end-user
devices or local clients without transmitting
data to the central server. This urgent necessity
therefore calls the research of investigating fed-
erated learning (FL) for PLMs. However, large
PLMs bring the curse of prohibitive commu-
nication overhead and local model adaptation
costs for the FL system. To this end, we investi-
gate the parameter-efficient tuning (PETuning)
of PLMs and develop a corresponding feder-
ated benchmark for four representative PETun-
ing methods, dubbed FedPETuning. Specifi-
cally, FedPETuning provides the first holistic
empirical study of representative PLMs tuning
methods in FL, covering privacy attacks, perfor-
mance comparisons, and resource-constrained
analysis. Intensive experimental results have
indicated that FedPETuning can efficiently de-
fend against privacy attacks and maintains ac-
ceptable performance with reducing heavy re-
source consumption. The open-source code
and data are available at https://github.
com/SMILELab-FL/FedPETuning.

1 Introduction

Pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019a), have demonstrated exceptional per-
formance on a multitude of natural language pro-
cessing (NLP) benchmarks (e.g., GLUE (Radford
et al., 2019)). Consequently, PLMs have become de
facto backbones for real-world applications. Gen-
erally, in most real-world NLP applications, PLMs
are centrally fine-tuned on the enormous quantity

*Equal contribution.
†Corresponding authors.

Client 1 Client 2

...
Client N

Server

Trainable
Weights

Frozen
PLMs Communication

𝒲!

Privacy
Local Data

𝒲! 𝒲!

𝒲!

𝒲!

𝒲! 𝒲!

𝒲"

𝒲! 𝒲! 𝒲!

𝒲! 𝒲! 𝒲!

="()𝒲! 𝒲! 𝒲! ... 𝒲!

Aggregation

Figure 1: An overview of FedPETuning where a client
exchanges a light amount of parameters of PLMs with
the server while keeping most parameter frozen.

of data collected from individual customers, small
businesses, or large enterprises (Qu et al., 2021).
However, with the rising privacy concerns and the
enactment of data protection laws1, enterprises or
institutions are not allowed to collect data from end
devices or local clients to a centralized server for
fine-tuning PLMs.

To break this barrier, federated learn-
ing (Konečnỳ et al., 2016; McMahan et al.,
2017) (FL) has emerged as a privacy-aware
technique designed to collaboratively train models
without transmitting the numerous end-user or
client data to a centralized place. In FL, the decen-
tralized clients only need to periodically compute
and send model information (i.e., parameters or
gradients) to a server which is responsible for
aggregating them to produce a global model. With
the notion of privacy preserving, FL is appealing
for privacy-sensitive NLP applications (Sui
et al., 2020; Basu et al., 2021), as in the case of
healthcare (Ge et al., 2020), finance (Long et al.,
2020), and mobile keyboard (Ji et al., 2019).

1Such as the EU’s GDPR or the US’s HIPAA.

9963

https://github.com/SMILELab-FL/FedPETuning
https://github.com/SMILELab-FL/FedPETuning

Although fine-tuning PLMs in FL, namely
FedFT, presents promising opportunities, there are
two significant challenges that cannot be over-
looked, including (1) communication overhead in
the FL system, and (2) computational and storage
costs for local clients. Fine-tuning such PLMs usu-
ally requires distributed clients and services high-
frequently exchange model gradients or parameters
which are usually in the scale of millions or even
billions. The limited communication bandwidth2

in the FL system may cause excessive delays dur-
ing frequent uploading and downloading phases
of the federated fine-tuning procedure. Mean-
while, it is often impractical for local clients to
fine-tune the entire PLMs because of their limited
computing resources. Moreover, fully fine-tuning
PLMs is extremely memory-intensive when a local
client wants to store different instances for different
tasks (Hu et al., 2022). As such, it is imperative
to explore suitable PLMs-empowered FL methods
under resource constraints (i.e., communication,
parameters adaption, and storage).

To this end, we investigate parameter-efficient
tuning (PETuning) methods of PLMs under the
FL setting. PETuning methods, such as adapter
tuning (Houlsby et al., 2019), prefix tuning (Li
and Liang, 2021), LoRA (Hu et al., 2022), Bit-
Fit (Zaken et al., 2021), freeze most parameters of
PLMs and update only a few additional parame-
ters or a part of the original model parameters for
downstream tasks (Ding et al., 2022). These prop-
erties make PETuning methods potentially appeal-
ing to satisfy the resource constraints since local
clients just need to tune lightweight parameters and
communicate with the server for updates. Never-
theless, it is crucial to address pertinent concerns.
First, as the performance of federated models is
greatly affected by the data heterogeneity (Kairouz
et al., 2021) among clients, it is not yet known that
PETuning methods can achieve acceptable perfor-
mance in FL with such challenging data hetero-
geneity. Second, as private data could be recovered
from model gradients uploaded by clients via gradi-
ent inversion attacks (Zhu et al., 2019), it is unclear
whether PETuning methods that upload only partial
parameters of the entire model can resist gradient
inversion attacks.

To address these concerns, we present the frame-
work of Federated Parameter-Efficient Tuning

2For example, the communication bandwidth between
clients and server is constrained from a hundred Kbps to a few
Mbps in most situations (Sui et al., 2020).

(named FedPETuning for short), as illustrated in
Figure 1, and conduct in-depth experiments of var-
ious PETuning methods under the FL setting, mea-
suring privacy-preserving capability, performance,
and resource costs. Intensive experimental results
on the GLUE benchmark reveal that (1) FedPETun-
ing can reduce the considerable resource costs in
FL settings while still achieving acceptable perfor-
mance (e.g., FedAP reduces 97.4% of communi-
cation with only 0.7% performance degradation
compared with FedFT) as shown in Table 2, and
(2) FedPETuning has an appealing ability to de-
fend against gradient inversion attacks, which can
reduce the prevision of recovered words by an av-
erage of 40.7% compared to FedFT, as shown in
Section 4.2. In summary, the major contributions
of this paper are shown as follows:

• FedPETuning is the first benchmark to pro-
vide a holistic review of PETuning methods
for PLMs under FL settings, covering pri-
vacy attacks, performance comparisons, and
resource-constrained analysis.

• FedPEtuning can serve as a suite of baselines
for efficient-parameter tuning of PLMs in a
federated setting, and guide the community to
design FL-tailored efficient parameter tuning
algorithms.

Our research findings demonstrate the poten-
tial of combining large PLMs with FL, provid-
ing a promising training paradigm for privacy-
preserving learning in the era of large language
models (Ouyang et al., 2022; OpenAI, 2023).

2 Related Work

Federated Learning Federated learn-
ing (Konečnỳ et al., 2016; McMahan et al.,
2017) (FL), a widespread distributed learning
technique used in privacy-sensitive tasks, has been
hindered by not Independently and Identically
Distributed (non-IID) (Kairouz et al., 2021),
which results in accuracy discrepancies compared
to centralized training. Extensive optimization
studies have been conducted to address the non-IID
issue, including data optimization (Zhao et al.,
2018), model updating optimization (Chai et al.,
2020), and model training optimization (Sahu et al.,
2018). Recently, some work has tried to solve this
problem from a pre-trained model initialization
perspective (Chen et al., 2022b; Nguyen et al.,
2022) and transformer model structure (Qu et al.,

9964

2022). Weller et al. (2022) experimentally show
that using PLMs could reduce non-IID adverse
effects and narrow down its accuracy gap to
centralized learning. However, the significant
communication overhead of large-scale PLMs are
less considered in FL systems, leading to slow
and impractical federated training in real-world
tasks. Additionally, PLMs can pose challenges for
local clients with limited hardware capabilities for
computation and storage. In contrast, our study
investigates PLMs’ training in the FL context
under resource constraints.

Injecting parameters-efficient tuning methods
into federated learning Parameter-efficient tun-
ing (PETuning) seeks to keep most parameters
of PLMs frozen and fine-tune only additional
lightweight parameters or a fraction of the param-
eters for downstream tasks (Houlsby et al., 2019;
Li and Liang, 2021; Hu et al., 2022; Zaken et al.,
2021). With this trait, PETuning methods can be
utilized to mitigate the communication overhead
in FL, which primarily relies on the size of model
update parameters. In the field of computer vision,
Sun et al. (2022) present the FedPEFT framework
by injecting three PETuning methods (i.e., Bais,
Adapter, Prompt) of the visual pre-trained models
into FL, and find that lightweight PETuning meth-
ods in FL can significantly reduce the communi-
cation burden while maintaining performance and
performing better in different FL settings. Mean-
while, Chen et al. (2022c) extend PETuning meth-
ods to the visual language model in FL and show
that PETuning can facilitate a fast convergence
rate. However, these studies ignore the important
privacy attack issue existing in FL. With increas-
ing attention to privacy concerns, validation of the
privacy-preserving capabilities of federated PETun-
ing methods is paramount and facilitates their prac-
tical deployment in real-world scenarios.

In the context of NLP, Zhao et al. (2022) first
explore the effect of prompt-tuning under the FL
setting and achieve acceptable performance results
compared with fine-tuning. Xu et al. (2022) show
that it is possible to train large vocabulary language
models while preserving accuracy and privacy by
adopting the low-rank adaptation (Hu et al., 2022).
However, there has been no comprehensive inves-
tigation into the FL performance of the PETuning
method for PLMs. Our research aims to bridge
this gap and provide access to our code and data to
inspire further exploration of the potential of this

new paradigm for efficient federated NLP.

3 Federated Parameter-Efficient Tuning

In this section, we present how different PETuning
methods work, followed by the training process of
FedPETuning.

3.1 PETuning Methods
Denote the original PLM parameters by Wp =
{w1, w2, ..., wN} and the updated parameters by
W ′

p = {w′
1, w

′
2, ..., w

′
M} after training on the

dataset D. DefineWe as trainable model parame-
ters. In vanilla fine-tuning, |We| are equal to the
number of original model parameters and N = M ,
where | · | refers to the number of parameters. In the
PETuning methods, most parameters of the PLM
keep frozen and only a few added parameters or a
part of the original model parameters are updated,
that is, M ≥ N and |We| ≪ N . Following the
taxonomy of Ding et al. (2022), PETuning methods
could be divided into three groups, i.e., addition-
based methods, specification-based methods, and
reparameterization-based methods.

Addition-based methods introduce new trainable
parameters into the frozen PLMs. These meth-
ods have two representative branches: Adapter
tuning and Prompt tuning. The adapter tuning
proposed by Houlsby et al. (2019) inserts adapter
layers to vanilla Transformers. Specifically, two
adapter layers are inserted into each Transformer
block, wherein each adapter layer contains a down-
projection and an up-projection. Given the input
feature h ∈ Rd, the down-projectionWd ∈ Rd×r

projects the input hin to a r-dimensional space and
the up-projectionWu ∈ Rr×d maps back to the in-
put size. Mathematically, the computation process
is as follows,

h←WT
u f

(
WT

d h
)
, (1)

where f(·) is the nonlinear activation function. In
this strategy, adapter tuning could only fine-tune
adapter layersWe = {Wu,Wd} (about 0.5% to 8%
parameters of the whole model) during the tuning
process while keeping parameters of PLMs frozen.

On the contrary, prompt-tuning (Li and Liang,
2021; Liu et al., 2021) adds extra parameters with-
out modifying the model architecture. Prompt-
tuning converts the training objective of down-
stream tasks into a form similar to the pre-trained
stage (Devlin et al., 2019; Liu et al., 2019b), by
attaching trainable vectors P , namely prompt, to

9965

the original input. During model training, prompt-
tuning only adapts light-weight prompt vectors
We = {P}, which scale to within 10% of the
number of PLMs parameters.

Algorithm 1: Training process of FedPETuning

Parameters: Client set C; Communication round
T ; Local epoch number E ; The PLMs parameters
Wp; The local trainable and efficient parametersWe

and the local dataset Dk of the k-th client; Local
PETuning Method P;

Before Training: Initialize W0
e on the server and

Wp on each client in C.

ServerGlobalAggregation:
for each communication round t = 1 to T do
Ct ← (randomly sample K clients from C)
for each user k ∈ Ct in parallel do

ClientLocalTuning(k,Wt−1
e)

end
Receive local updated parametersWk,t

e

Perform global aggregation by Eq. (3)
end

ClientLocalTuning (k,Wt
e):

Wt ← (assembleWt
e andWp)

for epoch e = 1 to E do
Wk,t+1

e ← P(Dk,Wt)
end
SendWk,t+1

e to the server

Specification-based methods aim to fine-tune a
fraction of the parameters while keeping others
frozen. In particular, Zaken et al. (2021) propose
BitFit and empirically demonstrate that only tuning
the bias termsWe = {bℓ,(·)

(·) } of PLMs could still
achieve competitive performance.

Reparameterization-based methods argue that
the PLMs’ adaptions can be re-parameterized
into optimization within a low-dimensional sub-
space (Aghajanyan et al., 2020). Based on this
hypothesis, LoRA (Hu et al., 2022) optimizes the
low-rank decomposition for weight update matri-
ces ∆W during model training. For a pretrained
weight matrixW ∈ Rd×k, we have

W +∆W =W + BA, (2)

where B ∈ Rd×r, A ∈ Rr×k, and the rank
r ≪ min(d, k). In this way, LoRA could make
training more efficient with less than 1% train-
able parametersWe = {B,A} and match the fine-
tuning performance.

3.2 FedPETuning
Our work considers a conventional FL system that
comprises a central server responsible for manag-

ing participated clients for local training and dis-
tributing the shared model parameters. Instead of
communicating all cumbersome PLMs parameters,
FedPETuning resorts to PETuning methods for ex-
changing lightweight parameters, as illustrated in
Figure 1.

Before training, FedPETuning initializes the
backbone PLM withWp and the PETuning method
P with efficient-parameter We. Then global ag-
gregation in the server and local updating in local
clients are executed alternately.

Server Global Aggregation. The third-party
service first randomly selects K clients from C and
distributes trainable parameterWe to these chosen
clients. Then the server performs the federated
aggregation based on the received parametersWk,t

e

from clients, and updates theWe by

Wt+1
e =

K∑

k=1

|Dk|∑K
k=1 |Dk|

Wk,t
e . (3)

Client Local Tuning. When selected clients
download the trainable parameters, they assemble
a whole model with lightweight parameters We

and local PLM parameters Wp. Then, selected
clients train the assembled model with local private
data Dk. After local training, the k-th client sends
its updated efficient parametersWk

e to the central
server for federated aggregation.

The training process described above is repeated
until a specific criterion (e.g., the maximum num-
ber of communication rounds T) is satisfied. This
process can be summarized in Algorithm 1.

4 Experiments

In this section, we conduct extensive experiments
for evaluating the performance of PETuning in the
FL setting, covering privacy attacks (see Section
4.2), performance comparisons (see Section 4.3),
and resource-constrained analysis (see Section 4.4).
Besides, we also provide an in-depth ablation anal-
ysis of FedPETuning in terms of data heterogeneity
(see Section 4.5), local training epochs (see Section
4.6), and different FL scenarios (see Section 4.7).

4.1 Experiments Setup
Dataset and non-IID partitioning Our experi-
ments use six datasets from the GLUE benchmark.
The reasons are as follows: (1) the GLUE datasets
have emerged as the de facto standard benchmark
for assessing PLMs’ effectiveness in natural lan-
guage understanding; (2) They have been exten-

9966

Task # Train # Dev. # Test Metric

RTE 2,241 249 277 Accuracy
MRPC 3,301 367 408 F1 Score
SST-2 66,675 674 872 Accuracy
QNLI 103,695 1,048 5,463 Accuracy
QQP 360,210 3,639 40,430 Accuracy
MNLI 388,774 3,928 9,815 Accuracy

Table 1: Dataset descriptions and statistics.

sively leveraged to validate various PETuning meth-
ods (Li and Liang, 2021; Liu et al., 2021; Zaken
et al., 2021; Houlsby et al., 2019), and (3) these
datasets are large enough and convenient for FL
data partitioning (non-IID). Due to the limitation
of the unpublished test set in GLUE, we follow the
previous studies (Liu et al., 2022; Zhao et al., 2022)
and use the original validation set as the new test
set and split a part of the training set as the valida-
tion set. The data breakdown for this benchmark is
in Table 1.

For the non-IID data partitioning, we follow Lin
et al. (2021) and partition the datasets by using
the Dirichlet distribution as the class priors. In
particular, we sample D ∼ Dir(α) and allocate
data Dk to k-th client. α determines the degree of
non-IID, and a lower value of α generates a high
label distribution shift. Unless otherwise specified,
we maintain a default setting of α = 1.0 for the
Dirichlet parameter throughout our experiments.

Implementation Details We adopt the bench-
mark FL system FedAvg to simulate the FL set-
ting, which has been applied to commercial prod-
ucts (Bonawitz et al., 2019). In FedAvg, clients
upload local model parameters to the central server
and download the aggregated model for the next
training round. Following Lin et al. (2021), we set
the communication round to 100 and the local train-
ing epoch to 1 for all tuning methods. Following
Chen et al. (2022a), we utilize Roberta-Base (Liu
et al., 2019a) as the local model released by Hug-
gingface3. The FedAvg implementation is based
on FedLab (Zeng et al., 2023).

Under the FedAvg training protocol, we pri-
marily evaluate the full fine-tuning (FedFT) and
four representative PETuning methods, covering
adapter tuning (FedAP), prefix tuning (FedPF),
LoRA (FedLR), and BitFit (FedBF). For FedAP,
we follow the architecture in Houlsby et al. (2019),
which interposes adapter modules into both the
multi-head attention module and the feed-forward

3https://github.com/huggingface/transformers

1 2 4 8 16 32
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0 Recall
FedFT
FedPF
FedAP
FedBF
FedLR

1 2 4 8 16 32
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0 Precision
FedFT
FedPF
FedAP
FedBF
FedLR

1 2 4 8 16 32
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0 F1
FedFT
FedPF
FedAP
FedBF
FedLR

Figure 2: The data reconstruction attack results on the
attack dataset with different tuning methods. Low per-
formance is better. FedPETuning can effectively defend
against data reconstruction attacks.

network in each Transformer layer. We use pre-
fix tuning (Lester et al., 2021) as the representa-
tive of prompt tuning because it has better perfor-
mance on the small PLMs, e.g., base versions of
Roberta. For LoRA and BitFit, we take the ar-
chitectures from their origin papers (Zaken et al.,
2021; Hu et al., 2022). All PETuing methods are
based on OpenDelta4, which is a plug-and-play
framework for parameter-efficient tuning.

To make a fair and reasonable comparison, we
run a hyperparameter sweep for each dataset and
tuning method. We select the best model accord-
ing to the metric on the validation set and report
test set metric. Especially, the learning rate is se-
lected from {5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}.
We search the reduction factor from {16, 64} for
FedAP, the prompt length from {8, 16, 64} for
FedPF, and the scaling factor and rank from {8, 16}
for FedLR. All experiments are done on a server
with 8 Nvidia Tesla V100 GPUs with 32GB RAM
each.

4.2 Privacy-Preserving Results

We first investigate the privacy-preserving capa-
bilities of FedPETuing and FedFT. In this privacy
attack experiment, we adopt DLG (Zhu et al., 2019)
as our base attack method. Due to space limitations,
we have omitted the working process of DLG and
recommend the reader read the original paper (Zhu
et al., 2019).

Setup and Metrics As the goal for the attacker
with DLG is to recover text from client-uploaded
gradients, we follow Song and Raghunathan (2020)
and evaluate FedPETuning and FedFT in terms
of precision (the average percentage of recovered
words in the target texts), recall (the average per-
centage of words in the target texts are predicted)
and F1 score (the harmonic mean between preci-

4https://github.com/thunlp/OpenDelta

9967

Methods RTE MRPC SST-2 QNLI QQP MNLI Avg. Rel. Com.

FedFT 70.31.2 90.70.3 94.00.6 91.00.4 89.50.1 86.40.2 83.1 100.0% 1x
FedAP 69.42.6 89.11.2 93.30.6 90.90.4 88.40.2 86.00.4 82.4 99.1% ↑60x
FedLR 67.44.2 84.54.5 93.60.5 90.80.3 87.40.3 84.90.4 81.0 97.5% ↑141x
FedPF 58.62.2 86.81.0 93.00.6 87.60.5 85.70.3 82.20.3 78.4 94.3% ↑12x
FedBF 61.41.7 84.62.7 92.50.7 87.20.5 84.50.5 81.70.2 77.8 93.6% ↑190x

CenFT 73.01.4 90.90.6 92.90.2 90.80.5 91.10.2 86.00.2 83.6 100.0% -
CenAP 76.01.8 90.60.8 94.60.5 92.90.1 91.10.1 87.50.2 84.7 101.3% -
CenLR 74.42.4 91.70.6 94.00.4 92.70.6 90.10.3 87.00.2 84.4 100.9% -
CenPF 65.65.1 90.20.9 93.70.8 91.50.2 89.50.1 86.70.2 82.2 98.3% -
CenBF 70.91.0 91.30.8 94.10.3 91.30.2 87.40.2 84.60.1 82.6 98.8% -

Table 2: Performance results of the PETuning and FT on GLUE benchmark under the federated (upper half) and
the centralized (bottom half) settings. With significantly reducing communication overhead, FedPETuning still
maintains acceptable performance. The Rel. denotes the percentage of PETuning in terms of performance relative to
FT. The blue value indicates more than 95% performance of FT, and red value indicates performance in excess of
FT. The Com. denotes the normalized values of communication overhead of FedPETuning and FedFT. Mean and
standard deviation are computed over 5 runs.

sion and recall). Specifically, we randomly selected
128 samples from the MNLI as the attack dataset.

Results Figure 2 shows the results of DLG on the
attack dataset with different tuning methods. The
results show that FedPETuning can effectively
defend against data reconstruction attacks com-
pared to FedFT. Since FedPETuning communi-
cates a fraction of the entire model parameters with
the server during the federated training process,
it is intractable for the attacker to reconstruct the
original text from such lightweight model param-
eters. Surprisingly, among FedPETuning, DLG is
more likely to reconstruct private data from FedAP.
We speculate that this result may be related to the
design of PETuning methods. Adapter tuning in-
serts adapter layers to vanilla Transformers, which
can encode the input data separately during model
training. Compared to other PETuning methods,
Adapter tuning is easier to “remember” the model
input, thus causing more severe privacy leaks.

There is a clear and consistent trend across all
tuning methods: DLG performance decreases as
the batch size increases. The reason is that the DLG
attack requires more parameters to be optimized in
larger batch sizes. Therefore, increasing the batch
size is a good defense strategy against the DLG
attack. However, clients (e.g., mobile phone) in the
FL system are usually resource-constrained in real-
world applications. There is a trade-off between
limited computing resources and large batches. In
contrast, the FedPETuning method does not vary
significantly across different batch sizes. In this
sense, FedPETuning can provide a practical de-
fense strategy for clients with restricted computing

resources.

4.3 Performance Comparison
Table 2 shows the performance for four PETuning
and FT under the federated (upper half table) and
centralized settings (bottom half table). The results
demonstrate that FedPETuning maintains accept-
able performance (more than 95% of FedFT’s
performance) while reducing the communica-
tion overhead substantially.

From the upper half of Table 2, we find that
although FedPETuning methods lag behind FedFT
in the federated setting, the performance gap is
relatively acceptable. For instance, FedAP reduces
60 times the communication overhead by only 0.7%
performance degradation compared with FedFT.
This result also shows that FedPETuning methods,
especially FedAP and FedLR (more than 95% of
FedFT’s performance), can achieve a good level of
trade-off between performance and communication
overhead in practice.

In the centralized setting, some PETuning meth-
ods achieve competitive performance compared
with CenFT. Specifically, CenAP outperforms
CenFT on five out of six datasets, and the CenAP
and CenLR achieve better performances on aver-
age. This result also supports our motivation that
PETuning, stimulating colossal models with only a
small portion of tunable parameters, can naturally
be a promising way for FL under communication
and resource constraints.

Comparing the upper and bottom parts of Table
2, we find that all tuning methods endure a decline
in performance under the federated setting. Re-
markably, the FedPETuning exhibits a significant

9968

102 103 104 105

Communication Budget / MB

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

 (%
)

RTE

FedLR
FedPF
FedAP
FedBF
FedFT

102 103 104 105

Communication Budget / MB
0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (%
)

MNLI

FedLR
FedPF
FedAP
FedBF
FedFT

102 103 104 105

Communication Budget / MB

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 (%
)

QNLI

FedLR
FedPF
FedAP
FedBF
FedFT

102 103 104 105

Communication Budget / MB
0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

 (%
)

QQP

FedLR
FedPF
FedAP
FedBF
FedFT

Figure 3: Accuracy versus Communication Budget for
all tuning methods. The horizontal dashed line indi-
cates the acceptable performance, which is 95% of the
performance of CenFT. FedPETuning makes federated
training more efficient by significantly reducing the com-
munication overhead compared to FedFT.

0 25 50 75 100 125 150 175

RTE

MNLI

190

190

12.1

12.1

140.1

140.4

103.8

41.9

1

1

FedBF FedPF FedLR FedAP FedFT

0 25 50 75 100 125 150 175

RTE

MNLI

190

190

12.1

12.1

140.1

140.4

103.8

41.9

1

1

FedBF FedPF FedLR FedAP FedFT

Figure 4: Normalized values of storage efficiencies of
FedPETuning and FedFT on RTE and MNLI. Higher is
better. FedPETuning lowers the storage cost to entry by
12~190 times.

drop in performance in the data heterogeneous FL
context, which aligns with the results observed in
data heterogeneity experiments (see Section 4.5).
This result suggests that the FL community may de-
sign FL-tailored PETuning methods to bridge the
performance gap caused by the non-IID problem.
This will be explored in our future work.

4.4 Resource Costs

We next show the resource cost by different tuning
methods under FL settings, including communica-
tion budget and client storage overhead. Figure
3 shows accuracy versus communication budget
for all tuning methods on RTE and MNLI5. As
shown in Figure 3, the communication budgets are
ranked as FedFT≫ FedPF > FedAP > FedLR >
FedBF. The experimental results show that Fed-
PETuning renders federated training remark-
ably efficient by significantly reducing the com-
munication overhead as opposed to FedFT. More
communication overhead entails increased training
time during uploading and downloading. For FL
that necessitates high-frequency communication,

5The plots of remaining tasks can be found in Appendix B,
which have similar results.

FedFT FedAP FedLR FedPF FedBF
10

5

0

Re
la

tiv
e

Ac
cu

ra
cy

 (%
) RTE

=0.1 =10.0
FedFT FedAP FedLR FedPF FedBF

4

2

0

MNLI

=0.1 =10.0

FedFT FedAP FedLR FedPF FedBF
40

20

0

Re
la

tiv
e

Ac
cu

ra
cy

 (%
) QNLI

=0.1 =10.0
FedFT FedAP FedLR FedPF FedBF

20

10

0
QQP

=0.1 =10.0

Figure 5: Performance variation of FedPETuning and
FedFT under different non-IID with respect to α = 1.0
on RTE and MNLI. FedPETuning is more susceptible
to data heterogeneity than FedFT.

0.0 0.2 0.4 0.6 0.8
Distance

0

1

2

3

4

5

6

De
ns

ity

RTE =0.1

0.0 0.2 0.4 0.6 0.8
Distance

0.0

0.5

1.0

1.5

2.0
RTE =1.0

0.0 0.1 0.2 0.3 0.4 0.5
Distance

0

2

4

6

8

10

RTE =10.0

0.0 0.2 0.4 0.6 0.8
Distance

0

2

4

6

8

De
ns

ity

MNLI =0.1

0.0 0.2 0.4 0.6 0.8
Distance

0.00

0.25

0.50

0.75

1.00

1.25

1.50

MNLI =1.0

0.0 0.2 0.4 0.6
Distance

0

1

2

3

MNLI =10.0

Figure 6: Data distribution under different Dirichlet
parameter α. We report the pairwise Jensen–Shannon
distance of the label distribution between two clients.

FedFT is extremely time-consuming, making the
federated training slow. In this regard, FedPETun-
ing is more pragmatic in real-world applications,
particularly in communication-constrained FL chal-
lenges.

Figure 4 shows normalized values of storage ef-
ficiencies of FedPETuning and FedFT on RTE and
MNLI. FedPETuning lowers the storage cost to
entry by 12~190 times. This appealing character-
istic is practiced for local clients of real-world FL
systems. When deploying multiple tasks on a local
client, FedPETuning can share PLM between dif-
ferent tasks, enabling the client to maintain only a
few parameters for each task, thus reducing storage
requirements.

4.5 Impact of Data Heterogeneity
As data heterogeneity is a fundamental challenge
in FL, we also evaluate the performance of Fed-
PETuning and FedFT under different data hetero-
geneity. Following Lin et al. (2021), we consider
three Dirichlet distributions in this experiment by
choosing α from {0.1, 1.0, 10.0} where a smaller
α indicates a sharper non-IID distribution among
clients.

The performance of α = 1.0 has already been
discussed, Figure 5 illustrates performance changes
of FedPETuning and FedFT with respect to the

9969

1 2 3
Epoch

60

65

70

75
Ac

cu
ra

cy
 (%

)
RTE

FedLR
FedPF

FedAP
FedBF

FedFT

1 2 3
Epoch

82

84

86

MNLI

FedLR
FedPF

FedAP
FedBF

FedFT

1 2 3
Epoch

80

85

90

Ac
cu

ra
cy

 (%
)

MRPC

FedLR
FedPF

FedAP
FedBF

FedFT

1 2 3
Epoch

86

88

90
QQP

FedLR
FedPF

FedAP
FedBF

FedFT

Figure 7: Performance comparison of FedPETuning
and FedFT under different epochs on RTE and MNLI.
Most tuning methods under the FL setting benefit from
increased local training epochs.

other two α values. The outcomes corresponding
to other tasks can be found in Appendix B. Figure 5
reveals that FedPETuning is more susceptible to
data heterogeneity than FedFT. As shown in Fig-
ure 5, although the increase in data heterogeneity
(α from 1.0 to 0.1) degrades the performance of all
tuning methods, FedPETuning degrades more dra-
matically compared to FedFT. This suggests more
the federated model necessitates more trainable pa-
rameters to tackle intricate data heterogeneity, and
it may be arduous for FedPETuning to confront
complex data heterogeneity in FL.

Another noteworthy phenomenon is the perfor-
mance of FedPETuning and FedFT do not change
much when increasing α from 1.0 to 10.0. To figure
out this, we report the Probability Density Function
(PDF) of the data distribution under different α in
Figure 6 (See Appendix A for other datasets). As
shown in Figure 6, the data heterogeneity is similar
for α equal to 1.0 and 10.0, while the distribution
gap is large for α equal to 0.1. We think similar
data heterogeneity between α = 1.0 and α = 10.0
contributes to this result.

4.6 Impact of Local Training Epochs

Figure 7 shows the performance of FedPETuning
and FedFT with different local training epochs on
RTE and MNLI. More results are provided in Ap-
pendix B. This result reveals that most tuning
methods under the FL setting benefit from in-
creased local training epochs. Federated models
trained with more local epochs consistently yield a
performance gain across different tuning methods
when clients with heigh-resource data (like MNLI).
In contrast, training with more epochs may incur a
drop in performance for the low-resource dataset
(like FedLR and FedAP on RTE). This may be due
to the probability of PLMs becoming more sus-
ceptible to overfitting when clients with few data
undergo more training epochs. On the contrary,

Methods RTE MRPC SST-2 Avg. Rel. Com.

FedFT 70.4 90.2 94.3 85.0 100.0% 1x
FedAP 71.5 88.5 94.0 84.7 99.7% ↑70x
FedLR 70.8 89.8 94.4 85.0 100.0% ↑141x
FedPF 66.4 88.1 93.7 82.7 97.3% ↑12x
FedBF 55.2 88.6 92.8 78.9 92.8% ↑189x

Table 3: Performance results of the FedPETuning and
FedFT in the cross-silo setting. Significantly reduc-
ing the communication overhead, FedPETuning still
achieves acceptable performance in the cross-silo FL
scenario.

Methods QNLI QQP MNLI Avg. Rel. Com.

FedFT 87.9 88.8 85.6 87.4 100.0% 1x
FedAP 85.9 87.0 84.9 85.9 98.3% ↑52x
FedLR 86.0 86.5 84.7 85.7 98.1% ↑140x
FedPF 84.6 81.8 80.4 82.3 94.2% ↑12x
FedBF 80.5 84.0 80.7 81.7 93.5% ↑190x

Table 4: Performance results of FedPETuing and FedFT
in the large-scale cross-device setting. With significantly
reducing the communication overhead, FedPETuning
still achieves acceptable performance in large-scale
cross-device FL scenarios.

clients with adequate data require more local train-
ing epochs to enhance the FL performance.

With the data scale into analysis, we also find
that all tuning methods are more unstable on small
datasets in Figure 7. For instance, the standard de-
viation performance of FedLR on RTE and MRPC
is over 4.0% while other datasets are no more than
0.5%. This phenomenon is consistent with pre-
vious work (Chen et al., 2022a), and they exper-
imentally show that increasing training steps can
effectively mitigate the instability of the PETuning.
However, this strategy fails in the FL setting. Train-
ing PLMs more stably in FL is a good research
direction we will explore in our future work.

4.7 Various FL Scenarios

To verify the effectiveness of PETuning under dif-
ferent FL scenarios, we mainly consider two FL
scenarios in this experiment, i.e., the cross-silo
FL scenario (Kairouz et al., 2021) and the large-
scale cross-device FL scenario (Lai et al., 2022).
Cross-silo (Kairouz et al., 2021) is a vital applica-
tion scenario for FL, suitable for several users (no
more than 100). In Cross-silo, the server selects all
clients for training in each communication round.
Large-scale cross-device FL (Lai et al., 2022) is
another federated scenario for deployment across
thousands of clients. In the large-scale cross-device
FL, data held by the local client is more scarce. In

9970

this experiment, we chose RTE, MRPC, and SST-
2 to simulate the cross-silo FL scenarios, while
QNLI, QQP, and MNLI to simulate the large-scale
cross-device FL scenarios. The total number of
clients in the cross-silo and large-scale settings
is set to 10 and 1000, respectively. For both FL
scenarios, ten clients are involved in each com-
munication round for local training and federated
aggregation.

Table 3 and Table 4 show the performance re-
sults of PETuning and FT under these two FL sce-
narios, respectively. The results show that Fed-
PETuning can significantly reduce the commu-
nication overhead while achieving acceptable
performance in cross-silo and large-scale cross-
device FL scenarios. More noteworthy between
the different FL scenes is the cross-silo setting. As
shown in Table 3, the performance gap between
the FedPETuning and FedFT diminishes under the
cross-silo setting, compared to our standard setting
in Section 4.3. For example, FedPF lags behind
FedFT by 2.3% and 4.7% under the cross-silo FL
scenario and the FL scenario of Table 2, respec-
tively. We attribute this observation to relieving the
data scarcity issue since each client has ten times
more training samples in the cross-silo setting than
in the standard setting.

5 Conclusion

This paper investigates parameter-efficient tuning
methods of PLMs in the FL setting with extensive
experiments for in-depth measurement of these
methods under FL settings, covering privacy at-
tacks, performance comparisons, and resource-
constrained analysis. Experimental results unveil
that FedPETuning can (1) achieve acceptable per-
formance while reducing the colossal communica-
tion overhead and local storage cost, and (2) pro-
vide strong privacy-preserving capacity under dif-
ferent FL settings. To facilitate FL-tailored PETun-
ing research, we have released our code and parti-
tioned datasets, aiming to facilitate the use of Fed-
PETuning and inspire the broader community to
develop more suitable PETuning methods in future
federated learning research.

Limitation

One limitation of this paper is that we do not val-
idate FedPETuning on large scale models, (e.g.,
T5 (Raffel et al., 2019), LLaMa (Touvron et al.,
2023), Vicuna (Chiang et al., 2023), etc). Although

the parameter efficiency of PETuning is more im-
pressive on larger pre-trained models, we have to
consider the limited computational resources of
clients in FL, making it challenging to deploy such
a large-scale model. In addition, with the increas-
ing size of modern pre-trained models, the commu-
nity needs to design FL-friendly PETuning meth-
ods. In this sense, our work can serve as a bench-
mark and guide for future exploration of PETuning
in FL.

Acknowledgements

We’d like to thank all the anonymous review-
ers for their careful readings and valuable com-
ments. This work was partially supported by
the National Key Research and Development
Program of China (No. 2018AAA0100204), a
key program of fundamental research from Shen-
zhen Science and Technology Innovation Com-
mission (No. JCYJ20200109113403826), the Ma-
jor Key Project of PCL (No. 2022ZD0115301),
and an Open Research Project of Zhejiang Lab
(NO.2022RC0AB04).

References
Armen Aghajanyan, Luke Zettlemoyer, and Sonal

Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Priyam Basu, Tiasa Singha Roy, Rakshit Naidu, and
Zumrut Muftuoglu. 2021. Privacy enabled financial
text classification using differential privacy and fed-
erated learning. arXiv preprint arXiv:2110.01643.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated
learning at scale: System design. Proceedings of
Machine Learning and Systems, 1:374–388.

Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and
Huzefa Rangwala. 2020. Fedat: A communication-
efficient federated learning method with asyn-
chronous tiers under non-iid data. CoRR,
abs/2010.05958.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022a. Revisiting parameter-
efficient tuning: Are we really there yet? arXiv
preprint arXiv:2202.07962.

Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei
Shen, and Wei-Lun Chao. 2022b. On pre-training for
federated learning. arXiv preprint arXiv:2206.11488.

9971

http://arxiv.org/abs/2010.05958
http://arxiv.org/abs/2010.05958
http://arxiv.org/abs/2010.05958

Jinyu Chen, Wenchao Xu, Song Guo, Junxiao Wang,
Jie Zhang, and Haozhao Wang. 2022c. Fed-
tune: A deep dive into efficient federated fine-
tuning with pre-trained transformers. arXiv preprint
arXiv:2211.08025.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

Suyu Ge, Fangzhao Wu, Chuhan Wu, Tao Qi, Yongfeng
Huang, and Xing Xie. 2020. Fedner: Medical named
entity recognition with federated learning. arXiv
preprint arXiv:2003.09288.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Shaoxiong Ji, Shirui Pan, Guodong Long, Xue Li, Jing
Jiang, and Zi Huang. 2019. Learning private neural
language modeling with attentive aggregation. In
2019 International joint conference on neural net-
works (IJCNN), pages 1–8. IEEE.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and
open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1–2):1–210.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492.

Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu,
Xiangfeng Zhu, Harsha Madhyastha, and Mosharaf
Chowdhury. 2022. Fedscale: Benchmarking model
and system performance of federated learning at
scale. In International Conference on Machine
Learning, pages 11814–11827. PMLR.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin
Wang, Yufen Huang, Mahdi Soltanolkotabi, Xi-
ang Ren, and Salman Avestimehr. 2021. Fednlp:
Benchmarking federated learning methods for nat-
ural language processing tasks. arXiv preprint
arXiv:2104.08815.

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin
Wang, Lingjuan Lyu, Hong Chen, and Xing Xie.
2022. No one left behind: Inclusive federated learn-
ing over heterogeneous devices. arXiv preprint
arXiv:2202.08036.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019a.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi
Zhang. 2020. Federated learning for open banking.
In Federated learning, pages 240–254. Springer.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

9972

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar San-
jabi, and Michael Rabbat. 2022. Where to begin? on
the impact of pre-training and initialization in feder-
ated learning. arXiv preprint arXiv:2210.08090.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang,
Michael Bendersky, and Marc Najork. 2021. Natural
language understanding with privacy-preserving bert.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 1488–1497.

Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia,
Feifei Wang, Ehsan Adeli, Li Fei-Fei, and Daniel
Rubin. 2022. Rethinking architecture design for tack-
ling data heterogeneity in federated learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10061–10071.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Za-
heer, Ameet Talwalkar, and Virginia Smith. 2018. On
the convergence of federated optimization in hetero-
geneous networks. CoRR, abs/1812.06127.

Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 377–
390.

Dianbo Sui, Yubo Chen, Jun Zhao, Yantao Jia, Yuan-
tao Xie, and Weijian Sun. 2020. Feded: Federated
learning via ensemble distillation for medical relation
extraction. In Proceedings of the 2020 conference on
empirical methods in natural language processing
(EMNLP), pages 2118–2128.

Guangyu Sun, Matias Mendieta, Taojiannan Yang, and
Chen Chen. 2022. Exploring parameter-efficient fine-
tuning for improving communication efficiency in
federated learning. arXiv preprint arXiv:2210.01708.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Orion Weller, Marc Marone, Vladimir Braverman,
Dawn Lawrie, and Benjamin Van Durme. 2022. Pre-
trained models for multilingual federated learning.
arXiv preprint arXiv:2206.02291.

Mingbin Xu, Congzheng Song, Ye Tian, Neha Agrawal,
Filip Granqvist, Rogier van Dalen, Xiao Zhang, Ar-
turo Argueta, Shiyi Han, Yaqiao Deng, et al. 2022.
Training large-vocabulary neural language models by
private federated learning for resource-constrained
devices. arXiv preprint arXiv:2207.08988.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, and
Zenglin Xu. 2023. Fedlab: A flexible federated learn-
ing framework. Journal of Machine Learning Re-
search, 24(100):1–7.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and
Gongshen Liu. 2022. Reduce communication costs
and preserve privacy: Prompt tuning method in fed-
erated learning. arXiv preprint arXiv:2208.12268.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Da-
mon Civin, and Vikas Chandra. 2018. Federated
learning with non-iid data. CoRR, abs/1806.00582.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep
leakage from gradients. Advances in neural informa-
tion processing systems, 32.

9973

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
http://jmlr.org/papers/v24/22-0440.html
http://jmlr.org/papers/v24/22-0440.html
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582

0.0 0.2 0.4 0.6 0.8
Distance

0

2

4

6

De
ns

ity
MRPC =0.1

0.0 0.2 0.4 0.6 0.8
Distance

0.0

0.5

1.0

1.5

2.0

2.5

MRPC =1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Distance

0
1
2
3
4
5
6

MRPC =10.0

0.0 0.2 0.4 0.6 0.8
Distance

0

1

2

3

4

5

6

De
ns

ity

SST-2 =0.1

0.0 0.2 0.4 0.6 0.8
Distance

0.0

0.5

1.0

1.5

SST-2 =1.0

0.0 0.1 0.2 0.3 0.4 0.5
Distance

0

1

2

3

4

5
SST-2 =10.0

0.0 0.2 0.4 0.6 0.8
Distance

0

1

2

3

4

5

De
ns

ity

QNLI =0.1

0.0 0.2 0.4 0.6 0.8
Distance

0.0

0.5

1.0

1.5

QNLI =1.0

0.0 0.2 0.4 0.6
Distance

0

1

2

3

4

QNLI =10.0

0.0 0.2 0.4 0.6 0.8
Distance

0

1

2

3

4

5

De
ns

ity

QQP =0.1

0.0 0.2 0.4 0.6 0.8
Distance

0.0

0.5

1.0

1.5

2.0
QQP =1.0

0.0 0.2 0.4 0.6 0.8
Distance

0

1

2

3

4

5
QQP =10.0

Figure 8: Data distribution under different α. We report
the pairwise Jensen–Shannon distance of the label dis-
tribution between two clients.

0 25 50 75 100 125 150 175

MRPC

SST-2

QNLI

QQP

190

190

190

190

12.1

12.1

12.1

12.1

140.6

140.5

140.5

140.5

103.8

42

103.8

42

1

1

1

1

FedBF FedPF FedLR FedAP FedFT

0 25 50 75 100 125 150 175

MRPC

SST-2

QNLI

QQP

190

190

190

190

12.1

12.1

12.1

12.1

140.6

140.5

140.5

140.5

103.8

42

103.8

42

1

1

1

1

FedBF FedPF FedLR FedAP FedFT

Figure 9: Normalized values of storage efficiencies of
FedPETuning and FedFT on the other four tasks. Higher
is better.

A Non-IID Partitionings Results

Figure 8 illustrates the data distribution under dif-
ferent α. It is observed that data distributed in
clients with α as 0.1 has a large distance with each
other, which has impact on the performance. Both
α as 1.0 and 10.0 are considered to produce a more
uniform distribution.

B Extra Results

Communication Analysis In this section, we il-
lustrate the accuracy given the communication bud-
get on the remaining four tasks in Figure 10. As can
be seen, PETuning methods consistently reduce the
communication budget over several orders of mag-
nitude while providing comparable performance.
Moreover, PETuning methods (apart from FedBF)
achieve acceptable accuracy (90% of fine-tuning)
on all the tasks, demonstrating the effectiveness of
these methods.

102 103 104 105

Communication Budget / MB

0.78

0.80

0.82

0.84

0.86

0.88

0.90

F1
 S

co
re

MRPC
FedLR
FedPF
FedAP
FedBF
FedFT

102 103 104 105

Communication Budget / MB

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (%
)

SST-2

FedLR
FedPF
FedAP
FedBF
FedFT

102 103 104 105

Communication Budget / MB

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 (%
)

QNLI

FedLR
FedPF
FedAP
FedBF
FedFT

102 103 104 105

Communication Budget / MB
0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

 (%
)

QQP

FedLR
FedPF
FedAP
FedBF
FedFT

Figure 10: Accuracy versus Communication Budget for
all tuning methods. The horizontal dashed line indicates
the acceptable performance, which is 95% of the accu-
racy of CenFT.

FedFT FedAP FedLR FedPF FedBF

5

0

Re
la

tiv
e

Ac
cu

ra
cy

 (%
) MRPC

=0.1 =10.0
FedFT FedAP FedLR FedPF FedBF

4

2

0

SST-2

=0.1 =10.0

FedFT FedAP FedLR FedPF FedBF
40

20

0

Re
la

tiv
e

Ac
cu

ra
cy

 (%
) QNLI

=0.1 =10.0
FedFT FedAP FedLR FedPF FedBF

20

10

0
QQP

=0.1 =10.0

Figure 11: Relative performance of FedPETuning and
FedFT on RTE and MNLI under different Dirichlet
distributions.

1 2 3
Epoch

80

85

90

Ac
cu

ra
cy

 (%
)

MRPC

FedLR
FedPF

FedAP
FedBF

FedFT

1 2 3
Epoch

92

93

94

SST-2

FedLR
FedPF

FedAP
FedBF

FedFT

1 2 3
Epoch

88

90

92

Ac
cu

ra
cy

 (%
)

QNLI

FedLR
FedPF

FedAP
FedBF

FedFT

1 2 3
Epoch

84

86

88

90
QQP

FedLR
FedPF

FedAP
FedBF

FedFT

Figure 12: Accuracy comparison of PETuning methods
and FT under different epochs.

9974

Non-IID Analysis Figure 11 presents the com-
parisons of accuracy under different distributions
by varying α. All the methods obtain better per-
formance with α as 1.0 than α as 0.1, showing
that non-IID distribution has a negative impact on
the model’s performance. On the contrary, vary-
ing α from 1.0 to 10.0 has little impact in most
circumstances.

Local Training Epoch Analysis In Figure 12,
we show the accuracy of tuning methods trained
with different numbers of training epochs on the
local clients. The accuracy of the relatively small
datasets (MRPC, SST-2) shows a faint decreasing
trend because of the over-fitting issue. All the tun-
ing methods benefit from more training epochs on
relatively large datasets (QNLI, QQP).

9975

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitation Section

�7 A2. Did you discuss any potential risks of your work?
Our work does not involve potential risks

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9976

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.1.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.1.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9977

