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Abstract

Goal-oriented generative script learning aims
to generate subsequent steps to reach a par-
ticular goal, which is an essential task to as-
sist robots or humans in performing stereotyp-
ical activities. An important aspect of this pro-
cess is the ability to capture historical states
visually, which provides detailed information
that is not covered by text and will guide sub-
sequent steps. Therefore, we propose a new
task, Multimedia Generative Script Learning,
to generate subsequent steps by tracking his-
torical states in both text and vision modali-
ties, as well as presenting the first benchmark
containing 5,652 tasks and 79,089 multimedia
steps. This task is challenging in three aspects:
the multimedia challenge of capturing the vi-
sual states in images, the induction challenge
of performing unseen tasks, and the diversity
challenge of covering different information in
individual steps. We propose to encode visual
state changes through a selective multimedia
encoder to address the multimedia challenge,
transfer knowledge from previously observed
tasks using a retrieval-augmented decoder to
overcome the induction challenge, and further
present distinct information at each step by op-
timizing a diversity-oriented contrastive learn-
ing objective. We define metrics to evaluate
both generation and inductive quality. Experi-
ment results demonstrate that our approach sig-
nificantly outperforms strong baselines1.

1 Introduction

Robots rely on understanding the present real-
world state and predicting the subsequent steps to
better assist humans in daily stereotypical tasks
such as meal preparation and gardening (Ruth
Anita Shirley et al., 2021; Liu et al., 2022). As an
example, Robohow (Beetz et al., 2016) uses articles

1The programs, data, and resources are publicly available
for research purposes at: https://github.com/EagleW/Mu
ltimedia-Generative-Script-Learning.

Goal: make a bubbling brook bracelet

Step 1: gather the necessary items.

Next Step?

Step History:

Step 5: cut the thread.

Ground Truth: string the beads and clasp onto the string in the
following order: 1 medium, 1 dark, 1 end of clasp, 1 dark, and 1
medium.
BART: measure the length of the bead.

Our Model: thread the beads onto the thread.

Historically Relevant Step:

5: thread the bobbin.

1

Step 2: measure your wrist.

Step 3: add 10 inches (25cm) to the wrist measurement, and
then double the sum.

Step 4: measure the beading string or thread.

2

3

4

5

4: neaten the thread.

1: practice sewing a seam.

Caption 1: a pair of scissors, measuring tape, and beads.

Caption 2: a child's hand with a measuring tape on it.

Caption 3: a measuring tape with red and silver beads next to
it.

Caption 4: a measuring tape next to some beads and a plate.

Caption 5: a pair of scissors and a measuring tape.

...

Figure 1: Multimedia Generative Script Learning:
The upper box shows the task input, including the goal
and multimedia step history. Each step contains a text
description and an illustrative image. The output is the
next step. We retrieve historically relevant steps from
the training corpus.

from WikiHow2 to assist robots in everyday tasks
in human working and living environments. How-
ever, the problem is that not all daily tasks are well
documented. Thus, generating a sequence of steps
that lead to a given goal (i.e., goal-oriented genera-
tive script learning) (Lyu et al., 2021; Huang et al.,
2022; Li et al., 2023; Zhou et al., 2023; Liu et al.,
2023) has a fundamental importance in allowing
robots to perform unseen tasks by understanding
the patterns in previously observed similar tasks.

Despite this, previous goal-oriented generative

2https://www.wikihow.com contains steps for a variety
of tasks.

https://github.com/EagleW/Multimedia-Generative-Script-Learning
https://github.com/EagleW/Multimedia-Generative-Script-Learning
https://www.wikihow.com


make a bubbling brook braceletGoal:

gather the necessary items.

cut the thread.

...

a pair of scissors, measuring tape, and
beads.

Step 1:

Caption 1:

BLIP 

Step 5:

Caption 5: a pair of scissors and a measuring tape.

BLIP 

1: practice sewing a seam....

thread the beads onto the thread.
Next Step Prediction:

Historically Relevant Step:

5: thread the bobbin.

1

5

Historical Relevant Step Retrieval

Selective M
ultim

edia Encoder 

Retrieved Step Encoder

Retrieval-Augmented Decoder

Cross-Entropy
Loss

Diversity-Oriented
Contrastive Loss

Figure 2: Architecture overview. We use the example
in Figure 1 as the walking-through example.

script learning focuses solely on text (Lyu et al.,
2021; Huang et al., 2022), which is commonly af-
fected by reporting bias (Gordon and Van Durme,
2013) as important details may be omitted in the
source text. However, such information is often
implicitly contained in images. For example, in
Figure 1, the image of Step 1 illustrates the items
needed to make a bracelet, which is not mentioned
in the text but helps predict the action of thread-
ing beads as a future step. Existing multimedia
script learning work seeks to bridge this cross-
media gap, but the task settings are multi-choice
selection (Yang et al., 2021b) or ordering (Wu et al.,
2022), which require candidate steps as input so it
is not a practical setting for real-life robots.

To address these problems, we propose a new
task, Multimedia Generative Script Learning
(Figure 1), that requires systems to generate fu-
ture steps based on the goal and previous steps
with visual scenes depicting their states. Specifi-
cally, given the goal and previous step history in
the form of natural language sentences paired with
descriptive images, the model should automatically
generate the natural language instruction for the
next step. A good script has three hallmarks:

(1) Visual-State Trackable: it records the his-
torical visual scenes and recognizes significant

changes that impact future steps. We call it mul-
timedia challenge. To address this challenge, we
focus on salient differences in visual scenes, and
propose a novel selective multimedia encoder.
Rather than learning directly from the visual details
of each object, we first leverage an image captioner
as an abstract summary of the image about global
interactions among multiple objects. We then in-
troduce a selection gate to focus on the selected
captions and steps closely related to the future step.
For instance, the second caption “a child’s hand
with a measuring tape on it” in Figure 1 can be
filtered out by the selection gate because it is not
closely related to the future steps.

(2) Inductive: it transfers knowledge from a pre-
viously observed task to similar unseen tasks. We
call it induction challenge. To induce procedural
knowledge from previously observed tasks, we pro-
pose a retrieval augmented decoder to obtain rel-
evant steps to guide the subsequent step generation.
For example, the future step in Figure 1 closely
resembles the scripts used in previous retrieved
steps about threading items, thus transferring script
knowledge to an unseen task.

(3) Diverse: it displays distinct information at
each step. We call it diversity challenge. Exist-
ing pre-trained transformer-based language models
such as T5 (Raffel et al., 2020), BART (Lewis et al.,
2020a), and GPT-2 (Radford et al., 2019) tend to
generate repeated or highly similar future steps
as shown in Figure 1. Therefore, we introduce
a novel diversity-oriented contrastive learning
objective to control all subsequent steps to convey
different information. We treat all other steps in
the given input and retrieved steps in other tasks
similar to the given input as hard negatives.

In addition to traditional generation-based met-
rics to evaluate task performance, we propose a
new multimodal-retrieval based metric to capture
cross-modal semantic similarity. While the model
design can be applied to any domain of interest,
we experiment with the model on two domains
Gardening and Crafts, where task planning has
not been well researched. Automatic evaluation
shows that our generated step predictions are close
to the human written ground truth. Human evalu-
ation further confirms that our diversity-oriented
contrastive learning objective leads to diverse and
correct steps.

The contributions are threefold:

1. We propose the first multimedia goal-oriented



generative script learning task to record his-
torical steps in both text and images. We
also release a new benchmark from WikiHow,
featuring 5,652 tasks and 79,089 multimedia
steps.

2. We propose a novel approach to produce visu-
ally trackable, inductive, and diverse scripts
through a selective multimedia encoder, a re-
trieval augmented decoder, and a diversity-
oriented contrastive learning objective.

3. We propose a new multimodal-retrieval based
metric to evaluate the cross-modal semantic
similarity and the inductive ability by check-
ing factual correctness.

2 Problem Formulation

We propose a new multimedia generative script
learning task: given an activity goal G, an op-
tional subgoal M that specifies the concrete needs,
and the previous multimedia step history Hn =
{(S1, V1), ..., (Sn, Vn)} with length n, a model is
expected to predict the next possible step Sn+1,
where Si is a text sequence and Vi is an image.

Domain Split #Task #Pair #Step #Token

Train 1,857 20,258 3.10 11.6
Gardening Valid. 237 2,428 3.03 10.6

Test 238 2,684 2.88 11.2
Train 2,654 32,082 6.06 8.98

Crafts Valid. 3,33 4,061 6.12 9.10
Test 3,33 3,937 5.91 9.00

Table 1: Statistics of our dataset. #Step denotes av-
erage number of steps per sample. #Token denotes
average number of words per step.

3 Dataset Collection

Using articles from Gardening and Crafts cate-
gories as case studies, we create a new dataset
based on the English WikiHow dump (2021/05).
There are typically three levels of hierarchy in a
WikiHow article: goals which describe the over-
all task, subgoals which represent the intermediate
process to accomplish a goal, and steps which are
the specific actions to complete a subgoal. For
each WikiHow article, we collect step-image pairs
as well as their goals and methods3. We split the
whole dataset based on the task categories. There-
fore, the validation and test sets contain tasks not

3We only keep steps that contain both images and texts.

included in the training set. Table 1 shows the
detailed data statistics.

4 Method

4.1 Model Architecture

The overall framework is illustrated in Figure 2.
Given the activity goal G, optional subgoal M ,
and multimedia step history Hn, we first use an
image captioner to map each input image into a
precise caption and produce the caption-enhanced
step history Ĥn. Then we propose a selective mul-
timedia encoder by extending the BART encoder
with a gated fusion layer to learn contextualized
representations for the step history. After that, a
retrieval module retrieves historically relevant steps
from the training corpus and encodes them with
a retrieved step encoder. Finally, we introduce a
retrieval-augmented decoder, which enhances the
BART decoder with a retrieval gate fusion layer to
fuse the representations of the input step history
and retrieved steps to generate the next step. The
entire model is trained by our proposed diversity-
oriented contrastive loss and cross-entropy loss.

4.2 Selective Multimedia Encoder

Image Encoding Compared to step descriptions
which focus more on action description, captions
provide more visual environment/object informa-
tion such as beads in Step 1 from Figure 2. Be-
cause we are more concerned with the overall se-
mantics of the salient objects in the image rather
than the details of every object, we adopt image
captioners to encode visual features and track vi-
sual state changes. For instance, while multiple
objects are present in Step 3 in Figure 1, the fin-
ger object can be ignored in the third step as it
does not represent the key information conveyed
by the image. Specifically, we use the state-of-the-
art image captioner BLIP (Li et al., 2022), which
is pretrained on a large-scale vision-and-language
corpus with 129M images to generate a caption
Ci for each image Vi in the input step historyHn.
After that, we obtain the caption-enhanced step
history Ĥn = {(S1, C1), ..., (Sn, Cn)}, where Ci
is the caption of the image Vi in step i.

Selective Multimedia Encoding To help the en-
coder capture the activity goal and subgoal informa-
tion, we concatenate goal G and optional subgoal
M to serve as the first sequence in the historyX0 =
[G,M ]. For the subsequent steps in the history, we
concatenate each step and caption as X2i−1 = Si



and X2i = Ci. To summarize the step history, we
prepend a learnable [CLS] token to the sequence as
a contextualized vector. The entire text sequence is
then represented as X = {[CLS], X0, X1, ..., X2n}.
We pass the text sequence X into a BART en-
coder to get the contextualized hidden represen-
tation H = {h0, ...,h

2n
LX2n
} = Enc(X ). We de-

note HXj = {hj1, ...,h
j
LXj
} as the hidden states

for sequence Xj , where LXj is the length of Xj .
Since the input sequence contains steps or

captions not directly relevant to the future step,
we need to mask those sentences based on the
step/caption representations. For instance, in Fig-
ure 2, the step description for Step 1 is vague
and needs to be masked. We treat the represen-
tation of the [CLS] token, h0, as the contextual-
ized representation of the entire step history and
use it to compute a mask that filters out the irrele-
vant step/caption information. Specifically, we use
h0 as query and HXj as both the key and value
to compute Multi-Headed Attention (MultiHead)
(Vaswani et al., 2017) for each sequence hidden
states HXj : ĥXj = MultiHead(h0,HXj ,HXj ),
where ĥXj is the weighted representation for
text sequence Xj . Then, for each sequence Xj ,
we can calculate the mask probability as:αj =
σ(Wα[h0; ĥXj

]), where Wα is a learnable param-
eter. Similar to Sengupta et al. (2021), we update
the hidden states for each sequence Xj as H̄Xj =
αj · emb[MASK] + (1− αj)HXj , where emb[MASK]

is the embedding of the [MASK] token. The final
hidden state sequences are H̄ = [h0; H̄1; ...; H̄2n].

4.3 Step Retrieval Augmentation

Historically Relevant Step Retrieval In addi-
tion to the caption-enhanced step history, Ĥn,
we retrieve historically relevant steps Rn+1 =
{R1, ..., Rk} from the training tasks, where k is
the number of retrieved relevant steps. We first use
SentenceBERT (Reimers and Gurevych, 2019) to
encode all steps. We then retrieve k steps from
the training corpus, which have the top-k highest
cosine similarity to the previous step Sn from the
representation given by SentenceBERT4. Finally,
we consider the immediate next step for each of
those k steps as potential relevant stepsRn+1. For
instance, because Step 5 in Figure 2 is similar to
pull the thread out in the training corpus, we choose
its immediate next step thread the bobbin as a his-

4We use the previous step Sn instead of all history since it
is more temporally correlated to the next step.

torically relevant step.
Retrieved Step Encoder For historically relevant
steps R = {R1, ..., Rk}, we apply the BART en-
coder to get hidden states HR = {HR1 ; ....;HRk

}.
Similarly, we use h0 in multimedia encoder as
the query and HRi as both the key and value to
compute multi-headed attention for each sequence
hidden states: ĥRi = MultiHead(h0,HRi ,HRi),
where ĥRi is the weighted representation for step
sequence Ri. Similarly, we can calculate the mask
probability as: βj = σ(Wβ[h0; ĥRj ]), where
Wβ is a learnable parameter. We then update
the hidden states for each sequence Rj as H̄Ri =
βj · emb[MASK] + (1 − βj)HRi . The final hidden
state sequences is H̄R = [H̄R1 ; ...; H̄Rk

].

4.4 Retrieval-Augmented Decoder
In the decoder, we compute the probability
P
(
sq|s<q, Ĥ, G,M

)
for the q-th token sq ∈

Sn+1. Our retrieval-augmented decoder is simi-
lar to (Liu et al., 2021), which aims to capture
historically relevant steps related to the next step
based on previous decoder hidden states. Given
zlq which is the hidden state of sq in layer l, we
first use a multi-head cross-attention to fuse the
hidden states from the retrieved steps H̄R: z′q

l =

MultiHead(zlq, H̄R, H̄R). We also append a gat-
ing mechanism to control the knowledge from the
retrieved steps and previous hidden states:

γ = σ(Wγ [z
l
q; z
′
q
l
])

z̃lq = γ · LN(z′q
l
) + (1− γ) · (zlq)

(1)

where Wγ is a learnable parameter and LN(∗) is
the layer norm function. Finally, the fused hid-
den states in the top layer are used to compute the
generation probability. We supervise the next step
generation using the standard cross-entropy loss:

Lgen =

|Sn+1|∑
q=1

logP
(
sq|s<q, Ĥ, G,M

)
(2)

4.5 Diversity-Oriented Contrastive Learning
In the experiment, we observe that the model tends
to keep generating similar future steps in a row
given the beginning steps as input or just para-
phrases the input steps. Therefore, we propose
a contrastive learning-based loss to encourage the
model to return diverse step prediction results.
Negative Sampling Sequence-to-sequence models
suffer from the “exposure bias” problem (Dhingra



et al., 2016; An et al., 2022) because of teacher
forcing. Contrastive loss provides an additional
sequence level loss which can help models increase
the diversity of the output steps. We adopt two
types of negative sampling strategies to discourage
the model from paraphrasing the previous step as
the future step: self-negatives (Wang et al., 2022)
where we consider the input steps as negative sam-
ples and retrieved-negatives where we consider
the retrieved steps from training corpus which are
similar to the input step as negative samples. For
example, in Figure 1, the goals and steps from the
step history serve as the self-negatives. Given the
last step, “cut the thread”, we retrieve similar steps
from the training set as retrieved negatives which
include “cut your thread”, "cut off the extra thread",
etc.
Diversity-Oriented Contrastive Loss Since the
model needs to distinguish between the ground
truth and those negative samples, we design a novel
diversity-oriented contrastive loss. Specifically,
given an input sequence Ĥ, G,M , the ground truth
next step Sn+1, and a set of K negative samples
{S1

n+1, S
2
n+1, ..., S

K
n+1}, we aim to maximize the

probability of classifying the positive sample cor-
rectly with the InfoNCE loss (Oord et al., 2018):

Lcl =
exp (y+/τ)∑

k exp
(
y−k /τ

)
+ exp (y+/τ)

y+ = σ(Avg(WyH̄
+ + by))

y−k = σ(Avg(WyH̄
−
k + by))

(3)

where H̄+ and H̄−k are decoder hidden states from
the positive and k-th negative samples, Wy is
a learnable parameter, τ is the temperature, and
Avg(∗) denotes the average pooling function.

4.6 Training Objective

We jointly optimize the cross-entropy loss and our
proposed diversity-oriented contrastive loss: L =
Lgen + λLcl, where λ is a hyperparameter that
controls the weight of the contrastive loss.

5 Evaluation Metrics

Generation Quality Evaluation Following com-
mon practice in text generation, we first evalu-
ate our model with BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Denkowski
and Lavie, 2014) scores to examine the content
overlap between generated steps and ground truth.

Inductive Quality Evaluation In order to deter-
mine whether the inferred subsequent steps are fac-
tually correct, we further evaluate the models with
BARTScore (Yuan et al., 2021) and the semantic
similarity score (Thakur et al., 2021). The semantic
similarity score uses a cross-encoder pretrained on
STSBenchmark (Cer et al., 2017) to calculate the
semantic similarity between two sentences.

In addition to evaluating whether the generated
step matches the next step, we also check whether
the generated step matches any subsequent step.
This enables the model to earn credit if it generates
a step that appears in the future. We propose a
Multimodal-Retrieval based metric: for each gen-
erated step, we use it as a query to search all cor-
responding step-image pairs under the same sub-
goal/goal from the testing set. We then compute
HIT@1 for results that fall into ground-truth future
step-image pairs. Similar to Section 4.3, we use
SBERT (Reimers and Gurevych, 2019) to rank the
most similar steps under the same subgoal to get
Text@1 (T@1). To compute Image@1 (I@1), we
use CLIP (Radford et al., 2021) to rank the most
similar images under the same subgoal. If the top-1
retrieval results appear in the subsequent steps, we
consider it a HIT. The retrieval-based metric cap-
tures normalized semantic similarity concerning
all related steps under certain subgoals. The CLIP-
based retrieval metric also enables the evaluation of
the cross-modality semantic similarity. Additional
details of the evaluation setup are in the Appendix
C.

Model Gardening Crafts
I@1↑ T@1↑ I@1↑ T@1↑

BART 44.6 40.0 48.2 29.9
+CP 48.5 39.2 48.2 31.5
+CP+M 49.8 41.0 50.3 37.8
+CP+M+R 48.1 38.9 48.9 31.8
+CP+M+R+CL 49.5 43.0 49.0 33.9

Table 2: Multimodal-retrieval based evaluation (%).
CP is models with caption input. M is models with
selective multimedia encoder. R is models with histor-
ically relevant step encoder and retrieval-augment de-
coder. CL is models with diversity-oriented contrastive
learning.

6 Experiments

6.1 Baselines

We first compare our model with (1) state-of-
the-art pretrained text-only generation models



Model B-1↑ B-2↑ B-3↑ B-4↑ METEOR↑ R-L↑ BARTScore↑ Semantic↑

GPT-2 13.2 5.03 1.87 0.72 7.38 12.5 -4.73 0.239
T5 17.6 9.05 4.92 2.87 9.41 16.5 -4.45 0.300
Naive Retrieval 10.9 4.14 1.93 1.10 6.33 10.0 -4.88 0.180
CLIP-BART 14.4 7.10 3.77 2.22 8.28 13.8 -4.44 0.256
Retrieval BART 16.8 8.68 4.80 2.24 9.15 16.0 -4.43 0.295
GPT2-SIF 11.6 5.10 2.43 1.28 6.85 10.8 -4.80 0.233
BART 17.0 8.21 4.45 2.61 8.93 15.7 -4.52 0.277
+CP 16.9 8.79 4.99 3.03 9.23 16.5 -4.41 0.300
+CP+M 17.8 9.36 5.30 3.19 9.61 17.4 -4.38 0.305
+CP+M+R 17.5 9.22 5.25 3.13 9.60 17.2 -4.36 0.309
+CP+M+R+CL 18.4 9.72 5.51 3.31 9.91 17.3 -4.37 0.310

Table 3: Results with automatic evaluation on next step prediction for the gardening domain (%). B-n denotes the
BLEU-n score. R-L denotes the ROUGE-L score. Semantic denotes semantic similarity score.

Model B-1↑ B-2↑ B-3↑ B-4↑ METEOR↑ R-L↑ BARTScore↑ Semantic↑

GPT-2 15.5 5.40 1.98 0.93 7.63 14.0 -4.67 0.218
T5 20.8 11.1 6.43 4.07 10.54 19.6 -4.38 0.300
Naive Retrieval 13.5 5.26 2.38 1.28 6.81 12.3 -4.83 0.163
CLIP-BART 17.9 9.13 5.21 3.40 9.37 16.4 -4.56 0.245
Retrieval BART 18.7 9.78 5.52 3.52 9.89 18.2 -4.38 0.285
GPT2-SIF 14.8 6.70 3.05 1.58 7.74 13.2 -4.69 0.234
BART 19.7 10.8 6.22 4.11 10.44 20.0 -4.29 0.299
+CP 20.1 11.1 6.48 4.24 10.61 20.1 -4.29 0.303
+CP+M 20.5 11.1 6.61 4.40 10.79 20.1 -4.28 0.305
+CP+M+R 20.7 11.5 6.93 4.66 11.02 20.5 -4.25 0.309
+CP+M+R+CL 21.3 11.8 7.12 4.85 11.25 20.3 -4.26 0.313

Table 4: Automatic evaluation results on next step prediction for the crafts domain (%).

to examine the results without tracking visual
states, including GPT-2 (Radford et al., 2019),
T5 (Raffel et al., 2020), and BART (Lewis et al.,
2020a). We then compare our model with the (2)
retrieval baselines including a naive retrieval base-
line which directly uses retrieved historically rel-
evant sentences as discussed in Section 4.3, and
retrieval BART which takes in the concatenation
of the retrieved historically relevant sentences with
the original text input. We also include (3) multi-
modal generation baselines that can take image
embedding instead of captions as input, which is
equivalent to CLIP-BART (Sung et al., 2022). The
CLIP-BART has a similar backbone as VL-BART
(Cho et al., 2021) but instead replacing the Faster
R-CNN (Ren et al., 2015) with ViT-B/32 CLIP
encoder (Radford et al., 2021) which has a better
image-text alignment. Additionally, we compare
our model with a state-of-the-art script learning
model: GPT2-SIF (Sancheti and Rudinger, 2022)
finetuned on our dataset. Finally, we include the
variances of our model as (4) baselines for abla-
tion. We select BART over T5 as the base model
due to the performance and parameter size. Due
to the large number of parameters in T5 (222M)

compared to BART (139M), given similar model
performance in Table 3 and 4, we choose BART in-
stead of T5. The hyperparameters, training details,
and additional ablation study are presented in the
Appendix A, B, and D.

Model Gardening Crafts
1↓ 2↓ 3↓ 4↓ 1↓ 2↓ 3↓ 4↓

Ground Truth 37.0 3.08 0.42 0.18 30.6 1.07 0.05 0.00
BART 45.2 6.94 1.39 0.73 39.2 2.18 0.26 0.10
+CP 43.1 5.88 1.00 0.39 36.0 1.81 0.05 0.02
+CP+M 43.6 5.75 0.78 0.20 36.4 1.97 0.02 0.01
+CP+M+R 44.2 6.32 1.12 0.38 36.9 2.03 0.06 0.01
+CP+M+R+CL 43.3 6.23 1.01 0.35 36.2 1.91 0.05 0.02

Table 5: Percent (%) of n-grams in step history which
appear in human or system steps.

6.2 Automatic Evaluation
As shown in Table 3 and 4, our model outperforms
baselines. Since our task is open-ended and we
are testing on unseen activities, our generated sen-
tences usually contain paraphrases. Therefore, the
BLEU scores, which rely on the exact word n-
grams match (Goldberg, 2018), are not high. In
particular, because our ground truth only has an
average length of 11 which contains less 4-grams



than the text in other tasks, our BLEU-4 is lower
than other text generation tasks. The substantial
gap between CLIP-BART and BART or BART
with caption indicates that captions usually carry
more specific information than images, and the cur-
rent multimodal encoders still cannot perfectly em-
bed text and images into the same semantic space.
Meanwhile, the low performance of the retrieval
baselines shows that simple retrieval methods are
insufficient to predict accurate next steps.

Model Gardening Crafts
1↓ 2↓ 3↓ 4↓ 1↓ 2↓ 3↓ 4↓

Ground Truth 87.1 60.1 36.1 23.6 91.3 68.7 41.6 27.7
BART 93.7 84.3 72.9 64.2 96.9 90.6 80.6 73.5
+CP 92.8 81.3 68.9 60.5 96.3 89.3 79.2 72.5
+CP+M 96.2 89.9 81.4 73.9 95.9 87.8 76.6 68.5
+CP+M+R 92.3 80.5 67.9 57.8 96.9 89.6 78.6 71.1
+CP+M+R+CL 95.1 87.2 77.1 68.6 96.3 88.0 75.8 67.3

Table 6: Self-BLEU (%) for human or system steps.

Among our model variants, adding selective en-
coding leads to a further performance increase,
showing that selective encoding helps the model
focus on the content in step history that is most re-
lated to future steps. The superior performance on
BARTScore and semantic similarity of the retrieval-
augmented model indicates the effectiveness of the
guidance from historically relevant steps. Our con-
trastive learning model achieves larger gains com-
pared to baselines for BLEU and METEOR, sug-
gesting that our contrastive loss helps the model
generate results similar to the ground truth.
Automatic Evaluation with Future Steps We
evaluate whether the predicted step is related to
any future steps. Our contrastive learning model
outperforms other ablations significantly on text
retrieval for the Gardening domain, as shown in
Table 2. These results imply that the contrastive
learning objective encourages the model to gener-
ate more informative future steps. The decrease in
n-gram overlap between input step history and step
predictions (Table 5) suggests that the contrastive
learning objective also decreases the model’s para-
phrasing tendency. Interestingly, the performance
decreases when adding the retrieval augmentation
to the model because the retrieval model introduces
additional information related to the step history,
which makes the model generate results similar to
previous steps (Table 5).
Automatic Evaluation on Diversity To evaluate
the diversity between generated steps in the test

Model Gardening Crafts
1↑ 2↑ 3↑ 4↑ 1↑ 2↑ 3↑ 4↑

Ground Truth 11.4 50.9 80.8 92.2 8.46 44.4 77.9 90.9
BART 4.75 17.7 32.4 42.6 5.11 22.6 42.8 53.8
+CP 5.17 19.2 33.7 42.7 5.12 22.6 42.7 53.8
+CP+M 4.94 18.6 32.8 41.8 4.92 22.4 42.3 53.8
+CP+M+R 5.06 19.2 34.6 44.3 5.23 23.3 43.9 55.2
+CP+M+R+CL 5.02 19.3 35.0 45.2 5.07 23.3 44.2 56.1

Table 7: Unique n-grams in human or system steps(%).

sets, we employ two diversity metrics: self-BLEU
(Zhu et al., 2018) (Table 6) and unique n-grams
(Fedus et al., 2018) (Table 7). The self-BLEU eval-
uates whether a model produces similar n-grams
in different samples by measuring the similarity
between one sentence and the rest in the test set.
The retrieval model achieves the best results for the
Gardening domain because it acquires additional
knowledge from the retrieved steps and thus diver-
sifies the output. The contrastive learning model
achieves the best self-BLEU for 3,4 grams for the
Crafts domain, implying our model’s effectiveness.
The unique n-grams calculate the percentage of
distinct n-grams. It considers the repetition of n-
grams within a generated step and across samples.
The contrastive learning model achieves the high-
est distinct scores for 3,4 grams for both domains,
indicating the effectiveness of our diversity-based
contrastive loss in generating more diverse steps.

6.3 Human Evaluation

Model Gardening Crafts
N.↓ F.↓ D.↓ E.↓ N.↓ F.↓ D.↓ E.↓

BART 1.92 2.05 2.43 1.60 1.90 2.03 2.29 1.76
+CP 1.78 1.93 2.70 1.39 1.70 1.85 2.86 1.65
+CP+M 1.77 1.95 2.41 1.37 2.15 2.04 4.11 1.77
+CP+M+R 1.48 1.55 2.66 1.29 1.93 2.13 2.89 1.63
+CP+M+R+CL 1.31 1.37 1.27 1.18 1.55 1.84 1.57 1.52

Table 8: Human evaluations on with average ranking of
next step correctness (N.), future steps correctness (F.),
diversity (D.), executability (E.). Ties are allowed.

Since script learning is an open-ended task that
is inherently difficult for automatic metrics to mea-
sure the correctness of generated scripts (Huang
et al., 2022), we further conduct a human evalua-
tion. We hire four proficient English speakers as
human annotators to independently rank the gen-
eration results from 1 (best) to 5 (worst) for: (1)
next step correctness which measures whether the
generated results match the next step; (2) future



steps correctness measuring whether the generated
results match any of the future steps; (3) diversity
which measures the diversity of generated results
under the same subgoal; (4) executability which
checks the generated results repeat or conflict with
step history. We randomly select ten subgoals, in-
cluding 41 and 44 generated steps from the test set
for Gardening and Crafts separately.

The human evaluation results5 are shown in Ta-
ble 8. Our contrastive learning model performs
best over all metrics on two datasets. By adding
each component of our model, we observe a consis-
tent trend in correctness to ground truth. However,
we also observe that scores for selective encoding
decrease because the output space with selective
encoding is more constrained than the BART base-
line, and the length of our generated sequence is
not very long.

6.4 Discussions
Impact of Selective Multimedia Encoder The
caption input helps the model understand the gen-
eral step descriptions better. For example, given
the activity “cure azaleas of leaf gall”, the step text
only shows a generic instruction: “rule out other
diseases”. However, the BLIP captioner generates

“a green leaf with white dots on it” which helps
the model generate “remove the leaf gall from the
shrub” instead of “keep your shrub healthy”. Fur-
thermore, in Figure 1, the finger object is absent
from caption 3, indicating that the caption model
has the ability to eliminate extraneous information
from the image. The selective gate can filter out
unrelated steps which are not directly related to
the current subgoal. For example, in Figure 1, our
model successfully predicts a low masking weight
of 0.049324 for the step “cut the thread”, while as-
signing a much higher masking weight of 0.134498
to its uninformative caption “a pair of scissors and
a measuring tape”. The results imply that the selec-
tive gate successfully guides the model to focus on
the related information.
Impact of Retrieval Augmentation The retrieved
steps provide relevant knowledge from similar
tasks: given the subgoal “finding or growing roses”
because the retrieved sentence mentioned “fertil-
izer” and “mulch”, the model successfully gener-
ates “fertilize your roses”. Additionally, the model
also benefits from retrieval augmentation with an

5The Krippendorff-α inter-annotator agreement scores
(Krippendorff, 2018) and detailed guidelines of human evalu-
ations are in the Appendix K

analogy, e.g., the model generates “know when to
harvest” given the retrieved step “plant the bulbs
when you get them”.
Impact of Contrastive Learning In addition to
the improvement in diversity from the previous sec-
tion, we observe that contrastive learning helps the
model generate results closer to ground truth com-
pared to other baselines. For example, it generates

“pick creeping charlie plants from the ground”, sim-
ilar to ground truth “pick your creeping charlie
leaves”. The addition of contrastive learning also
helps our model generates instructions with more
details than other baselines by stating “place the
plant in the hole and cover it with soil” instead of

“place the plant in the hole”.

7 Related Work

Previous script learning tasks fall into two forms:
selective and generative. The selective script learn-
ing tasks focus on modeling the script interac-
tions given a list of candidates, including multi-
choice goal step inference/ordering (Zhou et al.,
2019; Zhang et al., 2020), script retrieval (Lyu
et al., 2021; Zhou et al., 2022), action anticipation
(Damen et al., 2018, 2021), procedure segmenta-
tion (Richard et al., 2018; Zhou et al., 2018; Ghod-
doosian et al., 2022), multi-choice visual goal-step
inference (Yang et al., 2021b), multimedia proce-
dure planning (Zhao et al., 2022), multimedia step
ordering (Zellers et al., 2021; Wu et al., 2022),
instructional video retrieval (Yang et al., 2021a),
and step classification (Lin et al., 2022). Despite
promising results, their performance heavily re-
lies on the given candidates, making them difficult
to generalize for unseen activities. The second
category is text-based generative script learning
(Tandon et al., 2020; Lyu et al., 2021; Huang et al.,
2022; Li et al., 2020, 2021; Jin et al., 2022; Sancheti
and Rudinger, 2022). However, this is the first
work to provide a multimedia goal-oriented gener-
ative script learning along with a new multimodal-
retrieval based metric. Different from Sener and
Yao (2019), which uses a video to generate the
next step, our new task uses step image-text pairs
as input. Unlike previous multimedia script learn-
ing frameworks with a multimedia encoder to cap-
ture visual and textual information, we use a cap-
tioner to convert images into captions summariz-
ing the important objects in images. The GOSC
dataset (Lyu et al., 2021) contains the steps of daily
stereotypical tasks, but most of the steps (52.6%) in



this dataset are unordered, making it infeasible to
evaluate the next-step prediction. Consequently, we
adapted the best model mT5 (Xue et al., 2021) in
GOSC to our settings, i.e., the monolingual version
T5, and used it as an equivalent baseline to show
the comparison with the state-of-the-art model.

To handle irrelevant sentences in the input, in-
stead of using a token-level gating mechanism that
only depends on the token itself (Sengupta et al.,
2021), we introduce a sentence (step/caption) level
gating mechanism whose gates depend on global
context and weighted sentence representations. Our
work is also related to retrieval-augmented text gen-
eration models (Wang et al., 2019; Lewis et al.,
2020b; Liu et al., 2021). However, instead of re-
trieving knowledge from an external corpus, we use
steps from similar tasks in training data to guide
the generation process. Moreover, we introduce
a new contrastive learning loss to increase diver-
sity. Previous contrastive learning-based text gen-
eration methods usually use negative samples con-
structed by sequence manipulation (Cao and Wang,
2021; Hu et al., 2022) or perturbation (Lee et al.,
2021). Inspired by Wang et al. (2022) which uses
self-negatives for knowledge graph completion and
that the generation output tends to repeat the input,
we extend self-negatives for sequence-to-sequence
contrastive learning. We also retrieve similar steps
from the training set as additional hard negatives.

8 Conclusion

We propose a novel Multimedia Generative Script
Learning task with the first benchmark featuring
step and descriptive image pairs to generate subse-
quent steps given historical states in both text and
vision modalities. Moreover, we build a new script
learning framework consisting of a selective multi-
media encoder, a retrieval-augmented decoder, and
a diversity-oriented contrastive learning objective
to generate the next steps. Furthermore, we define
a new multimodal-retrieval based metric which can
be used for multimedia script learning tasks. Au-
tomatic and human evaluation results demonstrate
consistent performance improvements.

9 Limitations

9.1 Limitations of Data Collection
Regarding data collection, we crawled the English
WikiHow website from Jan 2021 to May 2021. The
number of available activities is limited by the data
we crawled from WikiHow. We currently only

choose Gardening and Crafts categories as case
studies. Because we focus on multimedia image-
step pairs, we remove steps that are not attached
to any illustrative images. We also observe that
a small portion of activities in the dataset do not
follow chronological order.

Since our task focuses on the daily stereotypical
tasks which usually require the model to under-
stand the visual environment, the model design can
be directly applied to support other domains, such
as steps in the cooking videos. In addition, our
model can also adapt to scenarios without visual
images because the performance of our model only
decreases slightly if no caption is provided. We
plan to expand our model to other categories writ-
ten in other languages.

9.2 Limitations of System Performance

The model might generate incorrect nouns because
of the occurrence of patterns (e.g., “refrigerate
the slane for up to 1 year” instead of “refrigerate
the purslane for up to 1 year”). In addition, our
model sometimes tends to generate generic step de-
scriptions because of insufficient input information,
e.g., given the last step “lay the t-shirt out on a
clean, flat surface.”, the model generates “cut the
shirt out” which is vague compared to ground truth

“carefully cut around the sleeve”. Moreover, the
pretrained model might focus more on language
modeling instead of inherent logic: for the activity
of “make paint can planters”, after “removing the
label” from the paint can, the BART+CAP gen-
erates “read the label”. In addition, there is still
a small chance that the model generates the same
output for various similar inputs.

Because we rely on image captions and retrieval
results for step prediction, the upper bound of our
generation quality is limited by the performance of
the image caption and sentence retrieval modules.
Our framework also needs to improve on imbal-
anced topics in the dataset. For example, the dataset
contains more activities about tree for the garden-
ing domain than other gardening-related plants. Be-
cause our multimedia generative script learning is a
new task, we cannot compare our model with other
established state-of-the-art models. Moreover, be-
cause WikiHow is a crowd-sourcing website, some
everyday activities might have better human anno-
tations than the remaining activities. We plan to
include a fine-grained human written step predic-
tion as an upper bound to address this issue.



9.3 Limitations of Evaluation

The automatic metrics we chose, including BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Denkowski and Lavie, 2014), BARTScore
(Yuan et al., 2021), self-BLEU (Zhu et al., 2018),
and unique n-grams (Fedus et al., 2018), might
not be the best metrics to evaluate our results.
Some other metrics, such as semantic similarity and
multimodal-retrieval based metrics, are based on
pretrained models, including Augmented SBERT
(Thakur et al., 2021), SentenceBert (Reimers
and Gurevych, 2019), and CLIP (Radford et al.,
2021). Those metrics might not align with human
judgment and might be biased toward pretrained
datasets. While we complement it with human eval-
uation, we only focus on relevance to ground truth
and diversity. Although we found fluency is not an
issue, it is likely we still need to cover all aspects
of generation results.

10 Ethics and Broader Impact

The type of multimedia script learning framework
we have designed in this paper is limited to Wiki-
How articles, and they might not be applicable to
other scenarios.

10.1 Usage Requirement

Our multimedia script learning framework provides
investigative leads for multimedia script prediction.
Therefore, it is not intended to be used for any
activity related to any human subjects. Instead,
our system aims to generate step predictions with
unseen activities similar to those in the training set.
Accordingly, domain experts might use this tool as
an assistant to write more constructive instructional
scripts that would be too time-consuming for a
human to create from scratch. Experts can also
use this system to improve writing instruction by
adding missing instructions. However, our system
does not perform fact-checking or incorporate any
external knowledge, which we leave as future work.
The IRB board should first approve human subjects
who follow instructions generated by our system.

10.2 Data Collection

We collect data by crawling the raw official En-
glish WikiHow website, which is under Attribution-
Noncommercial-Share Alike 3.0 Creative Com-
mons License6. We ensure that our data collec-

6https://www.wikihow.com/wikiHow:Creative-Com
mons

tion procedure follows the Terms of Use located
at https://www.wikihow.com/wikiHow:Terms-
of-Use. Therefore our dataset can only be used
for non-commercial purposes. As mentioned in
Section 6.3, we perform the human evaluation. All
annotators involved in the human evaluation are
voluntary participants and receive a fair wage.
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# of Parameters

BART 139.425M
+CP 139.425M
+CP+M 141.788M
+CP+M+R 158.346M
+CP+M+R+CL 158.347M

Table 9: # of Model Parameters

B Training details

We use BART-base from Huggingface (Wolf et al.,
2020) for our method and baselines. We normal-
ize all our input sentences into lower case. We
add 5 special tokens for BART-base model in-
cluding <title>, <method>, <step>, <caption>,
<template>, and <cls>. We prepend <title>
to goal, <method> to subgoal, <step> to text
step, <caption> to step caption, <template> to
retrieved step, and <cls> to the beginning of step
history input. We truncate our step, caption, goal,
and subgoal to 30 tokens and target step to 40.
We only choose the closest 10 step-caption pairs.
We use BLIP (Li et al., 2022) 8 pretrained with
129M images including including COCO (Lin et al.,
2014), Visual Genome (Krishna et al., 2017), Con-
ceptual Captions (Sharma et al., 2018), Conceptual
12M (Changpinyo et al., 2021), SBU (Ordonez
et al., 2011), and LAION (Schuhmann et al., 2021).
We use all− mpnet− base− v2 from Sentence-
Bert (Reimers and Gurevych, 2019), which per-
forms best in semantic search to retrieve similar
steps.

# History # Instance BARTScore↑ Semantic↑

1 685 -4.3683 0.3189
2 680 -4.3633 0.3115
3 545 -4.4213 0.3064
4 346 -4.3535 0.3118
5 207 -4.3556 0.2748
6 104 -4.3588 0.2746
7 56 -4.2192 0.3381
8 26 -4.1687 0.3411
9 12 -4.3800 0.2085
10 23 -4.7718 0.2491

Table 10: The average number of BARTScore/ Seman-
tic Similarity Score and the number of instances given
the different lengths of step history for the gardening
domain

We train our model with NVIDIA A6000 GPUs
7https://github.com/huggingface/transformers
8The BLIP checkpoint we is https://storage.google

apis.com/sfr-vision-language-research/BLIP/model
s/model_base_capfilt_large.pth

with 48G memory with full precision. We choose
our best model based on the validation score with
BLEU-4 (Papineni et al., 2002) and ROUGE (Lin,
2004). The best validation scores for our con-
trastive learning model are: BLEU-4 with 2.81 and
ROUGE-L with 15.24 for the gardening domain;
BLEU-4 with 4.85 and ROUGE-L with 20.25 for
the crafts domain. The average training time for
each model is 2 to 4 hours. Table 9 shows the
number of parameters for each model.

C Evaluation Metrics

We use BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Denkowski and Lavie,
2014) from Microsoft COCO Caption Evaluation
package9. We use official implementation of
BARTScore (Yuan et al., 2021)10. We use
cross− encoder/stsb− roberta− large

which performs best on STSBenchmark (Cer
et al., 2017) to compute semantic similarity
score from Augmented SBERT (Thakur et al.,
2021). For multimodal-retrieval based metric,
we use the best sentence embedding model:
all− mpnet− base− v2 from SentenceBert
(Reimers and Gurevych, 2019) for text retrieval,
and the best language-image pretraining model
ViT− L/14@336px from CLIP (Radford et al.,
2021) for image retrieval. Specifically, we compute
the CLIP similarity between the image embedding
and the sentence embedding of the target step
to retrieve images. All results are based on a
single run. We have opted not to include a human
performance baseline in our evaluation. This
decision was made due to the inherent challenges
of assessing human performance in generative
script learning, which requires annotators to
possess domain knowledge in order to predict
the next steps accurately. Moreover, different
tasks may require different levels of expertise,
experience, or background knowledge, making
it difficult to establish a consistent baseline for
human performance evaluation.

D Additional Ablation Study

We conducted further ablation experiments, the
results of which are presented in Table 11. Our
findings show that all ablated models performed
worse than our proposed model.

9https://github.com/salaniz/pycocoevalcap
10https://github.com/neulab/BARTScore
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Domain Model B-1↑ B-2↑ B-3↑ B-4↑ METEOR↑ R-L↑ BARTScore↑ Semantic↑

Gardening
BART+CP+M+CL 17.9 9.30 5.20 3.07 9.72 17.1 -4.39 0.304
BART+CP+R+CL 17.6 9.16 5.16 3.03 9.54 16.7 -4.41 0.299
BART+M+R+CL 17.7 9.11 4.98 2.92 9.71 17.0 -4.37 0.306

Crafts
BART+CP+M+CL 20.6 10.9 6.12 3.89 10.8 19.3 -4.30 0.307
BART+CP+R+CL 20.3 11.0 6.36 4.12 10.8 19.8 -4.29 0.301
BART+M+R+CL 20.8 11.5 6.78 4.49 10.9 20.1 -4.27 0.306

Table 11: Automatic evaluation results on next step prediction for the gardening and crafts domain (%).

E Prediction for different history length
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(b) The average number of Semantic Similarity Score in test
set given the different lengths of step history

Figure 3: Prediction for different history lengths for the
gardening domain

In Figure 3a and Figure 3b, we show the aver-
aged BARTScore and semantic similarity scores of
our contrastive learning models in the next step pre-
diction task over different step history lengths. In
both figures, we observe that the results with eight
step-caption pairs obtain the highest scores. We
analyze the reasons as follows. For the instances
that contain less than eight history steps, increas-

ing the step history introduces more information
than noise from the step text and corresponding
captions. However, as the step length grows, the
additional step-caption pairs introduce more noise
than information relevant to the future step. Em-
pirically, the eight-step length achieves an optimal
balance between noise and relevant information.
Another potential reason is related to the number
of instances. In Table 10, we see a clear decline
in the number of instances because of our dataset
construction strategy. Therefore, the model cannot
generalize over long history input.

F Dataset Collections

We crawled the English WikiHow website from
Jan 2021 to May 2021. We extract all articles from
the crawled website dump in the Gardening and
Crafts categories. Each article contains a unique
activity. We use BeautifulSoup (Richardson, 2007)
to parse the article and obtain JSON files. Each
JSON file contains a gardening activity. For each
gardening activity, we remove those steps without
paired images or steps whose images do not exist
in the dump. Then, we use a regular expression to
remove the URLs in the steps. We remove those
steps that are too short (less than two words) or
contain no values. Finally, we remove the activity
containing only one step in each subgoal.

G Parallel Steps

In this paper, we focus on predicting correct orders
for sequential step prediction since we find that
only 18% of the subgoals have one parallel step
by random checking 50 subgoals, and 14% con-
tain more than one parallel step. It is more critical
to predict correct orders for non-interchangeable
steps, such as step 4 and 5 in Figure 1. By using
generative methods, multiple steps can be predicted
with different probabilities, which can support par-
allel processes. We also propose the multimodal-
retrieval-based metric by treating the future steps
as a set and checking whether the generation steps



fall into the future steps.
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Figure 4: The semantic similarity scores (Thakur et al.,
2021) between the model predictions and the ground
truths versus the semantic similarity scores between the
retrieved historical relevant steps and the ground truths
in the gardening domain.

H Impact of Historical Relevant Steps

We analyze the relation between the quality of the
retrieved historically relevant steps and the quality
of the model predictions. The semantic similar-
ity score evaluates the quality of retrieved steps
and model predictions, which measures the embed-
ding space similarity between a given text and the
ground-truth next step. Pearson’s correlation be-
tween the semantic scores of historically relevant
steps and the semantic scores of model predictions
is 0.39 with a p < 0.01. We also illustrate their
relation in Figure 4. The results suggest that the
performance of our model is positively correlated
with the relevance of the retrieved historical steps.

water your roses adequatelyStep 4:

Immediate Next Step

1: amend the soil with fertilizer

...

2: apply a thick layer of mulch to keep moisture in the soil.

Historical Relevant Step:

SentenceBERT

Training Set

SentenceBERT

Consine Similarity

Figure 5: Details for historical relevant step retrieval

harvest roses

finding or growing roses

Goal:
Subgoal:

find areas where roses grow

water your roses adequately

identify roses correctly

...

two pink and red roses with green leaves

a man standing in front of a bush of roses

Step 1:

Caption 1:

Step 2:

Caption 2:

Step 4:

Caption 4: a person using a garden hose to clean the
ground

Historical Relevant Step Retrieval

Diversity-Oriented
Contrastive Loss

fertilize your roses
Next Step Prediction:

1: void watering the leaves and blooms.

...

2: create a watering regimen for your
roses once they are established.

Retrieve-negatives:

Self-negatives:

Figure 6: Details for diversity-oriented contrastive loss

I Additional Model Architecture

Figure 5 and 6 show additional details for our
framework. The immediate next step refers to the
step right after the previously given steps.

J Scientific Artifacts

We list the licenses of the scientific artifacts used in
this paper: WikiHow (Attribution-Noncommercial-
Share Alike 3.0 Creative Commons License),
Huggingface Transformers (Apache License
2.0), SBERT (Apache-2.0 license), BARTScore
(Apache-2.0 license), CLIP (MIT license), and
BLIP (BSD-3-Clause license).



K Human evaluation details

Model Gardening Crafts
N. F. D. E. N. F. D. E.

BART 0.60 0.64 0.55 0.22 0.60 0.59 0.70 0.35
+CP 0.65 0.50 0.53 0.41 0.67 0.60 0.90 0.31
+CP+M 0.70 0.74 0.86 0.31 0.45 0.40 0.76 0.41
+CP+M+R 0.53 0.50 0.68 0.37 0.62 0.46 0.78 0.31
+CP+M+R+CL 0.43 0.58 0.56 0.26 0.58 0.48 0.13 0.35

Table 12: Krippendorff-α scores for human evaluation
on with average ranking of next step correctness (N.),
future steps correctness (F.), diversity (D.), executabil-
ity (E.).

We measure inter-annotator agreement with
Krippendorff-α scores (Krippendorff, 2018). The
results are in Table 12. Table 13 shows the annota-
tion examples. Because we do not have a virtual
environment to execute those steps, we do not have
a good inter-annotator agreement on the executabil-
ity.

L Sample Output

Future Steps: destroy the infected pieces away from the plant.

Goal: cure azaleas of leaf gall

Step 1: identify your shrub as an azalea.

Next Step?

Step History:

Ground Truth: remove infected leaves.

BART: keep your shrub healthy.

Our Model: remove the leaf gall from the shrub.

Historical Relevant Step:

1: look for signs of pests.

2: give your plants just the right amount of sun.

Caption 1: a pink flower with green leaves on a blue
background

3: look for insect activity.

4: harvest spring onions after 8 weeks.

5: use cultural control.

BART+CAP: remove the leaf gall.a person holding a green leaf
in their hand.
BART+CAP+ME: remove the leaf gall from the plant.
BART +CAP+ME+RD: remove the leaf gall.a person cutting a
plant with scissors.

Step 2: rule out other diseases
Caption 2: a green leaf with white dots on it

1

2

Figure 7: Human and System Step Prediction Results.
It shows an example that our model benefits from selec-
tive multimedia encoder.



Type Content

Instructions (1) similarity to the next step measures the correctness of generated results with the next step; (2)
similarity to future steps measures whether the generated results are relevant to the future steps; (3)
diversity measures the diversity of generated results under the same subgoal (4) executability which
checks the generated results repeat or conflict with step history/ Please rank these models’ output from
1(best)-5(worst), ties are allowed if both outputs are the same.

Similarity and ex-
ecutability annota-
tion examples

Title:
protect garden berries
Subgoal:
setting up decoys
Step History:
use plastic snakes.
—————————————-
Ground Turth Target:
Next Step:
put out shiny pinwheels.
Future Steps:
put out shiny pinwheels.
create a decoy food area.
—————————————-
Predictions:
0’s prediction:
wrap the snake in a plastic bag.
1’s prediction:
set up a trellis.
2’s prediction:
cut the berries down to the ground.
3’s prediction:
set up a trap.
4’s prediction:
choose a sturdy piece of string.

Diversity 0’s predictions:
wrap the snake in a plastic bag.
place the flowers on a stick in the dirt.
1’s predictions:
choose the right plant.
set up a trap.
2’s predictions:
cut the berries down to the ground.
create a trap.
3’s predictions:
set up a trap.
create a trap.
4’s predictions:
choose a sturdy piece of string.
set up a trap.

Table 13: Annotation examples



Goal: harvest roses
Subgoal: finding or growing roses

Step 1: find areas where roses grow.

Next Step?

Step History:

Ground Truth: fertilize your roses.

BART: use a garden hose to water your
roses.

Our Model: fertilize your roses.

Historically Relevant Step:

1: deadhead spent blooms to stimulate new growth.
2: mist the buds with a light coating of water every 2-4 days.

Caption 1: a man standing in front of a bush of roses

Step 2: identify roses correctly.

Caption 2: two pink and red roses with green leaves

Step 3: plant your roses.

Caption 3:  a person holding a card with a rose in it

Step 4: water your roses adequately.
Caption 4: a person using a garden hose to clean
the ground

3: apply a thick layer of mulch to keep moisture in the soil.

4: add mulch around the base of your roses.

5: amend the soil with fertilizer.

BART+CAP: harvest your roses.

BART+CAP+ME: harvest your roses.

BART +CAP+ME+RD: harvest your roses.

4

3

2

1

Figure 8: Human and System Step Prediction Results.
It shows an example that our model prediction results
benefits from retrieval results and contrastive learning.

Future Steps: store the leaves in a jar or similar container.

Goal: harvest creeping charlie
Subgoal: picking creeping charlie plants

Step 1: figure out the right time of year to
harvest.

Next Step?

Step History:

Ground Truth: pick your creeping charlie leaves.

BART: use a sharp knife to cut the leaves.

Our Model: pick creeping charlie plants from the ground.

Historical Relevant Step:
1: put on protective gear.

2: harvest daily when the spears are about 6-8 inches (15.24-
20.32 cm) high.

Caption 1: a set of four different colors of leaves 1

3: grow larger plants.

4: select only the bright red berries.

5: cut the squash from the vines..

BART+CAP: choose the right plant.

BART+CAP+ME: choose the right plant.

BART +CAP+ME+RD: choose the right variety of creeping charlie.

Figure 9: Human and System Step Prediction Results.
It shows an example that our model prediction results
benefits from retrieval results and contrastive learning.



Future Steps: place the plant in the hole and fill it with soil. 

Goal: plant a plant
Subgoal: planting in outdoor soil

Step 1: plant your plant in the spring or fall.

Next Step?

Step History:

Ground Truth: deepen the hole so the plant's root crown is at
the soil line.

BART: place the plant in the hole.

Our Model: place the plant in the hole and cover it with
soil.

Historical Relevant Step:

1: widen the hole so it's twice the size of the root ball.
2: pull up any grass and weeds in and around the hole.

Caption 1: a plant that is growing out of the ground

Step 2: remove the plant from its pot or netting.

Caption 2: a potted plant with a cross on it

Step 3: inspect and prune damaged roots.

Caption 3:  how to cut a plant with pictures wikihow

Step 4: make a garden bed for flowers and bushes.
Caption 4: a cartoon of a man digging a plant in the
ground

4

3

Step 5: dig a hole 2 to 3 times wider than the
plant's root ball.
Caption 5: a group of trees with roots in the ground

5

2

1

3: place the tallest plants in the middle, if you're using a
variety of plants.
4: put the roots into the hole.
5: space the chrysanthemums 18-24 inches (46-61 cm)
apart, if applicable.

BART+CAP: place the plant in the hole.

BART+CAP+ME: place the plant in the hole.

BART +CAP+ME+RD: place the plant in the hole.

Figure 10: Human and System Step Prediction Results.
It shows an example that our model prediction results
matches future steps instead of immediate next step.


