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Abstract

The generation of explanation graphs is a sig-
nificant task that aims to produce explanation
graphs in response to user input, revealing the
internal reasoning process. This task is chal-
lenging due to the significant discrepancy be-
tween unstructured user queries and structured
explanation graphs. Current research com-
monly fine-tunes a text-based pre-trained lan-
guage model on a small downstream dataset
that is annotated with labeled graphs. However,
due to the limited scale of available datasets,
this approach may prove to be insufficient in
bridging the gap between natural language text
and structured graphs. In this paper, to allevi-
ate the above limitations, we propose a novel
pre-trained framework EG3P(for Explanation
Graph Generation via Generative Pre-training
over synthetic graphs) for the explanation graph
generation task. Specifically, we first propose
a text-to-graph generative task to pre-train the
model with the goal of bridging the text-graph
gap. Additionally, we propose an automatic
corpus synthesis strategy for synthesizing a
large scale of high-quality corpus, reducing
the reliance on costly manual annotation meth-
ods. Experimental results on ExplaGraphs
show the effectiveness of EG3P that our model
surpasses all baseline systems with remark-
able margins. Besides, further analysis demon-
strates that EG3P is able to generate better
explanation graphs on actual reasoning tasks
such as CommonsenseQA and OpenbookQA.1

1 Introduction

Generating an explanation to probe why the model
obtains answers is a long-term goal in the de-
velopment of intelligent systems, especially in
reasoning-related tasks, such as E-SNLI(Camburu
et al., 2018), ECQA(Aggarwal et al., 2021), Hot-
potQA(Yang et al., 2018) and ExplaGraphs(Saha

∗Corresponding author.
1Our code, checkpoints and corpus is released in

https://github.com/cccccent/EG3P
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Figure 1: An example of the task of explanation graph
generation (from ExplaGraphs dataset). Given a piece
of natural text, the model needs to generate a graph
depicting the reasoning process.

et al., 2021). According to the types of explana-
tions, existing explanation generation tasks can
be mainly divided into three types, including tex-
tual highlights explanation generation (Yang et al.,
2018; Camburu et al., 2018), natural language ex-
planation generation (Camburu et al., 2018; Wiegr-
effe et al., 2020; Inoue et al., 2021) and structured
explanation generation (Xie et al., 2020; Saha et al.,
2021). Among all these tasks, structured explana-
tion generation achieve growing attention recently
since the explanation in this task is usually a graph,
which is clean enough, and easy to evaluate from
the perspective of structure and semantics (denoted
as an explanation graph). An example of a struc-
tured explanation generation task is shown in Fig-
ure 1.

Pre-trained language models, such as RoBERTa
(Liu et al., 2019), BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020) have demonstrated their
powerful capabilities in a great many language un-
derstanding tasks. As a result, when it comes to
explanation graph generation, existing studies pri-
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Figure 2: The overview of EG3P. The model is first pre-
trained on a large amount of synthetic data in the form
of "text2graph", and then fine-tuned on a downstream
task with a small amount of data.

marily fine-tune pre-trained language models on
downstream tasks directly (Xie et al., 2020; Saha
et al., 2020, 2022). While typical pre-trained lan-
guage models (PLMs) are pre-trained on textual
corpus only, fine-tuning on downstream tasks di-
rectly may lead to a significant discrepancy be-
tween text-based language models and explanation
graphs. To mitigate this issue, we argue that pre-
training over task data can be an ideal way to bridge
the above gap. Such a pre-training manner can be
a subtle solution to inject inductive bias into PLMs.
However, the scale of existing datasets is relatively
small since it costs a lot to label explanation graphs,
and pre-training on existing data is insufficient to
bridge the gap. To this end, an appealing solution
is to continually pre-train PLMs on a large scale
automatically synthetic corpus containing explana-
tion graphs instead of human labeling before fine-
tuning. The explanation graph is highly structured
and contains diverse entities and relations, which is
easily synthesized by randomly assigning different
values to each entity and relation positions.

In this paper, we propose EG3P (Explanation
Graph Generation via Generative Pre-training over
Synthetic Graphs), a novel pre-trained framework
for explanation graph generation. Specifically, as
shown in Figure 2, EG3P is composed of two key
components: the "Text-to-Graph" pre-training task
and the construction of the pseudo training data.
Different from previous natural language-based
pre-training tasks, the “Text-to-Graph” task takes
external knowledge sources and questions contain-
ing partial reasoning progress information as input,
and its target is to generate relevant explanation
graphs. In addition, to avoid the high cost of re-
trieving graphs for the simulated questions from
the knowledge base, we propose a novel approach

to constructing questions from simulated graphs,
which automatically constructs a large amount of
pseudo data.

Experiment results on the ExplaGraphs bench-
mark demonstrate that our approach could improve
the ability of the model to generate explanatory
graphs significantly. Moreover, the model also
shows excellent graph generation ability on other
reasoning datasets.

Overall, we make the following key contribu-
tions:

• We propose a novel pre-training task by map-
ping the input question to a structural ex-
planation graph, which guides the model to
learn the connections between natural lan-
guage questions and structured graphs.

• We propose a novel approach to synthesize
corpus by automatically constructing struc-
tured graphs and queries to form the large-
scale corpus.

• Among the models with similar scales, our
model achieves competitive results. Further-
more, the results of our experiments indicate
that our model is capable of producing ac-
ceptable graphs on reasoning datasets without
labeled graphs.

2 Overview and Background

In this paper, we concentrate on the task of expla-
nation graph generation. An example is depicted in
Figure 1. Given a piece of natural language text T ,
the model needs to generate a graph G which en-
capsulates the internal reasoning path of the input
text. The specific content of the input T is contin-
gent upon the specific downstream tasks (belief +
augment + stance in stance prediction, question +
answer in QA, etc.). For output G, we organize the
graph into a sequence of triples in the depth-first
search order. In practice, we employ a generative
model and treat graph generation as a standard text
generation task.

A crucial point in this task is addressing the sig-
nificant discrepancy in semantic expression struc-
ture between natural language texts and explanation
inference graphs. An ideal way is to let the model
learn this expression transfer on a large amount
of natural language text and graph alignment data.
However, due to the small size of labeled datasets,
training on these datasets is difficult to address
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the issue. Based on all of the above, we propose
the two modules of our model: the "text-to-graph"
pretraining strategy introduced in section 3, and
the method of automatically constructing synthetic
corpus introduced in section 4.

3 The Text2graph Pre-training Strategy

Typical pre-training strategies of various PLMs are
based on the corpus of natural language text (e.g.
MLM and NSP(BERT), text denoising(BART), and
text-to-text generation(T5)). However, in the expla-
nation graph generation task, the explanation graph
is different from the natural language text both in
the representation form and in the semantic struc-
ture, which leads to a huge gap between the two
kinds of representations. Apart from typical tasks,
some pre-training strategies are applied to recover
the triples in the knowledge graph for knowledge
graph question answering(KGQA)(Saxena et al.,
2022). However, such a pre-training method is not
able to cover the explanation graph generation task
due to the separation of pre-training steps between

structured corpus and natural language, which is
unable to bridge the gap between natural language
and structured graphs.

Since the explanation graph generation task is
required to translate natural language text into a
graph, we believe the key point is to map the natu-
ral language texts to structured graphs in the learn-
ing process implicitly. To this end, we set the
form of the pre-training task as "text-to-graph" in
EG3P. As depicted in Figure 3, the format of the
pre-training task is analogous to that of a normal
generation task. Given a query in natural language
question and a simulated knowledge source, the
model concatenates the two part together as input
and generate a sequence of triples representing the
reasoning graph from the query to the answer. By
learning aligned "text-to-graph" pairs, the model
acquires text-to-graph mapping in the process, and
its capability for structured text generation is also
enhanced. Real input samples are presented in Ap-
pendix B for further reference.

The query and the graph of the answer come
from the auto-construction method we propose,
which will be discussed in the next section. To
construct the simulated knowledge source (a col-
lection of triples), we take the triples of the gold
answer as a starting point and add random triples
that are not relevant to the reasoning process to dis-
rupt the collection. The final size of the simulated
knowledge source is approximately 1.5 to 2 times
the length of the graph.

4 The Construction of Synthetic Corpus

Pre-training tasks necessitate the support of large-
scale corpus. However, all the existing datasets
with human-labeled graphs are small in scale due
to the high cost of manually annotating, which
is not enough to support the pre-training process.
To address this issue, we propose an automatic
method of constructing the pair of the natural lan-
guage query and the explanation reasoning graph.
The conventional way to get a graph from a piece
of natural language text is to search in the exter-
nal knowledge base. However, the complexity of
searching would increase exponentially with the
number of nodes and the length of edges in graphs.
Therefore, we invert this process, synthesizing a
reasoning graph first and then constructing a query
based on the graph next.
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Figure 4: The construction of graphs and queries. The left part introduces the construction of the graphs. Given a
node, we retrieve triples step by step forward, and then randomly select several triples (the number is allowed to be
0, 1, or 2) for concatenation. The right part describes the construction of the queries. For each graph, we construct
three different queries with different difficulties, containing different amounts of information and in different forms.

4.1 The Synthesizing of the Graph

Observing the reasoning process of the downstream
reasoning tasks, it is evident that the reasoning path
of a specific instance not solely depends on the
problem entity as the starting point of reasoning,
but also depends on other entities in the problem as
constraints, which ultimately lead to the sink point.
So we construct the explanation graph from back to
front to ensure that there is only one sink (i.e. the
answer) in the graph and the relationship of each
edge is used.

The process of construction is shown in Figure 4.
Initially, a concept is randomly selected as the sink
of the graph (also the answer to the query in the
following steps). Subsequently, triples are retrieved
recursively, and a random number of them (ranging
from 0 to 2) are incorporated into the graph. All the
triples are retrieved from ConceptNet(Speer et al.,
2017), which is an external knowledge base con-
taining concepts as nodes and relations as edges.
Additionally, the relationship “relatedTo” is preva-
lent among the concepts, which will seriously af-
fect the reasoning process, so it is deleted. Further-
more, certain other relations are merged, resulting
in a total of 16 distinct relations. The distribution
of the relations is introduced in Appendix A.

4.2 The Construction of the queries

Inspired by the work of Liu et al. (2021), we con-
struct three queries with different difficulty levels:
easy, normal, and hard for each instance of the
graph, as shown in Figure 4. The easy level in-

volves retaining the start node and relation in the
intermediate stages of reasoning, while hiding the
sink node (which is treated as the answer) and the
nodes present in the intermediate stages. The re-
lation is then replaced with natural language an-
notations based on a predefined template, and the
resulting triples are subsequently concatenated in
their original order. For the normal level, a sim-
ilar amount of information is retained as in the
easy level, but the concatenated query is further
converted into a natural language expression us-
ing a predefined template, in order to simulate a
realistic question-answering scenario. For the hard
difficulty level, only the start node and the first
relation are retained, with all other auxiliary infor-
mation removed, and the question is formulated
in natural language. All the template is shown in
Appendix B.

5 Experiments

5.1 Datasets and metrics

ExplaGraphs The main dataset we use is Expla-
Graphs(Saha et al., 2021), a commonsense expla-
nation graph generation task. The task requires an
agent to predict the stance of a given belief and ar-
gument, and subsequently generate an explanation
graph that illustrates the reasoning process behind
the predicted stance. Specifically, the explanation
graph is a DAG, demonstrating the internal reason-
ing process between the belief and the argument.
As shown in Figure 2, the nodes in the graph corre-
spond to concepts from the given text or external

9919



commonsense phrases, while the edges represent
commonsense relations present in the dataset. Each
edge in the graph is an expression of one of the rea-
soning steps, and the ordered links of all edges
provide an overall representation of the reasoning
process for the user.

In terms of the metrics, the dataset defines 6 test
metrics, two of which are selected as main met-
rics by the prior works(Saha et al., 2022): Struc-
tural Correctness Accuracy (StCA) evaluating if
the graphs satisfy all structural constraints, and Se-
mantic Correctness Accuracy (SeCA) evaluating if
the graphs are both structurally and semantically
correct. The structural constraints contain several
parts: the graph should be a connected DAG, the
relations belong to the relation list defined by the
dataset and there are at least two concepts from the
belief and two from the argument. The semantic
correctness is evaluated by a model-based metric
(Saha et al., 2021), checking whether the semantics
of the graph and the standard answer are matched.
All the metrics in detail could be found in the Ap-
pendix D.

Other reasoning datasets To prove the gener-
alization ability of the model, we also conducted
experiments on two other general commonsense
reasoning datasets in addition to ExplaGraphs:
CommonsenseQA(Talmor et al., 2019) and Open-
bookQA(Mihaylov et al., 2018). CommonsenseQA
is a 5-way multiple-choice question answering
dataset that focuses on commonsense reasoning,
while OpenBookQA is a 4-way multiple-choice
question answering dataset that requires reasoning
with elementary science knowledge. Since there
is no labeled commonsense reasoning graph on
these datasets, we evaluate the results of the dev
set of these two datasets manually from the point
of semantics and analyze the model for specific
examples. The evaluation of semantics is to check
whether the semantics of the graph matches the
reasoning process properly.

5.2 Generative Baseline

In line with the previous work(Saha et al., 2021,
2022), we generate the explanation graphs in a
post-hoc manner, with a condition of the belief,
the argument, and the predicted stance. In order
to objectively compare the results of graph gener-
ation, the part of stance prediction in all our ex-
periments is finished by an identical RoBERTa-
based model. The first baseline model is BART,

our backbone of EG3P. Furthermore, we also im-
plement other pre-training methods that have been
introduced in recent studies(Saxena et al., 2022)
on knowledge graph question answering (KGQA),
such as link prediction and tail prediction. Link
prediction is a common task in knowledge graph
embedding(KGE) learning. Given two parts of a
knowledge triple (head+relation, head+tail, or re-
lation+tail), the model is required to complete the
missing element of the input. For the tail prediction
task, the training process is basically the same as
link prediction, but the model only needs to predict
the tail entity in all instances, which is more similar
to the process of step-by-step reasoning from front
to back. In order to facilitate the model’s under-
standing of the task, we add a prompt before the
input triple: “Predict the head/relation/tail: xxx”.
The input sample of the two tasks is shown in Ap-
pendix B.

5.3 Fine-tuning on Downstream Datasets
For the fine-tuning process on ExplaGraphs, we
follow the pipeline outlined in previous work as
described above. For the fine-tuning process on
CommonsenseQA and OpenbookQA, we did not
use the model to generate the graph in zero-shot
style, because we found that BART-Large with-
out any learning process can hardly generate an
acceptable graph in the comparison tests. To im-
prove comparability, we fine-tune the model with
the ExplaGraphs dataset before generating expla-
nation graphs on other datasets in different groups
of experiments. All the input samples are shown in
Appendix B.

5.4 Experimental Setup
The experiments include three parts: the construc-
tion of the corpus, the process of pre-training, and
the process of fine-tuning.

For corpus construction, we first synthesize 20
million reasoning graph instances and construct
three questions of varying difficulty for each in-
stance. Then, the “query-graph” pairs in three diffi-
culty levels are mixed in equal proportion, ensuring
that the total amount of data meets the experimental
requirements. Except for experiments discussing
the effect of the corpus scale, the scale of the corpus
in other experiments is set to 0.3 million.

For the pre-training process, we utilize the
BART-Large(Lewis et al., 2020) model in
fairseq(Ott et al., 2019), a widely-employed
seq2seq model that follows the standard trans-
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former structure, as the backbone of our model.
The pre-training process runs up to 50000 steps
with a learning rate of 3e-5, a dropout rate of 10%,
and a max length of 1536.

For the process of fine-tuning, we build the clas-
sification model based on RoBERTa-Large(Liu
et al., 2019), with a batch size of 32, an initial
learning rate of 1e-5 with linear decay, a weight
decay of 0.1, and a maximum input length of 128.
The model is trained for 10 epochs. Then the fine-
tuning step on ExplaGraphs for graph generation
runs up to 10000 steps with a batch size of 8 and
a max length of input and output of 150, keeping
other parameters the same as the pre-training pro-
cess. The whole training process is conducted on
Nvidia-A100-40G.

6 Results and Analysis

6.1 Results on ExplaGraphs

In this section, we compare the result of our EG3P
with other baselines introduced in Sec 5.2 and some
released works on the same task. Following prior
work (Saha et al., 2022), we report all the metrics
on the ExplaGraphs dataset.

Effect of “Text-to-Graph” pre-training method
In this part, we report all the evaluation results on
the dev set. As depicted in Table 1, our pre-training
method in EG3P improves StCA by 12.56% and
SeCA by 11.3% compared to BART-Large without
“text-to-graph” pre-training, indicating our method
could significantly enhance the model’s capability
for graph generation in terms of both structure and
semantic understanding.

Furthermore, based on the same backbone
model, the pre-training method in EG3P also out-
performs other listed pre-training methods in the
table across all the metrics, as evident in Table 1,
which demonstrates the efficacy of our modeling
approach. The gains on the task of link predic-
tion and tail prediction are not relatively significant
on structural correctness and semantic correctness,
which means the aligned input pair of “text-graph”
and the output of graph is crucial for the model to
learn the mapping between natural language text
and structural graph. The case study is discussed
in Appendix E.1.

Comparison with other works In this part, we
compare our results with some other representative
results on the ExplaGraphs dataset.

• Saha et al. (2022) proposes some methods to
construct structurally and semantically posi-
tive and negative graphs and leverages these
graphs in different contrastive learning mod-
els. In order to make a fair comparison, we
take the results of this method on BART-
Large.

• COCOGEN(Madaan et al., 2022) treats the
structured commonsense reasoning task as a
code generation task and uses a code gener-
ation language model CODEX(Chen et al.,
2021) to generate the graph with few-shot
prompting. There are also other results of
the same method on different natural lan-
guage large language models(LLMs), such
as CURIE and DAVINCI. We only compare
with the best result of them.

The results of the test set are summarized in
Table 1. The comparison demonstrates that our
proposed method, EG3P, outperforms both of the
aforementioned methods, particularly in terms of
semantic correctness accuracy (SeCA). The results
show that the pre-training method on aligned “text-
graph” pair could help the model learn the mapping
between natural language and graphs better than
training on a single downstream task. Besides, spe-
cific pre-training methods could also endow small
models with a better ability of semantic understand-
ing on the specific task (graph generation here) than
large language models.

6.2 Other Analysis
Effect of the difficulty of the query In EG3P
we construct a query in three different difficulties
and mix the corpus in the main experiment as multi-
task training. Table 2 shows the results on different
queries. It is significant that the utilization of a
mixed corpus leads to a more substantial improve-
ment than training on a single sub-task alone. Due
to the same graph generation form, the structural
accuracy(StCA) of all sub-task is improved signifi-
cantly; the benefits brought by the mixed corpus are
mainly reflected in the semantic accuracy(SeCA).

A comparison of different sub-tasks reveals that
the results for queries of normal difficulty are the
most favorable. The queries in normal difficulty
retain the form of a natural language compared
to easy and retain more intermediate reasoning in-
formation compared to hard. This suggests that,
in the training process based on a large-scale syn-
thetic corpus, the closer the training task is to the

9921



SA↑ StCA↑ SeCA↑ G-BS↑ GED↓ EA↑
BART-Base(Saha et al., 2021)♢ 86.2 21.6 11.0 16.1 0.85 10.3
BART-Large♢ 88.19 36.43 26.13 28.42 0.74 20.77

+ Link Prediction♢ 88.19 40.45 31.82 28.39 0.71 14.63
+ Tail Prediction♢ 88.19 41.21 32.04 29.15 0.71 22.54
+ EG3P♢ 88.19 48.99 37.43 38.73 0.65 25.03

BART-Large(Saha et al., 2021)⋆ 87.2 34.20 22.20 28.90 0.75 20.00
Contrastive Learning (Saha et al., 2022)⋆ 87.2 40.7 26.30 31.30 0.71 22.30
COCOGEN(Madaan et al., 2022)⋆ 87.2 45.20 23.74 34.68 0.69 23.58
EG3P⋆ 87.75 50.75 31.25 43.86 0.62 27.75

Table 1: All the experimental results on the ExplaGraphs dataset. The line with ♢ is the result on the dev set. The
line with ⋆ is the result on the test set. For the detailed disclosure of all evaluation metrics, please refer to the
Appendix D.

StCA↑ SeCA↑ G-BS↑ GED↓ EA↑
BART-Large 36.43 26.13 28.42 73.84 20.77

+ Easy 47.99 33.16 38.71 66.23 14.23
+ Normal 49.5 33.66 39.56 64.85 25.1
+ Hard 45.98 27.63 36.52 67.74 23.07
+ Mixed 48.99 37.43 38.73 65.14 25.03

Table 2: The results of the model pre-trained on a different scale of the corpus. All the results are on the dev set. As
described above, we use the same classifier model in all the experiments, reaching 88.19 on SA.

downstream task and the simpler it is, the better the
model learns.

The model pre-trained on simple corpus demon-
strates superior performance in comparison to the
one based on the easy corpus. Compared to easy
difficulty, the pair of simple query and graph has
a form that is more congruent to the explanation
graph generation task. This finding aligns with pre-
vious work(Devlin et al., 2019), which suggests
that pre-training on a task that is more closely
aligned to the downstream task leads to improved
performance. Besides, the model pre-trained on
simple corpus also outperforms the one based on
the hard corpus, despite the fact that both present
the same form. This highlights the importance
of selecting an appropriate difficulty level for pre-
training tasks in order to achieve optimal efficiency.

Effect of the scale of corpus Figure 5 shows
the results of the model pre-trained on a differ-
ent scale of the corpus. We compare the effect of
six different scales of corpus on the experiment.
Within a certain range, the experimental results
are improved by the scale of the corpus. However,
when the corpus size exceeds a certain threshold,
the marginal benefit of a larger corpus becomes

3k 30k 0.3M 3M 10M 20M
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40
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corpus size

StCA
SeCA
G-BS
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EA
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Figure 5: The results of the model pre-trained on the
different difficulties of the corpus. We compared the 5
metrics for generated graphs. All the experiments use
the same classifier model, reaching 88.19 on SA on the
dev set.

increasingly diminishing, likely due to the limita-
tions of computational resources and insufficient
training on a large-scale corpus. Considering all
factors, we select a corpus size of 0.3M as the opti-
mal setting for our main experiments, as it yields
the best results under the current conditions.
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w/o pre-training w/ pre-training
CommonsenseQA 29.0 39.5
OpenbookQA 34.0 46.0

Table 3: The semantic accuracy of the graphs generated
on CommonsenseQA and OpenbookQA by human eval-
uation. w/(w/o) pre-training means with(without) the
step of "text-to-graph" pre-training.

6.3 Results on other reasoning datasets

Table 3 shows the results of human evalua-
tion on CommonsenseQA(CSQA) and Open-
bookQA(OBQA). The “text-to-graph” pre-training
step improves the semantic accuracy by 10.5 on
CSQA and improves the semantic accuracy by
12.0 on OBQA. The experimental results show that
the model after “text-to-graph” pre-training is able
to generate a fairly exciting explanation graph on
other downstream tasks as well. Additionally, this
serves as evidence that our methodology enhances
the model’s capacity for generalization. Observing
the generated graph, we find that the explanation
graph generated by the model without pre-training
only mechanically merely connects the question
and the answer with a short path, and even gener-
ates some meaningless relations in it. More case
study on these two datasets is discussed in Ap-
pendix E.2.

7 Related Work

7.1 Explanation generation

In the task of explanation generation, the model
takes a piece of natural language text as input and
outputs an explanation in various formats, includ-
ing (a) textual highlights using a subset of the input
text(Zaidan et al., 2007; Lei et al., 2016; Yu et al.,
2019; DeYoung et al., 2020), (b) natural language
explanation(Camburu et al., 2018; Wiegreffe et al.,
2020; Zhang et al., 2020; Inoue et al., 2021) and c)
structured explanation, including semi-structured
text explanation(Khot et al., 2019; Jhamtani and
Clark, 2020; Geva et al., 2021; Ye et al., 2020) and
structured explanation graphs(Jansen et al., 2018;
Xie et al., 2020; Saha et al., 2021). The explanation
based on natural language is more expressive and
easier understood by readers, but its evaluation pro-
cess from the perspective of reasoning is often not
standardized and rigorous(Wiegreffe and Maraso-
vić, 2021). Therefore, structured explanations have
attracted more and more attention from researchers
for they are better evaluated in terms of structure

and semantics. In this paper, we choose Expla-
Graphs(Saha et al., 2021) as the main experiment
dataset because it is constructed based on com-
monsense knowledge and comes with relatively
comprehensive automated evaluation metrics.

7.2 Structured content generation from
language models

There are many kinds of works to generate struc-
tured content through language models, one of
which is graph generation. Graph generation meth-
ods can be combined with various tasks, such as
event influence graphs generation(Tandon et al.,
2019; Madaan et al., 2020), temporal graphs gener-
ation(Rajagopal et al., 2021; Madaan and Yang,
2021), entailment trees generation(Dalvi et al.,
2021), knowledge graph completion(Li et al., 2016;
Bosselut et al., 2019) and methods for no specific
semantics attached graphs generation(Simonovsky
and Komodakis, 2018; Shi et al., 2020; Hwang
et al., 2021). In some other semantic parsing-
related tasks, there is also the generation of struc-
tured content, such as scripts generation(Sakaguchi
et al., 2021; Dalvi et al., 2019; Shi et al., 2022) and
program generation(Chen et al., 2021; Liu et al.,
2021). The graphs generated in our paper focus
on all kinds of commonsense reasoning tasks. Be-
sides, the main role of our generated graph is an
explanation of the internal commonsense reasoning
process based on the input.

8 Conclusion

In this paper, we propose a pre-training framework
EG3P for a structured explanation generation task.
Distinct from existing pre-training tasks based on
natural language text, EG3P focuses more on train-
ing mapping between natural language and graphs.
Meanwhile, due to the high cost of manually tag-
ging, we construct queries from the synthetic graph
automatically to get a large-scale corpus to support
the pre-training process. Using ExplaGraph as a
main benchmark, experimental results show that
EG3P could significantly improve the ability of
the model to generate explanations. In addition,
on the other dataset, the results of the model after
pre-training also showed a considerable improve-
ment. Our approach offers a new possibility for
addressing the challenges of limited labeled data in
natural language processing tasks.

In the future, the ability of the model to generate
explanation graphs will benefit from more datasets
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released with labels and more and more objective
evaluation indicators put forward. Additionally,
while our current approach processes graphs as
strings, utilizing a model architecture that is more
suitable for graph generation may further enhance
the model’s graph generation ability.

Limitations

In our experiments, the most significant limitation
is the lack of computational resources. Experimen-
tal results in this paper and previous work(Saha
et al., 2022) have shown that a larger scale of mod-
els could lead to higher structural and semantic
accuracy of explanation graphs in this task. Con-
strained by computational resources, BART-Large
is the largest model on which we can perform the
complete process of experiments. We believe that
graph generation would be better if sufficient re-
sources were available to perform synthetic data
based pre-training on a larger model. In addition,
since the evaluation metrics for graph generation
tasks are incomplete yet, we can only evaluate a
few samples manually outside of the metrics of
the dataset, which is more subjective. With more
evaluation methods with standardized processes
proposed, the results of the experiment will be eval-
uated more objectively.
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A The Distribution of Relations in the
Synthetic Corpus

Table 5 shows the distribution of the 16 relations
in the synthetic data. In the process of corpus con-
struction, the process of relation extraction is com-
pletely random, so the distribution of relations in
corpora of different sizes remains consistent. The
only difference between the groups of experiments
is the size of the corpus.

B Samples of Input and Output

Table 4 shows the samples from the synthetic data
and different datasets. The samples shown in the
upper part of the table are from the pre-training
task, and the samples shown in the lower part are
from the generation process of the downstream
dataset.

C The Templates For Converting Triples
to Natural Language

Table 6 shows all the templates we use in the exper-
iments. We construct several different templates
for a single relation to ensure the diversity after
converting and randomly select one template each
time for the expression of the triple.

D The Metrics in ExplaGraphs

The evaluation part of the main experiment directly
adopts the evaluation metrics in the ExplaGraphs
dataset. For a generated graph of the model, it must
be ensured that the result of stance prediction of the
corresponding instance is correct before entering
the subsequent evaluation steps. The metrics of the
graph mainly include the following points:

Structural Correctness Accuracy of Graphs
(StCA) The StCA metric represents the propor-
tion of all generated graphs that satisfy the struc-
tural constraints introduced following:

* The explanation graph needs to contain at least
two nodes from the belief and two nodes from
the argument. Each node has three words at
most. The relationships represented by the
edges in the graph must all come from prede-
fined relationships.

* The explanation graph must be a connected
DAG.

* The number of triples in the explanation graph
must be between 3 and 8.
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Semantic Correctness Accuracy of Graphs
(SeCA) The SeCA metric judges the relation-
ship (support, counter or incorrect) between the
belief and the generated graph. If the judgment is
consistent with the results of the stance prediction
task, we consider the graph semantically correct.
A RoBERTa-based three-class model is used dur-
ing this process, and the evaluation process for this
metric is entirely independent of structural features.

G-BERTScore (G-BS) This metric is based on
BERTScore(Zhang et al., 2019) and calculates the
similarity between standard graph and generated
one. We treat the graph as a set of edges and try to
find the best matching result between the predicted
graph and the gold one, where the similarity be-
tween the two edges is calculated according to the
F1 value of BERTScore given the best assignment.

Graph Edit Distance (GED) The edit distance
of a graph measures the difference between the
generated graph and the gold graph, specifically
referring to the number of changing operations that
need to be performed between the two, where the
changing operation refers to adding, deleting, or
replacing edges or nodes in the graph.

Edge Importance Accuracy (EA) Edge impor-
tance accuracy measures the proportion of edges
that are important enough in the generated graph.
We consider an edge important as long as remov-
ing this edge will lead to a significant drop in the
accuracy of stance prediction. This part of the eval-
uation is based on a separate RoBERTa model.

E Case Study

E.1 Case study on ExplaGraphs

Figure 6 and Figure 7 shows two examples on the
dev set generated from our model. The semantic ex-
pression of the graph after pre-training is more ac-
curate than the one without pre-training. In case 1,
the graph reaches the proper concept with a longer
reasoning path, and in case 2 the process of reason-
ing is more precise. Besides, comprehensively ob-
serving other examples, we found that our model is
more inclined to reason step by step based on com-
monsense knowledge, and the reasoning process is
less jumpy. In the golden graph, "entrapment" and
"effective" are linked directly in the in the human
labeling. However, in the generated graph, there
is an additional node "catch criminals" between
"entrapment" and "effective", refining the process.

Moreover, in case 2 and other instances, we found
the model could generate the counter relation (not
desires) which is not introduced in the pre-training
corpus. This indicates that our model can quickly
learn new relationships from small amounts of data
in downstream tasks and apply them to the graph
generation process.

E.2 Case study on CommonsenseQA and
OpenbookQA

Figure 8 shows graph generated on Common-
senseQA. Figure 9 shows graph generated on Open-
bookQA. Observing the graphs generated, we find
that our model is more inclined to generate the
graph with basic commonsense knowledge rather
than scientific knowledge or certain reasoning pro-
cesses that are obvious to humans, especially on
OpenbookQA. The model prefers to explain the
reasoning process of some scientific questions with
the relations contained in the pre-training corpus.
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Input Output
Link

Prediction
predict relation: product |
numbers

relatedto

Tail Prediction predict tail: attention | causes make_people_laugh

EG3P-Easy

eating_quickly | confetti [SEP]
[ANSWER] is a result of
eating_quickly and confetti is
used for [I_E] then [ANSWER]
is a subevent of [I_E] ?
[SEP] eating_quickly : causes
: eating_too_much | confetti
: usedfor : celebrating |
celebrating : hassubevent :
eating_too_much | celebrating
: hassubevent : fireworks |
celebrating : hassubevent :
eating_too_much

eating_quickly : causes :
eating_too_much | confetti :
usedfor : celebrating |
celebrating : hassubevent :
eating_too_much

EG3P-Normal

eating_quickly | confetti
[SEP] eating_quickly | confetti
[SEP] What eating_quickly
causes and confetti is used
for then is a subevent of
? [SEP] eating_quickly :
causes : eating_too_much
| confetti : usedfor :
celebrating | celebrating :
hassubevent : eating_too_much |
eating_quickly : usedfor : dogs
| dogs : capableof : trained |
carnival : isa : celebrating
| pub : usedfor : celebrating
| eating_too_much : causes :
getting_fat

eating_quickly : causes :
eating_too_much | confetti :
usedfor : celebrating |
celebrating : hassubevent :
eating_too_much

EG3P-Hard

eating_quickly | confetti
[SEP] What eating_quickly is
a result of with confetti
? [SEP] eating_quickly :
causes : eating_too_much
| confetti : usedfor :
celebrating | celebrating :
hassubevent : eating_too_much |
eating_quickly : hassubevent :
soup | celebrating : hassubevent
: applause | eating_too_much :
causes : gas | gas : isa : vapor

eating_quickly : causes :
eating_too_much | confetti :
usedfor : celebrating |
celebrating : hassubevent :
eating_too_much

ExplaGraphs

Belief: Compulsory voting is not
a good societal implementation.
[SEP] Argument: Compulsory
voting would allow too many
uninformed people the ability to
vote. [SEP] Stance: support

(compulsory voting; causes;
inefficient vote)(inefficient
vote; created by; uninformed
people)(uninformed people;
not used for; good societal
implementation)

CommonsenseQA

getting drunk | slurred speech
[SEP] After getting drunk people
couldn’t understand him, it was
because of his what?

(people; capable of; drunk)
(drunk; causes; slur)(slur; is
a; speech)(slur; causes; not
understand)

OpenbookQA
causes | produces | heat |
warmth on bodies [SEP] Sunlight
produces heat that causes?

(escope; synonym of; a
telescope)(a telescope; capable
of; making)(making; used for;
mailing tube)

Table 4: Input samples of all the process of generating. The samples shown in the upper part is from the task of link
prediction and tail prediction. The samples shown in the middle part of the table are from the pre-training task. The
samples shown in the lower part are from the generation process of the downstream dataset.9929



Gold graph: Without pre-training: With pre-training:

Belief: Entrapment serves to bust criminals but results in them being let go.
Argument: Entrapment is an effective way to make sure criminals are off the streets.

Stance: Counter

Entrapment

criminals off streets effective

bust criminalscriminals let go

capable of is a

synonym ofnot capable of

Entrapment

off the streets

capable of

bust criminals

used for

let go

not causes

Entrapment

catch criminals

capable of

effective

is a

off the streets

causes

bust criminals

synonym of

(a) (b) (c)

Figure 6: Example 1 on ExplaGraphs dataset.

Gold graph: Without pre-training: With pre-training:

Belief: Stem cell research should be banned. 
Argument: Stem cell research saves lives. 

Stance: Counter

Stem cell 
research

medically unique 
benefits

Saves lives

Has property

capable of

(a) (b) (c)

Social good

Is a

banned

Not desires

Stem cell 
research

Saves lives

capable of

important

Has context

banned

Not desires

Stem cell 
research

Saves lives

capable of

Good thing

is a

banned

Not desires

Figure 7: Example 2 on ExplaGraphs dataset.

Cases on CommonsenseQA：

Question: Where can you put a picture

frame when it's not hung vertically?

Answer:   table

picture

frame

Question: If I was getting drunk, and people could not 

understand me, what might I be having?

Answer:   slurred speech

hung

table

at location

at location

used for

drunk

slur

speech

not understand

people

causes

capable of

is a

causes

(a) (b)

Figure 8: Graph examples generated on CommonsenseQA dataset.

9930



Cases on OpenbookQA：

Question: Sunlight produces heat that 

causes ?

Answer:   warmth on bodies

sunlight

warmth

Question: When does electricity flow 

through a conductor ?

Answer:   when it's attached to a battery

electricity

battery

used for

heat

Is acauses

warm

synonym of

body

at location

(a) (b)

conductor

is a

flow

capable of

Figure 9: Graph examples generated on OpenbookQA dataset.

3000 0.03M 0.3M 1M 2M 3M 10M 20M Overall

is a 20.07% 19.84% 19.68% 19.71% 19.73% 19.69% 19.71% 19.70% 19.70%

at location 11.84% 12.43% 12.58% 12.53% 12.51% 12.57% 12.55% 12.55% 12.55%

part of 4.57% 4.53% 4.69% 4.68% 4.68% 4.68% 4.67% 4.67% 4.67%

capable of 6.17% 5.96% 5.92% 5.89% 5.90% 5.91% 5.91% 5.91% 5.91%

has context 3.46% 3.85% 3.79% 3.80% 3.81% 3.80% 3.81% 3.81% 3.81%

desires 1.26% 1.21% 1.30% 1.31% 1.31% 1.30% 1.31% 1.31% 1.31%

antonym 13.28% 12.75% 12.87% 12.89% 12.90% 12.91% 12.92% 12.91% 12.91%

used for 10.51% 10.14% 10.18% 10.18% 10.22% 10.19% 10.18% 10.19% 10.19%

causes 9.75% 10.45% 10.28% 10.38% 10.35% 10.35% 10.35% 10.35% 10.35%

has subevent 13.78% 13.44% 13.39% 13.35% 13.33% 13.31% 13.32% 13.31% 13.32%

has property 2.86% 2.66% 2.62% 2.63% 2.60% 2.61% 2.61% 2.61% 2.61%

receives action 0.99% 1.22% 1.15% 1.14% 1.13% 1.14% 1.13% 1.14% 1.14%

made of 0.35% 0.34% 0.38% 0.37% 0.37% 0.38% 0.37% 0.38% 0.38%

not desires 0.89% 0.95% 0.91% 0.91% 0.91% 0.91% 0.91% 0.91% 0.91%

created by 0.12% 0.16% 0.17% 0.17% 0.16% 0.17% 0.16% 0.16% 0.16%

not capable of 0.10% 0.08% 0.08% 0.08% 0.08% 0.08% 0.08% 0.09% 0.08%

Total Triples 6039 60437 604311 2014711 4028880 6042135 20145322 40289953 73191788

Table 5: Distribution of relations in corpora of different sizes.
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Relation Template

[X, antonym, Y]
X is opposite to Y
Y is opposite to X

X is the opposite of Y

[X, atlocation, Y]

X is located in Y
X , which is located in Y

X, located in Y
X has the position of Y

X, who has the position of Y
X, whose position is that of Y

X’s position is Y
X, who holds the position of Y

X holds the position of Y

[X, capableof, Y]

X is capable of Y
X can Y

X has the ability of Y
Y is the ability of X
Y can be done by X

[X, causes, Y]

X causes Y
X is a cause of Y

Y because X
Y is because of X
X has a result of Y
Y is a result of X

[X, createdby, Y]

X is created by Y
Y created X

X is made by Y
Y made X

[X, isa, Y]
X is a Y

X is also a Y
X is equal to Y

[X, desires, Y]

X desires Y
X wants Y

Y is desired by X
Y is wanted by X

[X, hassubevent, Y]
X has a subevent of Y
Y is a subevent of X

[X, partof, Y]
X is part of Y

X is a part of Y
X, which is part of Y

[X, hascontext, Y]

X has context of Y
X has a context including Y

when talking about X, we also talking about Y
X is close to Y in context

[X, hasproperty, Y]
X has a property of Y
Y is a property of X

X, with a property of Y

[X, madeof, Y]

X is made of Y
Y is used to make X

X’s material is Y
the material of X is Y

[X, notcapableof, Y]

X is not capable of Y
X can not Y

Y can’t be done by X
X doesn’t has the ability of Y

X is not able that Y
Y is not a ability of X

[X, notdesires, Y]

X doesn’t desire Y
X don’t want X
X don’t desire Y
X doesn’t want Y
X doesn’t need Y

[X, receivesaction, Y]
X receive an action of Y

Y will give an action to X
when Y, X will receive an action

[X, usedfor, Y]
X is used for Y

Y will use X

Table 6: All the templates used to converting the triple to natural language expression. X means the head concept
and Y means the tail concept.
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