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Abstract
Neural topic models have been widely used to
extract common topics across documents. Re-
cently, contrastive learning has been applied
to variational autoencoder-based neural topic
models, achieving promising results. However,
due to the limitation of the unidirectional struc-
ture of the variational autoencoder, the encoder
is enhanced with the contrastive loss instead of
the decoder, leading to a gap between model
training and evaluation. To address the limita-
tion, we propose a novel neural topic modeling
framework based on cycle adversarial training
and contrastive learning to apply contrastive
learning on the generator directly. Specifi-
cally, a self-supervised contrastive loss is pro-
posed to make the generator capture similar
topic information, which leads to better topic-
word distributions. Meanwhile, a discrimina-
tive contrastive loss is proposed to cooperate
with the self-supervised contrastive loss to bal-
ance the generation and discrimination. More-
over, based on the reconstruction ability of the
cycle generative adversarial network, a novel
data augmentation strategy is designed and ap-
plied to the topic distribution directly. Experi-
ments have been conducted on four benchmark
datasets and results show that the proposed ap-
proach outperforms competitive baselines.

1 Introduction

Topic modeling, uncovering the semantic structures
within a collection of documents, has been widely
used in various natural language processing (NLP)
tasks (Zhou et al., 2017; Yang et al., 2018, 2019;
Zhou et al., 2021; Wang et al., 2022). Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), a proba-
bilistic graphical model, is one of the most popular
topic models due to its interpretability and effec-
tiveness. However, the parameter estimation meth-
ods for LDA and its variants, such as collapsed
Gibbs sampling (Griffiths and Steyvers, 2004), are
model-specific and require specialized derivations.

∗Corresponding author.

To tackle such disadvantages, neural topic mod-
els have been proposed with a flexible training pro-
cess, which can be divided into two categories, vari-
ational autoencoder (VAE) based and generative ad-
versarial network (GAN) based. VAE-based neural
topic models regard the encoded latent vector as the
topic distribution of the input document, then em-
ploy the decoder to reconstruct the word distribu-
tion (Miao et al., 2016; Srivastava and Sutton, 2017;
Miao et al., 2017; Card et al., 2018; Wang et al.,
2021). To address the limitation that VAE-based
neural topic models cannot approximate Dirichlet
distribution precisely, Wang et al. (2019) propose
an adversarial topic model, in which the topic distri-
bution is sampled from the Dirichlet prior distribu-
tion directly and transformed into the word distribu-
tion by the generator. In order to uncover topic dis-
tribution and infer document topic simultaneously,
Bidirectional Adversarial Topic model (Wang et al.,
2020) and Topic Modeling with Cycle-consistent
Adversarial Training (Hu et al., 2020) have been
proposed in turn.

Recently, a neural topic model named CLNTM
has been proposed to apply contrastive learning
to VAE-based neural topic models (Nguyen and
Luu, 2021). A data augmentation strategy is pro-
posed to replace the salient and non-salient parts
of the document representation according to word
frequency information to construct positive and
negative examples. Although achieving promising
results, it has such a disadvantage. As shown in
Figure 1, due to the limitation of the unidirectional
structure of VAE, the encoder is optimized through
the contrastive loss, instead of the decoder which
generates topic-word distribution, leading to the
gap between model training and evaluation.

Therefore, in this paper, we consider discover-
ing topics based on cycle adversarial training and
contrastive learning. As illustrated in the lower
left part of Figure 1, by incorporating cycle ad-
versarial training, topic distribution θ and word
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Figure 1: Difference between CLNTM (Nguyen and Luu, 2021) and the proposed approach.

distribution x will be transformed bidirectionally,
breaking the structural limitations of VAE-based
neural topic models. However, it is not straight-
forward to combine contrastive learning and cycle
adversarial training. On the one hand, it is crucial
to construct applicable positive samples for topic
distributions. On the other hand, it is hard to im-
prove the learning of topic-word distribution while
maintaining the bidirectional mapping ability of
cycle adversarial training.

To overcome the above challenges, we propose
a novel Neural Topic Modeling framework based
on Adversarial training and Contrastive Learning
(NTM-ACL). A self-supervised contrastive loss
is employed to make the generator capture simi-
lar topic information between positive pairs. The
generation of topic-word distribution is improved
directly, which mitigates the gap between model
training and evaluation. Meanwhile, a discrimina-
tive contrastive loss is designed to cooperate with
supervised contrastive loss to avoid the adversarial
training being undermined by the unbalance be-
tween generation and discrimination. Moreover,
data augmentation is applied to construct positive
samples of topic distribution with the reconstruc-
tion ability of cycle generative adversarial network
structure. The minimum items in the reconstructed
distribution are substituted for corresponding items
in the original distribution, which hasn’t been ex-
plored before. We conduct extensive experiments
to fully exploit the effectiveness of our proposed
model.

In a nutshell, the main contributions of our paper
can be summarized as follows:

• We propose NTM-ACL, a novel neural topic
modeling framework where contrastive learn-

ing is directly applied to the generation of
topic-word distribution.

• We propose a novel data augmentation strat-
egy for topic distribution based on the recon-
struction ability of cycle adversarial training.
To the best knowledge, we are the first to ap-
ply data augmentation to construct positive
samples of topic distribution.

• We conduct extensive experiments and exper-
imental results show that NTM-ACL outper-
forms several competitive baselines on four
benchmark datasets.

2 Related Work

Our work is mainly related to two lines of research,
including neural topic models and contrastive learn-
ing.

2.1 Neural Topic Model

Inspired by VAE, Miao et al. (2016) proposed Neu-
ral Variational Document Model (NVDM) for text
modeling, employing Gaussian as the prior distri-
bution of latent topics. Following that, (Srivastava
and Sutton, 2017; Card et al., 2018) proposed to
approximate Dirichlet distribution with a logistic
normal prior distribution. To break the limitation of
VAE, Wang et al. (2019) proposed an Adversarial
Topic Model (ATM), which consists of a generator
and a discriminator. The generator maps the topic
distribution randomly sampled from the Dirichlet
prior distribution to the word distribution, and the
discriminator judges whether the word distribution
comes from real documents or is generated by the
generator. The two modules are trained adversari-
ally against each other. In order to realize topic min-
ing and document topic inference simultaneously,
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Figure 2: The architecture of the proposed model, NTM-ACL.

Bidirectional Adversarial Topic (BAT) (Wang et al.,
2020) constructs two-way adversarial training on
the basis of ATM. Hu et al. (2020) propose Topic
Modeling with Cycle-consistent Adversarial Train-
ing (ToMCAT) to realize the transformation be-
tween a topic distribution and word distribution,
inspired by Cycle-GAN (Zhu et al., 2017).

2.2 Contrastive Learning

Contrastive learning, as a self-supervised learn-
ing method, improves the transforming ability of
models without large-scale labeled data and be-
comes a popular technique in computer vision do-
main (Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b; Grill et al., 2020; Zhao et al., 2021).
Chen et al. (2020a) proposed SimCLR, applied
image transformations to generate two positive
samples for each image randomly, and used the
normalized temperature-scaled cross-entropy loss
(NT-Xent) as the training loss to make positive pair
close in the representation space.

With the success of contrastive learning in com-
puter vision tasks, recent studies attempt to extend
it to other domains. Khosla et al. (2020) extended
the self-supervised approach to the fully-supervised
setting, allowing models to effectively leverage
label information. Jeong and Shin (2021) pro-
posed ContraD to incorporate a contrastive learning
scheme into GAN. In natural language processing,
contrastive learning is widely applied to various
tasks, such as sentence embedding, text classifi-
cation, information extraction, and stance detec-
tion (Gao et al., 2021; Yan et al., 2021; Zhang et al.,
2022; Wu et al., 2022; Chuang et al., 2022; Liang
et al., 2022). In neural topic modeling, contrastive
learning has been used to improve the VAE-based

neural topic model by adding a contrastive objec-
tive to the training loss and taking a more principled
approach to creating positive and negative samples
(Nguyen and Luu, 2021).

3 Method

The overall architecture of the proposed NTM-
ACL is shown in Figure 2, which consists of three
parts: 1) Cycle Adversarial Training based Neu-
ral Topic Model, which includes the generator, the
encoder, and discriminators to transform topic dis-
tribution and word distribution bidirectionally; 2)
Topic-Augmented Contrastive Learning, which
includes the Self-supervised contrastive loss and
the Discriminative contrastive loss to enhance the
generator without affecting the adversarial training;
3) Reconstruct Min-Term Replacement, which is
based on reconstruction ability of cycle generative
adversarial network to create positive samples of
topic distributions.

3.1 Problem Setting

We denote corpus as D, which consists of M doc-
uments {xi}Mi=1. Given the document xi ∈ RV

where V is the vocabulary size, the first purpose
of topic modeling is topic inference, inferring the
corresponding topic distribution θi ∈ RK where
K is the number of topics.

To formalize topic modeling, we use X to stand
for word distribution set where the document is
represented in normalized Term Frequency Inverse
Document Frequency (TF-IDF), use Θ to stand for
topic distribution set where topic distribution is
sampled from a Dirichlet distribution with parame-
ter α ∈ RK .

During the training process, we need to learn two
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mapping functions, generator G and encoder E.
G transforms samples from Θ into X while E is
the reverse function of G. After G is well-trained,
the indicator vector of each topic is input to get the
topic-word distribution. This is another purpose of
topic modeling, referred as topic discovery. The
one-hot vector Ik ∈ RK denotes the indicator vec-
tor of the k-th topic, where the value at the k-th
index is 1.

3.2 Cycle Adversarial Training

Following (Hu et al., 2020), NTM-ACL consists of
two mapping functions, generator G: Θ→ X , en-
coder E: X → Θ and their related discriminators,
Dx and Dθ. They are all implemented in the struc-
ture of a three-layer multi-layer perceptron (MLP),
with a H-dim hidden layer using LeakyReLU as
an active function and batch normalization, fol-
lowed by an output layer using softmax. The cycle
adversarial training objective is composed of ad-
versarial loss and cycle consistency loss. We apply
Wasserstein GAN (WGAN) (Arjovsky et al., 2017)
adversarial losses to train G and corresponding dis-
criminator Dx:

Ladv (G,Dx) =Ex∼pdata (x) [Dx(x)]−
Eθ∼pdata (θ) [Dx(G(θ))] ,

(1)

in which G tries to generate word distributions sim-
ilar to samples in X , while Dx aims to distinguish
generated samples and real samples. G aims to
minimize this objective against an adversary Dx

that tries to maximize it.
To further constrain the relationship between ori-

gin distribution and target distribution, we addition-
ally use cycle-consistency losses, encouraging G
and E to reconstruct the origin distribution. Cycle-
consistency losses are implemented as follows:

−−→Lcyc (G,E) = Eθ∼p(θ) [∥E(G(θ))− θ∥1] ,
←−−Lcyc (G,E) = Ex∼p(x) [∥G(E(x))− x∥1] ,

(2)

where ∥·∥1 denotes L1 norm. Combining adversar-
ial loss and cycle-consistency loss, the objective of
cycle adversarial training is:

LCyc-adv = Ladv (G,Dx) + Ladv (E,Dθ)+

λ1
−−→Lcyc (G,E) + λ2

←−−Lcyc (G,E),
(3)

where λ1 and λ2 control the importance of the
losses respectively.

3.3 Data Augmentation

In this subsection, we describe how to apply data
augmentation to construct positive samples of topic
distribution, which takes advantage of the structural
features of cycle adversarial training.

Given distribution θi = {θi1, θi2, · · · , θiK}, the
reconstructed distribution θ̂i created by the cycle
of G and E is similar to the original distribution:
θi → G(θi) → E(G(θi))=θ̂i ≈ θi. Meanwhile,
we hypothesize that items with the maximum value
in θi indicate the salient topic information, which
has a significant effect on generating the word dis-
tribution x̃i through G. On the contrary, items with
the minimum values in θi have limited effects. Af-
ter making slight modifications to them, G can still
generate a word distribution similar to x̃i.

Based on the above assumptions, we propose
a data augmentation strategy for topic distribu-
tion named Reconstruct Min-Term Replacement
(RMR). For the reconstructed topic distribution
θ̂i = {θ̂i1, θ̂i2, · · · , θ̂iK}, we select the minimum
p items from it. The indices of these items in θ̂i are
denoted as {a1, a2, · · · , ap}. We replace the value
at the corresponding index in θi:

θiaj = θ̂iaj (1 ≤ j ≤ p), (4)

For the topic distribution θi, we denote its data-
augmented distribution as θ′

i. Correspondingly, the
topic distribution set Θ after data augmentation is
denoted as Θ′.

3.4 Topic-Augmented Contrastive Learning

In this subsection, we will introduce Topic-
Augmented Contrastive Learning, which enhances
G while keeping the balance of generation and dis-
crimination. This part mainly consists of two train-
ing objectives, Self-supervised contrastive loss, and
Discriminative contrastive loss.

Self-supervised contrastive loss We follow the
setting in SimCLR(Chen et al., 2020a), use Nor-
malized Temperature-Scaled Cross-Entropy Loss
(NT-Xent Loss) to calculate the Self-supervised
contrastive loss LSelfCon. LSelfCon helps improving
the mapping ability of G, capturing similar topic
information to generate better topic-word distribu-
tion. Self-supervised contrastive loss pulls word
distributions of positive topic distribution pairs to-
gether while pushing away distance between the
word distributions corresponding to the negative
sample pairs, which is shown in the upper right part
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in Figure 2. Given representation ri, its positive
sample is denoted as r+i , and the set of its nega-
tive samples is recorded as r−, the NT-Xent Loss
between ri, r+i and r− is:

l(ri, r
+
i , r

−)

= −log exp(ri · r+i /τ)
exp(ri · r+i /τ) +

∑|r−|
j=1 exp(ri · r−j /τ)

,

(5)
where τ is a temperature hyperparameter.

Assuming that topic set Θ of the current training
batch contains N samples, we get Θ′ after data
augmentation and the number of training samples is
expanded to 2N . Two training sets are transformed
to X̃ and X̃ ′ respectively. For word distribution x̃i

in X̃ , we can find its positive sample x̃′
i in X̃ ′. The

remaining 2N − 2 word distributions form the set
of negative samples, denoted as X−

i :

X−
i = [X̃ \ x̃i; X̃

′ \ x̃′
i] (6)

Based on the above description, we define LSelfCon
as follow:

LSelfCon

=
1

2N

N∑

i=1

[
l
(
x̃i, x̃

′
i, X

−
i

)
+ l

(
x̃′
i, x̃i, X

−
i

)]
,

(7)

Discriminative contrastive loss The Self-
supervised contrastive loss LSelfCon can make the
generator better perceive the similarity between
two topics, then generate topic-word distributions
that are more in line with the corresponding topics.
However, only improving the mapping ability
leads to an imbalance between generation and
discrimination, which undermines the performance
of cycle adversarial training. Therefore, we
additionally design a discriminative contrastive
loss LDisCon, leveraging category information of
real samples and generated samples to keep the
balance of generation and discrimination.

It is obvious that samples in X belong to the
real category, while samples in X̃ and X̃ ′ belong
to the generated category. For any xi in X , we
denote Ui = [X \ xi; X̃; X̃ ′]. The main purpose
of discriminative contrastive loss is not to focus
on the similarity between the positive sample pair
but make samples of the same category closer. We
define the discriminative contrastive loss between

xi and Ui as:
lDis(xi, Ui)

= − 1

|X \ xi|
∑

x+∈X\xi

log
exp(xi · x+/τ)∑|Ui|
j=1 exp(xi · xj/τ)

,

(8)
where x+ stands for samples of the same category
as xi.

For the whole batch, we define discriminative
contrastive loss LDisCon as:

LDisCon =
1

N

N∑

i=1

lSup(xi, Ui) (9)

Overall Training Objective Summing up
LCyc-adv, LSelfCon and LDisCon, the overall training
objective of our model is:

L = LCyc-adv + λ3LSelfCon + λ4LDisCon, (10)

where λ3 and λ4 control the relative significance of
Self-supervised contrastive loss and Discriminative
contrastive loss respectively. At each training itera-
tion, the parameters of G and E are updated once
after parameters of Dθ and Dx have been updated
5 times.

4 Experiments

4.1 Datasets

We conduct experiments on four datasets: NY-
Times1(NYT), Grolier2(GRL), DBPedia3(DBP)
and 20Newsgroups4(20NG). We follow the same
processing as (Wang et al., 2019). The statistics of
the processed datasets are shown in Table 1.

Dataset #Documents Vocabulary Size

NYTimes 99,992 12,604
Grolier 29,762 15,276
DBPedia 99,991 9,005
20Newsgroups 11,258 2,000

Table 1: Dataset statistics.

4.2 Baselines

We compare NTM-ACL with the following base-
lines:

1http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
2https://cs.nyu.edu/~roweis/data
3http://wikidata.dbpedia.org/develop/datasets
4http://qwone.com/~jason/20Newsgroups
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Dataset Metric
Method

LDA∗ NVDM∗ ProdLDA∗ Scholar∗ ATM∗ BAT∗ ToMCAT CLNTM NTM-ACL

NYT
C_A 0.215 0.077 0.184 0.195 0.229 0.236 0.253 0.216 0.255
C_P 0.323 -0.537 0.126 0.045 0.333 0.375 0.381 0.068 0.398
NPMI 0.081 -0.146 0.016 -0.029 0.081 0.095 0.094 -0.019 0.098

GRL
C_A 0.196 0.072 0.148 0.206 0.220 0.211 0.248 0.242 0.252
C_P 0.197 -0.519 -0.065 0.215 0.258 0.231 0.280 0.206 0.310
NPMI 0.053 -0.123 -0.019 0.059 0.066 0.061 0.082 0.061 0.091

DBP
C_A 0.276 0.139 0.265 0.301 0.293 0.236 0.334 0.319 0.340
C_P 0.352 -0.297 0.215 0.237 0.340 0.375 0.411 0.248 0.419
NPMI 0.103 -0.117 0.021 0.066 0.110 0.095 0.140 0.071 0.146

20NG
C_A 0.186 0.112 0.178 0.178 0.183 0.199 0.213 0.240 0.217
C_P 0.282 -0.063 0.071 0.212 0.257 0.296 0.323 0.350 0.327
NPMI 0.064 -0.050 -0.044 0.043 0.038 0.056 0.068 0.065 0.069

Table 2: Average topic coherence scores (C_A, C_P, and NPMI) of 5 settings of topic number (20, 30, 50, 75,
100) on 4 datasets. Bold values indicate best-performing models under corresponding settings. Results with * are
reported in (Hu et al., 2020).

• LDA (Blei et al., 2003), a probabilistic graph-
ical model, which is one of the most popular
conventional models, we used the implemen-
tation of GibbsLDA++5.

• NVDM (Miao et al., 2016), a VAE-based neu-
ral topic model that employs Gaussian prior
for topic distributions.

• ProdLDA (Srivastava and Sutton, 2017), a
VAE-based neural topic model that employs
logistic normal prior to approximate Dirichlet
prior.

• Scholar (Card et al., 2018), a VAE-based neu-
ral topic model that integrates metadata on the
basis of ProdLDA.

• ATM (Wang et al., 2019), the first GAN-based
nerual topic model.

• BAT (Wang et al., 2020), an adversarially
trained bidirectional neural topic model.

• ToMCAT (Hu et al., 2020), an adversarial
neural topic model with cycle-consistent ob-
jective.

• CLNTM (Nguyen and Luu, 2021), the first
attempt to combine contrastive learning with
a VAE-based topic model.

5http://gibbslda.sourceforge.net/

4.3 Implementation Details and Evaluation

We set the Dirichlet parameter α to 1
K . The di-

mension H of the hidden layer is set to 100. The
number of replacement items p changes dynami-
cally according to the number of topics K. To be
specific, set p =

⌊
K
4

⌋
. For the training objective,

we set λ1, λ2, λ3, and λ4 to be 2, 0.2, 1e-3, and
1e-3 respectively, aligning the magnitudes of differ-
ent losses. During training, we set the batch size to
256 for NYTimes and Grolier, 1,024 for DBPedia,
and 64 for 20Newsgroups. The training epoch is
set to 150. We use Adam optimizer to update the
model parameters, whose learning rate is 1e-4 and
the momentum term is 0.5.

Following the previous work (Wang et al., 2020),
we evaluate the performance of NTM-ACL and
baselines using topic coherence measures highly
correlated with human subjective judgments. For
each topic, we select the top 10 topic words based
on probability to represent the topic. C_A (Aletras
and Stevenson, 2013), C_P (Röder et al., 2015), and
NPMI (Aletras and Stevenson, 2013) are three topic
coherence measures we use to evaluate models. We
apply the Palmetto 6 tool to calculate coherence
scores. We refer readers to (Röder et al., 2015) for
more details of topic coherence measures.

4.4 Experiment Results

To make a robust comparison of NTM-ACL with
baselines, we set topic numbers as 20, 30, 50, 75,
and 100 on each dataset. Then we calculate the

6https://github.com/AKSW/Palmetto
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average topic coherence score of 5 settings. The
experimental results are presented in Table 2.

Compared with baselines of diverse structures,
NTM-ACL performs better on most datasets and
topic coherence measures, illustrating the effective-
ness of our proposed approach. VAE-based neural
topic models perform poorly due to the assumption
of prior. Compared with GAN-based neural topic
models, especially ToMCAT, which is also based
on cycle adversarial training, NTM-ACL achieves
State-of-Art results on all datasets, demonstrating
the effectiveness of Topic-Augmented Contrastive
Learning. CLNTM, as the first method to incor-
porate contrastive learning with topic modeling,
performs worse compared with NTM-ACL except
for the 20Newsgroups dataset in terms of C_A and
C_P score. This result illustrates that combining
contrastive learning with cycle adversarial train-
ing is more effective to improve the performance
of topic discovery by eliminating the gap between
model training and evaluation. To calculate coher-
ence scores, Palmetto uses Wikipedia as a reference
corpus, while CLNTM uses the training corpus it-
self as a reference, leading to the result reporting
difference between ours and (Nguyen and Luu,
2021).

NYTimes

Baseball Politics Music Rugby

inning voter song yard
homer republican album quarterback

run campaign music game
hit abortion band touchdown

yankees vote musical patriot

Grolier

Nobel Philosophy Nature Egypt

chemistry philosophy water egypt
physics philosopher air dynasty
chemist knowledge pressure emperor
physicist reason surface king

nobel philosophical weather empire

Table 3: Top 4 topics discovered by NTM-ACL on
NYTimes and Grolier.

Based on the C_P score, we select 4 group top-
ics with the best coherence score from 50 topic
results of NYTimes and Grolier respectively. Ev-
ery topic is represented in the form of top-5 topic
words. As shown in Table 3, the best topics of the
NYTimes are related to sports, politics, and music
news, while the topics of Grolier reflect science

and culture.

5 Analysis and Discussion

5.1 Ablation Study
We conduct an ablation study on the relative
contributions of different training objectives to
topic modeling performance. We compare our
full model with the following ablated variants:
1) Self-supervised only removes LDisCon in con-
trastive learning objective. 2) Discriminative
only removes LSelfCon in contrastive learning ob-
jective. 3) w/o Adversarial Loss removes ad-
versarial loss for word distribution and only re-
lies on contrastive learning to distinguish samples.
4) w/o Cycle-Consistency Loss removes Cycle-
consistency losses. We perform experiments on the
Grolier dataset. The results are shown in Table 4.

From Table 4, we can obtain the following obser-
vations: 1) The removal of Adversarial Loss and
Cycle-Consistency Loss both lead to performance
drops, indicating that reserving the full objective
of cycle adversarial training is a necessary condi-
tion for the proposed method. 2) Self-supervised
only creates an imbalance between generation and
discrimination, causing damage to model perfor-
mance. 3) Although Discriminative only achieves
a higher C_P score, the overall performance de-
creases compared to NTM-ACL, indicating the ef-
fectiveness of Self-supervised contrastive loss to
improve topic-word generation.

Models C_A C_P NPMI

Full model 0.252 0.310 0.091
Self-supervised only 0.215 0.294 0.085
Discriminative only 0.215 0.322 0.068
w/o Adversarial Loss 0.208 0.177 0.033
w/o Cycle-Consistency Loss 0.232 0.254 0.063

Table 4: Performance of different ablated variants com-
pared with the full model.

5.2 Different Data Augmentation Strategies
To fully exploit the effectiveness of the proposed
Reconstruct Min-Term Replacement strategy, we
design two simple data augmentation strategies for
comparison: 1) Noise Added (NA), topic distribu-
tion θi is added with the noise distribution which
is of the same dimension, randomly sampled from
a Gaussian distribution with expectation 0 and vari-
ance 0.01. 2) Zero Masked (ZM), when getting
the indices {a1, a2, · · · , ap}, the value at the corre-
sponding index is set to 0. We apply different data
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augmentation strategies and keep other experimen-
tal settings unchanged. The results are shown in
Table 5.

Dataset Metric Strategy

NA ZM RMR

NYT
C_A 0.251 0.251 0.255
C_P 0.393 0.390 0.398

NPMI 0.097 0.096 0.098

GRL
C_A 0.246 0.249 0.252
C_P 0.277 0.284 0.310

NPMI 0.079 0.083 0.091

DBP
C_A 0.334 0.338 0.340
C_P 0.418 0.413 0.419

NPMI 0.141 0.142 0.146

20NG
C_A 0.215 0.213 0.217
C_P 0.324 0.315 0.327

NPMI 0.067 0.065 0.069

Table 5: Effectiveness of different data augmentation
strategies.

It can be observed that most coherence scores in-
crease compared to GAN-based neural topic mod-
els, indicating the robustness of our contrastive
learning approach. On the other hand, the results of
NTM-ACL are the highest among the three strate-
gies, which is proved to be a more suitable strategy
for topic distribution.

5.3 Effect of Replacement Number
The number of replacement items p is one of the
important hyperparameters for the RMR. For dif-
ferent K, the number of topics, it is inappropriate
if p is set to a fixed value. In this subsection, we
compare the dynamic setting to fixed numbers (1, 5,
15) on four datasets, using C_P coherence measure.
The results are shown in Figure 3.

It can be observed that the data augmenta-
tion strategy with dynamic replacement numbers
achieves the best performance. When the number
p is too small, the difference between the positive
pair is too slight. When the number p is too large,
the similarity between positive samples cannot pro-
vide sufficient information for Self-supervised con-
trastive loss.

5.4 Training Strategy
In this subsection, we explore different training
strategies, making contrastive learning and cycle
adversarial training work respectively in different
stages of 150 epochs. We abbreviate contrastive

NYT GRL DBP 20NG
Datasets
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0.275

0.300

0.325

0.350

0.375

0.400

0.425
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P 

sc
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Figure 3: Dynamic replacement number compared with
fixed number setting (1, 5, 15).

learning as CL and cycle adversarial training as CA.
We perform experiments on the Grolier dataset with
the following strategies: 1) Disentangle, separat-
ing CL from CA. The first 50 epochs use CL/CA to
update model parameters, and the next 100 epochs
only employ CA/CL. Also, we design an alterna-
tion strategy in that CL is used to update the pa-
rameters after 5 epochs of CA only. 2) Warm up,
using CL to warm up in the first 50 epochs, the
next 100 epochs adopt the original strategy or are
divided into two stages equally, i.e. CL+CA→CA.
The results are shown in Table 6.

Training Strategy C_A C_P NPMI

Disentangle
CL→CA 0.248 0.307 0.089
CA→CL 0.245 0.280 0.083

Alternation 0.239 0.274 0.080

Warm up
CL→CL+CA 0.247 0.291 0.081

CL→CL+CA→CA 0.250 0.289 0.086

NTM-ACL 0.252 0.310 0.091

Table 6: Comparison between different training strate-
gies on Grolier.

From the results, we can observe that NTM-
ACL achieves the best performance. The result
of CL→CA is second only to the best result. Us-
ing CL after CA undermines the stable symmetric
structure, instead of further improving mapping
ability, which should be avoided in future studies.

6 Conclusion

In this paper, we have proposed NTM-ACL, a
novel topic modeling framework based on cycle
adversarial training and contrastive learning. Self-
supervised contrastive loss improves the generation
of topic-word distribution that is used for the evalu-
ation of topic modeling, while Discriminative con-
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trastive loss keeps the balance of generation and dis-
crimination. Moreover, a novel data augmentation
strategy is designed to create positive samples of
topic distributions based on the reconstruction abil-
ity of cycle adversarial training. The experimental
results show that the proposed method outperforms
competitive baselines of different structures.

Limitations

In this section, we describe the limitation of our
proposed method in terms of data augmentation and
the way to combine contrastive learning with cycle
adversarial training. First, our data augmentation
strategy relies on the reconstruction ability of cy-
cle adversarial training. We believe that more data
augmentation strategies for topic distribution will
be studied. Second, with the symmetrical structure
of cycle adversarial training, it is worth exploring
how to optimize the encoder E and generator G
through contrastive learning simultaneously. We
can extend the proposed framework to a conju-
gated structure in future work. Moreover, although
it has been explored that contrastive learning and
cycle adversarial training working synchronously
performs better, we believe that more sophisticated
training strategies will be designed to further im-
prove the performance of topic modeling.

Acknowledgement

We would like to thank the anonymous reviewers
for their valuable comments and we thank Huawei
for supporting this project. This work is funded by
the National Natural Science Foundation of China
(62176053). This work is supported by the Big
Data Computing Center of Southeast University.

References
Nikolaos Aletras and Mark Stevenson. 2013. Evaluat-

ing topic coherence using distributional semantics. In
Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013) – Long Pa-
pers, pages 13–22, Potsdam, Germany. Association
for Computational Linguistics.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In International conference on machine learning,
pages 214–223. PMLR.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Dallas Card, Chenhao Tan, and Noah A. Smith. 2018.
Neural models for documents with metadata. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2031–2040, Melbourne, Australia. As-
sociation for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020a. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Ting Chen, Simon Kornblith, Kevin Swersky, Moham-
mad Norouzi, and Geoffrey E Hinton. 2020b. Big
self-supervised models are strong semi-supervised
learners. Advances in neural information processing
systems, 33:22243–22255.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.
DiffCSE: Difference-based contrastive learning for
sentence embeddings. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4207–4218, Seattle,
United States. Association for Computational Lin-
guistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Thomas L Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
academy of Sciences, 101(suppl_1):5228–5235.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Guo, Mohammad Gheshlaghi Azar, et al.
2020. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Xuemeng Hu, Rui Wang, Deyu Zhou, and Yuxuan
Xiong. 2020. Neural topic modeling with cycle-
consistent adversarial training. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9018–9030,
Online. Association for Computational Linguistics.

Jongheon Jeong and Jinwoo Shin. 2021. Training gans
with stronger augmentations via contrastive discrimi-
nator. arXiv preprint arXiv:2103.09742.

9728

https://aclanthology.org/W13-0102
https://aclanthology.org/W13-0102
https://dl.acm.org/doi/10.5555/944919.944937
https://doi.org/10.18653/v1/P18-1189
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2020.emnlp-main.725
https://doi.org/10.18653/v1/2020.emnlp-main.725


Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673.

Bin Liang, Qinglin Zhu, Xiang Li, Min Yang, Lin Gui,
Yulan He, and Ruifeng Xu. 2022. JointCL: A joint
contrastive learning framework for zero-shot stance
detection. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 81–91, Dublin, Ire-
land. Association for Computational Linguistics.

Yishu Miao, Edward Grefenstette, and Phil Blunsom.
2017. Discovering discrete latent topics with neural
variational inference. In International Conference on
Machine Learning, pages 2410–2419. PMLR.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural
variational inference for text processing. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning, volume 48, pages 1727–1736, New
York, New York, USA. PMLR.

Thong Nguyen and Anh Tuan Luu. 2021. Contrastive
learning for neural topic model. Advances in Neural
Information Processing Systems, 34:11974–11986.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining,
WSDM ’15, pages 399–408, New York, NY, USA.
ACM.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. arXiv
preprint arXiv:1703.01488.

Rui Wang, Xuemeng Hu, Deyu Zhou, Yulan He, Yuxuan
Xiong, Chenchen Ye, and Haiyang Xu. 2020. Neural
topic modeling with bidirectional adversarial train-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
340–350, Online. Association for Computational Lin-
guistics.

Rui Wang, Deyu Zhou, and Yulan He. 2019. Atm:
Adversarial-neural topic model. Information Pro-
cessing & Management, 56(6):102098.

Tao Wang, Linhai Zhang, Chenchen Ye, Junxi Liu, and
Deyu Zhou. 2022. A novel framework based on med-
ical concept driven attention for explainable medical
code prediction via external knowledge. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 1407–1416, Dublin, Ireland.
Association for Computational Linguistics.

Yiming Wang, Ximing Li, Xiaotang Zhou, and Jihong
Ouyang. 2021. Extracting topics with simultane-
ous word co-occurrence and semantic correlation
graphs: neural topic modeling for short texts. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 18–27.

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han,
Zhongyuan Wang, and Songlin Hu. 2022. ESim-
CSE: Enhanced sample building method for con-
trastive learning of unsupervised sentence embed-
ding. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 3898–
3907, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence repre-
sentation transfer. arXiv preprint arXiv:2105.11741.

Yang Yang, ZHOU Deyu, and Yulan He. 2018. An
interpretable neural network with topical information
for relevant emotion ranking. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3423–3432.

Yang Yang, Deyu Zhou, Yulan He, and Meng Zhang.
2019. Interpretable relevant emotion ranking with
event-driven attention. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 177–187.

Yuhao Zhang, Hongji Zhu, Yongliang Wang, Nan Xu,
Xiaobo Li, and Binqiang Zhao. 2022. A contrastive
framework for learning sentence representations from
pairwise and triple-wise perspective in angular space.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4892–4903, Dublin, Ireland.
Association for Computational Linguistics.

Xiangyun Zhao, Raviteja Vemulapalli, Philip An-
drew Mansfield, Boqing Gong, Bradley Green, Lior
Shapira, and Ying Wu. 2021. Contrastive learning
for label efficient semantic segmentation. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 10623–10633.

Deyu Zhou, Jiale Yuan, and Jiasheng Si. 2021. Health
issue identification in social media based on multi-
task hierarchical neural networks with topic attention.
Artificial Intelligence in Medicine, 118:102119.

Deyu Zhou, Xuan Zhang, and Yulan He. 2017. Event ex-
traction from Twitter using non-parametric Bayesian
mixture model with word embeddings. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 808–817, Valencia,
Spain. Association for Computational Linguistics.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on
computer vision, pages 2223–2232.

9729

https://doi.org/10.18653/v1/2022.acl-long.7
https://doi.org/10.18653/v1/2022.acl-long.7
https://doi.org/10.18653/v1/2022.acl-long.7
http://proceedings.mlr.press/v48/miao16.html
http://proceedings.mlr.press/v48/miao16.html
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://arxiv.org/abs/1703.01488
https://arxiv.org/abs/1703.01488
https://doi.org/10.18653/v1/2020.acl-main.32
https://doi.org/10.18653/v1/2020.acl-main.32
https://doi.org/10.18653/v1/2020.acl-main.32
https://doi.org/10.18653/v1/2022.findings-acl.110
https://doi.org/10.18653/v1/2022.findings-acl.110
https://doi.org/10.18653/v1/2022.findings-acl.110
https://aclanthology.org/2022.coling-1.342
https://aclanthology.org/2022.coling-1.342
https://aclanthology.org/2022.coling-1.342
https://aclanthology.org/2022.coling-1.342
https://doi.org/10.18653/v1/2022.acl-long.336
https://doi.org/10.18653/v1/2022.acl-long.336
https://doi.org/10.18653/v1/2022.acl-long.336
https://aclanthology.org/E17-1076
https://aclanthology.org/E17-1076
https://aclanthology.org/E17-1076


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

We discuss the limitations of our work after the conclusion section.

�7 A2. Did you discuss any potential risks of your work?
As a research domain with a lot of practice, the topic model does not show obvious potential risks.
So we don’t discuss this aspect specifically.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4.

�3 B1. Did you cite the creators of artifacts you used?
Section 4.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 4.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Previous research extensively validated the datasets we use to ensure data security.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.

C �7 Did you run computational experiments?
Our model does not use pre-trained language models and requires few computing resources.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9730

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Our work does not involve human annotators.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9731


