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Abstract

Textual adversarial attacks can discover mod-
els” weaknesses by adding semantic-preserved
but misleading perturbations to the inputs.
The long-lasting adversarial attack-and-defense
arms race in Natural Language Processing
(NLP) is algorithm-centric, providing valuable
techniques for automatic robustness evaluation.
However, the existing practice of robustness
evaluation may exhibit issues of incomprehen-
sive evaluation, impractical evaluation protocol,
and invalid adversarial samples. In this paper,
we aim to set up a unified automatic robust-
ness evaluation framework, shifting towards
model-centric evaluation to further exploit the
advantages of adversarial attacks. To address
the above challenges, we first determine robust-
ness evaluation dimensions based on model ca-
pabilities and specify the reasonable algorithm
to generate adversarial samples for each dimen-
sion. Then we establish the evaluation protocol,
including evaluation settings and metrics, under
realistic demands. Finally, we use the pertur-
bation degree of adversarial samples to control
the sample validity. We implement a toolkit
RobTest that realizes our automatic robustness
evaluation framework. In our experiments, we
conduct a robustness evaluation of ROBERTa
models to demonstrate the effectiveness of our
evaluation framework, and further show the
rationality of each component in the frame-
work. The code will be made public at https:
//github.com/thunlp/RobTest.

1 Introduction

Pre-trained language models (PLMs) are vulnera-
ble to textual adversarial attacks that fool the mod-
els by adding semantic-preserved perturbations to
the inputs (Zhang et al., 2020). Compared to the
static evaluation benchmarks (Wang et al., 2018,
2019a), attack methods can continually generate
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Figure 1: The original evaluation pipeline. The attacker
is usually selected by intuition and practitioners get little
information from scores.

diverse adversarial samples to reveal models’ weak-
nesses, rendering a more comprehensive and rigor-
ous model evaluation. Previous work explores ad-
versarial NLP in both the attack (Gao et al., 2018a;
Alzantot et al., 2018) and the defense (Mozes et al.,
2021; Huang et al., 2019) sides, leading to a long-
lasting adversarial arms race.

The arms race is algorithm-centric. It continually
motivates stronger attack and defense methods to
explore and fix models’ weaknesses, providing use-
ful techniques for robustness evaluation. However,
existing work on model robustness evaluation nat-
urally follows the previous evaluation practice, and
doesn’t fully consider the real-world needs of ro-
bustness evaluation (Zeng et al., 2021; Wang et al.,
2021b; Goel et al., 2021) (See Figure 1). We iden-
tify three weaknesses in previous robustness evalu-
ation: (1) Relying on a single attack method (Zang
et al., 2020) or static challenging datasets (Nie
et al., 2019; Wang et al., 2021a), which can
only measure a limited number of aspects of
models’ capabilities; (2) Directly inheriting the
evaluation settings and metrics in the arms race era,
which may result in impractical evaluation (Zeng
et al., 2021; Morris et al., 2020b); (3) Designing
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invalid adversarial sample' filtering rules based
on certain thresholds (e.g., sentence similarity),
which cannot generalize to all kinds of adversarial
samples (Wang et al., 2021b; Zeng et al., 2021).

Thus, we propose to shift towards the model-
centric evaluation, which should satisfy the fol-
lowing characteristics accordingly: (1) Compre-
hensively measuring NLP models’ robustness; (2)
Establishing a reasonable evaluation protocol con-
sidering practical scenarios; (3) Filtering out in-
valid adversarial samples for reliable robustness
estimation. Given these challenges, a standard and
acknowledged framework for employing adversar-
ial attacks to automatically measure and compare
NLP models’ robustness is lacking (See Figure 7).

In this paper, we motivate a unified model-
centric automatic robustness evaluation framework
based on the foundation of the adversarial arms
race. To achieve comprehensive evaluation, we de-
fine eight robustness dimensions from top to down,
constituting a evaluation of multi-dimensional ro-
bustness towards sentence-level, word-level, and
char-level transformations. For each robustness
dimension, we specify the concrete algorithm to
generate adversarial samples. Then we set up a
reasonable evaluation protocol by specifying eval-
uation settings and metrics under realistic demands.
Finally, we rely on the perturbation degree to con-
trol the validity of generated adversarial samples
for more reliable robustness evaluation. Our intu-
ition is that adversarial samples with smaller per-
turbation degrees are more likely to be valid, which
is justified through human annotation experiments.

We implement a toolkit RobTest to realize our
robustness evaluation framework (See Figure 6).
We highlight four core features in RobTest, includ-
ing basic adversarial attack methods, robustness
report generation, general user instructions, and
adversarial data augmentation. In experiments, we
use RobTest to measure the robustness of ROBERTa
models (Liu et al., 2019) to demonstrate the effec-
tiveness of our evaluation framework in addressing
the core challenges. Further, we show the rational-
ity of each component in our robustness evaluation
framework through detailed analysis.

2 Model-centric Robustness Evaluation

In this section, we motivate the first model-centric
automatic robustness evaluation framework. We
first define robustness evaluation dimensions and

"Detailed explanation for validity is in Appendix A.

specify corresponding attack algorithms (Sec. 2.1).
Then we discuss the evaluation protocol under re-
alistic demands (Sec. 2.2). Finally, we provide
solutions to filter out invalid adversarial samples
for more reliable robustness evaluation (Sec. 2.3).

2.1 Robustness Evaluation Dimension

Motivation. Existing research designs adversar-
ial attacks based on observations (Le et al., 2022) or
intuitions (Li et al., 2020) and adopts the proposed
method to test the robustness of evaluated mod-
els. In this procedure, the robustness evaluation is
restricted to the specific attack method without con-
sidering samples from other potential distributions.
We argue that considering only one single dimen-
sion cannot comprehensively describe the models’
robustness (See Sec. 4.3 for verification).

Selection Criteria. We build our model-centric
robustness evaluation framework based on the foun-
dation of adversarial NLP but aim to cover a more
comprehensive set of robustness dimensions. We
integrate previous adversarial attack methods in
a systematic way. We focus on task-agnostic ro-
bustness dimensions?, and define them from top
to down (See Table 1). The selection criteria of
robustness evaluation dimensions and attack meth-
ods are: (1) Important and practical: Methods
that can reasonably simulate common inputs from
real-world users or attackers; (2) Representative:
Methods that have been studied for a long time in
the adversarial arms race stage and have many ho-
mogeneous counterparts; (3) Diversified: Methods
that explore various aspects of model capabilities.

Note that we don’t consider the “imperceptible
perturbations” requirement in the selection of ro-
bustness dimensions, although previous work re-
peatably emphasizes this requirement (Goodfellow
et al., 2014; Ren et al., 2019; Zang et al., 2020).
We give our justification in Appendix B.

Dimensions. We start from a high-level catego-
rization, considering char-level, word-level, and
sentence-level transformations, differing in the per-
turbation granularity (See Table 1). Char-level
transformations add perturbations to characters in
the word units. We include the following dimen-
sions in our framework: (1) Typo (Li et al., 2018;
Eger and Benz, 2020) considers five basic opera-
tions to add typos in the inputs, including randomly

*Task-specific robustness dimensions are also essential,
and we leave it for future work.
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Granularity Dimension General? Malicious? Case
Typo Yes Yes I watch a smart, swet adn playful romantic comedy.
Char-level Glyph Yes Yes I watch a Smart, sweet and playful romaritic comedy.
Phonetic Yes Yes I wotch a smart, sweet and playful romentic comedy.
Synonym Yes No I watch a smart, sweet and naughty romantic comedy.
Word-level Contextual Yes No We watch a smart, sweet and playful romantic teleplay.
Inflection Yes No I watched a smart, sweet and playful romantic comedies.
Syntax Yes No In my eyes will be a witty, sweet romantic comedy.
Sentence-level . . N . .
Distraction No Yes I watch a smart, sweet and playful romantic comedy. True is not False.

Table 1: The robustness dimensions included in our framework. We also attach general and malicious robustness
tags to each dimension. The original sentence is “I watch a smart, sweet and playful romantic comedy.”

delete, insert, replace, swap, or repeat one charac-
ter; (2) Glyph (Li et al., 2018; Eger et al., 2019)
replaces characters with visually-similar ones; (3)
Phonetic (Le et al., 2022) replaces characters but
makes the whole word sound similar to the origin.
Word-level transformations modify word units as
a whole. We include the following dimensions
in our framework: (1) Synonym (Ren et al., 2019;
Zang et al., 2020) replaces words with their synony-
mous substitutes according to external knowledge
sources. We consider WordNet (Miller, 1995) and
HowNet (Dong and Dong, 2003) in our implemen-
tation; (2) Contextual (Li et al., 2020; Garg and
Ramakrishnan, 2020) replaces words with their
context-similar substitutes, which are generated
by masked language models; (3) Inflection (Tan
et al., 2020) perturbs the inflectional morphology
of words. Sentence-level transformations generate
adversarial samples directly from the entire original
sentences. We include the following dimensions
in our framework: (1) Syntax (Iyyer et al., 2018;
Huang and Chang, 2021; Sun et al., 2021) trans-
forms the syntactic patterns of original samples;
(2) Distraction (Naik et al., 2018; Ribeiro et al.,
2020; Chen et al., 2022a) appends some irrelevant
contents to the end of sentences.

Malicious & General Tags. For each robustness
dimension, we also attach the general or malicious
tag to characterize the intended simulated agents.
The general (malicious) tag indicates that the gen-
erated samples mainly come from benign users
(malicious attackers). For example, Synonym and
Distraction are representative types of general and
malicious dimensions respectively. Note that we
attach both tags to three char-level transformations
since both benign users and malicious attackers can
produce these kinds of samples.

2.2 Evaluation Protocol

Motivation. Previous work in adversarial NLP
naturally follows the early attempts (Szegedy et al.,

2013; Goodfellow et al., 2014; Liang et al., 2017;
Gao et al., 2018a) to establish the evaluation proto-
col. However, Chen et al. (2022b) categorize and
summarize four different roles of textual adversar-
ial samples, and argue for a different evaluating
protocol for each role. In our framework, we re-
consider the robustness evaluation protocol when
employing adversarial attack methods for model
evaluation. We first describe the evaluation setting,
and then the evaluation metrics in our framework.

Evaluation Setting (available information from
evaluated models). Most existing attack meth-
ods assume the accessibility to confidence scores
only (Alzantot et al., 2018; Ren et al., 2019; Zang
et al., 2020; Li et al., 2020; Chen et al., 2021).
We acknowledge the rationality of this assump-
tion since the size of models may become too
large nowadays (Radford et al., 2019; Brown et al.,
2020), resulting in inefficient evaluation if also
requiring the gradients information for adversar-
ial samples generation (Goodfellow et al., 2014).
However, in practice, we as practitioners mostly
have all access to the evaluated models, including
the parameters and gradient information, for better
robustness evaluation.

Thus, we implement three evaluation settings
in our framework, assuming different available in-
formation from evaluated models. The settings in-
clude rule-based, score-based, and gradient-based
attacks. Rule-based attacks don’t assume any infor-
mation from the evaluated models and generate ad-
versarial samples based on pre-defined rules. Score-
based and gradient-based attacks assume access to
the confidence scores and gradients information re-
spectively from evaluated models for more rigorous
evaluation. They first compute the saliency maps
that give the importance scores to each word for
samples and then perform selective perturbations
based on the scores. Specifically, for score-based
attacks, we employ the difference in confidence
scores when iteratively masking each word as the
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Original

I love the way that it took chances and really asks you to take these great leaps of faith and pays off.

BERT-Attack (Li et al., 2020)

I hate the way that it took chances and jesus asking you to take these grand leaps of faith and pays off.

GA (Alzantot et al., 2018)

I screw the way that it read chances and really asks you to remove these great leaps of faith and pays off.

Textbugger (Li et al., 2018)

I lve the way that it took cances and really a sks you to take these grwat lezps of fith and pay5 off.

Table 2: Cases of invalid adversarial samples crafted by three popular attack methods. The original label is positive.

important score for that word. For gradient-based
attacks, we employ integrated gradient (IG) (Sun-
dararajan et al., 2017) to compute the saliency map.
IG computes the average gradient along the linear
path of varying the input from a baseline value to
itself. Besides, we use greedy search since it can
achieve satisfying performance within a reasonable
time (Yoo et al., 2020).

Evaluation Metrics. Most previous work consid-
ers the “is robust” problem (Li et al., 2020, 2021;
Chen et al., 2021). They generate adversarial sam-
ples for each original sample and test if at least
one of them can successfully attack the evaluated
models. Then the final score is computed as the
percentage of samples that are not attacked success-
fully. This is the worst performance estimation,
requiring models to be robust to all potential adver-
sarial samples in order to score. In our framework,
we introduce the average performance estimation
for a more comprehensive robustness evaluation.
Specifically, for each original sample, we compute
the percentage of cases that models can correctly
classify among all potential adversarial samples.
Then we average over all original samples to get
the average performance estimation score.

2.3 Reliable Robustness Evaluation

Motivation. Previous work chases for higher at-
tack success rate, while the validity of adversarial
samples may be sacrificed®. The consequence of
this practice is unreliable and inaccurate robust-
ness evaluation. We showcase adversarial samples
crafted by three popular methods on SST-2 (Socher
et al., 2013) in Table 2. While all samples suc-
cessfully flip the predictive label, they are not
good choices for robustness evaluation because the
ground truth label is changed (e.g., BERT-Attack)
or the meaning of the original sentence is changed
(e.g., GA, Textbugger). Morris et al. (2020a); Wang
et al. (2021a); Hauser et al. (2021) show that there
are many such invalid cases in adversarial samples
that successfully mislead models’ predictions. We
further conduct a human evaluation to support this

3We give a detailed explanation for adversarial samples
validity in Appendix A.

conclusion. We hire annotators to evaluate adver-
sarial samples validity of three representative attack
methods, namely contextual-based (Li et al., 2020),
synonym-based (Zang et al., 2020), and typo-based
attacks (Karpukhin et al., 2019). The results show
that on average only 25.5%, 20.0%, and 31.5%
generated samples are valid. Thus, if directly em-
ploying original adversarial samples for robustness
evaluation, the results are unreliable and don’t con-
vey too much useful information to practitioners.

Potential Solutions. For reliable robustness eval-
uation, we need to consider how to ensure the va-
lidity of constructed adversarial samples. We can
approach this problem in two different ways: (1)
Verify generated adversarial samples; (2) Incorpo-
rating the validity criterion in robustness evaluation.
All existing work focuses on verification. For ex-
ample, in the implementation of OpenAttack (Zeng
et al., 2021) and TextFlint (Wang et al., 2021b),
an embedding similarity threshold is set for filter-
ing adversarial samples. However, we argue that a
unified sample selection standard without con-
sidering the specific trait of the attack method
can not perform effective filtering. For example,
consider the adversarial sample crafted by adding
typos: “I love the way that it took chancs and really
asks you to takke these great leaps of faith and pays
off.” This sample may be filtered out by the simi-
larity or perplexity threshold due to its unnatural
expression. However, it well simulates the input
from real-world users and retains the original mean-
ing, thus should be considered in the evaluation.

Our Method. In our framework, we consider in-
corporating the validity criterion into robustness
evaluation. We hold a basic intuition that there is
an inverse correlation between the perturbation de-
gree and the validity of adversarial samples. Thus,
we rely on the perturbation degree to measure the
adversarial sample validity. Note that the pertur-
bation degree is defined according to the concrete
transformation level*. We justify our intuition and
demonstrate the superiority of this filtering strategy
compared to previous heuristic rules (e.g., grammar

*The computational details are described in Appendix C.
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error, sentence similarity, perplexity) in Sec. 4.3.
We propose to measure models’ robustness
under the specific attack method in various per-
turbation degrees and compute a robustness
score for each degree. The robustness score is the
model’s worst performance estimation or average
performance estimation. We put more emphasis
on the robustness scores computed at lower per-
turbation degrees® and employ the exponentially
weighted moving average (Hunter, 1986) to com-
pute the final score for each robustness dimension.
Formally, we use 61, 02, ..., 8,, to denote robustness
scores computed at n perturbation degrees from
high to low. Set V; = 6;. To compute the final
robustness score V,,:
Vt:B*thl"i'(l_B)*et? t:27"'7n7 (1)
where 3 controls the weights on scores computed
at different degrees. Empirically, it should be cho-
sen depending on the risk level of the considered
task, and smaller 8 will more emphasize the im-
portance of evaluation on high-perturbed samples,
which is essential for high-stake applications. In
our framework, we set $=0.5 for demonstration.

3 RobTest

We implement an automatic robustness evaluation
toolkit named RobTest to realize our proposed
framework. We highlight four features of RobTest.

Basic Adversarial Attack Methods. We imple-
ment eight attack methods, corresponding to eight
robustness evaluation dimensions in our framework.
We also include three attack types that assume dif-
ferent information available from evaluated mod-
els, namely rule-based, score-based, and gradient-
based attacks. RobTest allows practitioners to cus-
tomize evaluated models and datasets and design
new attack methods to test specified robustness
dimensions. Also, it supports the multi-process
running of adversarial attacks for efficiency.

Robustness Report. RobTest provides compre-
hensive robustness reports for evaluated models.
See Figure 2 and Appendix G for examples of
single-model robustness reports. See Figure 3 and
Appendix H for examples of the robustness com-
parison of the two models. We further discuss the
details of robustness reports in Sec. 4.

>Note that the perturbation degree computation methods
are different for different dimensions (See Appendix C).

General Instructions. Existing toolkits that im-
plement various attack methods don’t provide de-
tailed guidance on how to conduct robustness evalu-
ation (Morris et al., 2020b; Zeng et al., 2021; Wang
et al., 2021b). In RobTest, we provide general
instructions for practitioners. Two kinds of instruc-
tions are included: (1) How to select appropriate
robustness dimensions to evaluate, and which ac-
cessibility (e.g., score-based) should be considered.
We introduce detailed descriptions of all robustness
dimensions in RobTest, including the real-world
distributions they consider; (2) How to understand
the robustness report. We give detailed explana-
tions for the figures and tables in the report.

Data Augmentation. Practitioners may identify
several weak robustness dimensions of evaluated
models. RobTest supports generating adversarial
samples under the specified perturbation degree for
data augmentation to improve the robustness.

4 Experiment

We conduct experiments to demonstrate the effec-
tiveness of our automatic robustness evaluation
framework using RobTest. We aim to show how
our framework fulfills the characteristics of model-
centric robustness evaluation®.

4.1 Experimental Setting

Dataset and Evaluated Model. In our exper-
iments, we choose the general, common, and
application-driven tasks that our task-agnostic ro-
bustness dimensions can be applied to’. We con-
sider sentiment analysis, news classification, and
hate-speech detection tasks. We choose SST-
2 (Socher et al., 2013), AG’s News (Zhang et al.,
2015), and Jigsaw® as evaluation datasets. We
choose ROBERTa-base and RoBERTa-large (Liu
et al., 2019) as evaluated models.

Evaluation Setting. For each dataset, we sample
1,000 samples from the test set for experiments
and generate at least 100 testing cases for each
sample under each perturbation degree. In pilot
experiments, we found no advantage of employing
gradient information to generate saliency maps, and

®We leave the detailed evaluation and analysis of various
model architectures and robustness-enhanced algorithms for
future work.

"Task-specific robustness dimensions can be designed for
certain tasks, e.g., name entity robustness for reading compre-
hension (Yan et al., 2021). We leave it for future work.

https://www.kaggle.com/c/jigsaw-toxi
c-comment-classification-challenge
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Figure 2: Example of one single page of the robustness report of ROBERTa-base on SST-2, regarding the Typo
(Malicious) dimension. The full report is shown in Figure 10. We use Rule- and Score- to denote two evaluation
settings, and use -Average and -Worst to denote two metrics.
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Figure 3: Radar map to compare the robustness of
RoBERTa-base and -large considering all dimensions
on SST-2. We use Base- and Large- to denote two
models, and other denotations are the same as Figure 2.

thus we only consider rule-based and score-based
accessibility in experiments. Further research is
needed for more effective utilization of gradients.

4.2 Robustness Evaluation

We consider two kinds of robustness evaluation:
(1) Robustness evaluation of a given model; (2)
Robustness comparison of two models. This can be
easily extended to three or more models included.

Single-model Robustness Evaluation. We gen-
erate robustness evaluation reports for given eval-
uated models. Figure 2 shows an example of one
single page of the robustness report of ROBERTa-
base on SST-2, considering the Typo (Malicious)
dimension. Full reports for all datasets and models
are in Appendix G. For each dimension, we show
the robustness score computed at each robustness
level considering two evaluation settings and two
metrics, in both figures and the table. We can ob-
serve that on average, the model can tolerate inputs

with very small perturbation degrees (e.g., 0.05),
but its performance degrades significantly in the
worst performance estimation. This indicates that
the model will be misled if malicious attackers try
a little longer, even in small perturbation degrees.
The final robustness scores for this dimension are
derived by averaging over all robustness scores us-
ing Eq. 1, which will serve as overall estimations of
the model’s robustness in this dimension consider-
ing the validity criterion. Also, we adopt the radar
map to record the final robustness scores for all
robustness dimensions, from which we can easily
observe which dimension models fail. For example,
we can observe from the radar map in Figure 2 that
RoBERTa-base fails frequently when users use
various syntactic structures in their expressions
or char-level transformations have been adopted
for malicious attacks. The implications are: (1)
Practitioners should improve the model’s capacity
to capture syntax patterns or have extra mecha-
nisms to deal with inputs with complex syntactic
structures; (2) Practitioners should avoid deploying
the model on security-related applications (e.g.,
hate-speech detection) to prevent hidden dangers.

Robustness Comparison. We can also gener-
ate reports to compare the two models’ robust-
ness. Figure 3 shows the core part of the report
that compares the robustness of RoBERTa-base
and RoBERTa-large considering all dimensions
on SST-2. We also employ radar maps to clearly
show the robustness gap between the two models.
The full report is in Appendix H for demonstra-
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Figure 4: Comprehensive results of RoOBERTa-base (Base) and RoBERTa-large (Large) on SST-2. We consider
rule-based (Rule) and score-based (Score) attacks, and worst (Worst) and average (Average) performance estimation.

tion. We observe that RoOBERTa-large consistently
shows better robustness in all dimensions com-
pared to RoBERTa-base. This can be attributed
to two potential factors: a) Larger models can gen-
eralize better beyond simple patterns (e.g., spu-
rious correlations) in the in-distribution training
dataset, thus more robust to distribution shifts (Tu
et al., 2020); b) Given the strong correlation be-
tween in-distribution and out-of-distribution per-
formance (Miller et al., 2021), the robustness of
larger models can be partially explained by better
performance on in-distribution data. The quantifi-
cation of these two factors is left for future work
since the experiments in this paper are mainly for
demonstration purposes.

4.3 Analysis of Framework Components

In this section, we analyze and prove the rationality
of each component in our framework, including
eight robustness dimensions, evaluation protocol,
and our method to tackle the validity of adversarial
samples. For better demonstrations, we aggregate
the results of eight dimensions considering two
model sizes, two evaluation settings, and two met-
rics. The results on SST-2 are in Figure 4. The re-
sults on AG’s News and Jigsaw are in Appendix E.

Robustness Dimensions. We observe that mod-
els exhibit different capacities across all robustness

dimensions, evidenced by substantially different
robustness scores. This indicates the insufficiency
in previous practice that adopts one single attack
method to evaluate models’ robustness. For ex-
ample, only showing models’ robustness to mor-
phology inflection doesn’t guarantee the same ro-
bustness transfer to inputs containing typos. Thus,
a multi-dimensional robustness evaluation in our
framework is needed to reveal models’ vulnera-
bility in various circumstances, ensuring a more
comprehensive evaluation of model capacities.

Evaluation Protocol. Our evaluation protocol in-
cludes two evaluation metrics (average and worst
performance estimation) and two evaluation set-
tings (rule-based and score-based). We show that
the average performance estimation is in comple-
mentary to the worst performance estimation, show-
ing the models’ average success rates on the corre-
sponding robustness dimension. Thus, it can better
reflect models’ capacities since most attack meth-
ods can reduce models’ worst performance esti-
mation to near zero in high perturbation degrees,
making it hard to compare different models.

Also, score-based and rule-based attacks con-
sider different evaluation settings. The score-based
attacks are more effective than rule-based attacks
considering average performance estimation. But
the opposite is true considering worst performance
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estimation, probably because score-based attacks
only perturb certain important words, limiting the
search space. Thus, incorporating these two evalu-
ation settings is essential in robustness evaluation.

Invalid Adversarial Samples Filtering. We ob-
serve that robustness scores drop along with the
increase in the perturbation degrees across differ-
ent models, datasets, and attack methods. However,
as we argue, the robustness scores in higher pertur-
bation degrees underestimate models’ robustness
since many successful but invalid adversarial sam-
ples exist. Thus, directly looking into the robust-
ness curves without considering the influence of
perturbation degrees on validity is unreliable.

We justify our solution of incorporating the va-
lidity criterion into the robustness estimation pro-
cess. The basic intuition is that adversarial samples
with higher perturbation degrees are more likely to
become invalid. We conduct human annotation to
verify it (See Table 3). The annotation details are in
Appendix D. We can observe that (1) attack meth-
ods have a large impact on sample validity, and (2)
our intuition is justifiable since mostly a larger per-
turbation degree substantially harms the validity.

Also, we compare with previous heuristic fil-
tering rules based on grammar errors (Gram-
mar) (Zang et al., 2020; Chen et al., 2021), sen-
tence similarity (USE) (Li et al., 2020; Morris et al.,
2020a; Wang et al., 2021b; Zeng et al., 2021), and
perplexity (Perplexity) (Qi et al., 2021). We com-
pute predictive validity scores for each adversar-
ial sample based on the filtering rules (e.g., the
perplexity rule will assign low validity scores to
samples with high perplexity). For each filtering
rule, we divide generated adversarial samples into
five validity levels based on their validity scores
and compute the average human annotated validity
score of samples in five levels respectively (See
Figure 5). Our method based on the perturbation
degree better aligns with the ideal trend, while pre-
vious filtering methods show inconsistent trends
and cannot effectively distinguish invalid cases.

5 Related Work

Standard evaluation benchmarks (Wang et al., 2018,
2019a) follow the Independently Identical Distri-
bution hypothesis that assumes the training and
testing data come from the same distribution. How-
ever, there is no such guarantee in practice, mo-
tivating the requirement to evaluate models’ ro-
bustness beyond the standard accuracy. Various

85

USE

—e— Grammar
Perplexity

—e— Degree

Annotated Validity Score

2 3 4 5
Predicted Validity Level

Figure 5: Results of the validity prediction. An ideal
prediction should ensure the annotation validity score is
proportional to the predicted validity level.

approaches have been proposed to simulate distri-
bution shifts to construct static robustness evalua-
tion benchmarks, including stress test (Naik et al.,
2018), identifying and utilizing spurious correla-
tions (McCoy et al., 2019; Zhang et al., 2019), and
domain shifts construction (Hendrycks et al., 2020;
Yang et al., 2022). Also, adversarial samples have
been involved in robustness benchmarks, including
machine-generated (Wang et al., 2021a) or human-
in-the-loop generated (Wallace et al., 2019, 2021;
Kiela et al., 2021) samples.

Compared to static benchmarks, we motivate to
employ automatic attack methods to evaluate mod-
els’ robustness dynamically, which is more com-
prehensive and rigorous. Our work is built upon
the long-lasting attack-and-defense arms race in
adversarial NLP (Wang et al., 2019b; Zhang et al.,
2020), mainly absorbing various attack methods.
The attack methods can be roughly categorized into
char-level, word-level, and sentence-level attacks,
corresponding to the hierarchy in our framework.
Char-level attacks perturb the texts in the finest
granularity, including deleting, inserting, replacing,
swapping, and repeating characters (Karpukhin
et al., 2019; Gao et al.,, 2018b). Word-level
attacks search for an optimal solution for word
substitutions, using external knowledge bases
(Ren et al., 2019; Zang et al., 2020) or contextual
information (Li et al., 2020; Garg and Ramakr-
ishnan, 2020; Yuan et al., 2021). Sentence-level
attacks transform the text considering syntactic
patterns (Iyyer et al., 2018), text styles (Qi et al.,
2021), and domains (Wang et al., 2020).

6 Conclusion

We present a unified framework, providing solu-
tions to three core challenges in automatic robust-
ness evaluation. We give a further discussion about
robustness evaluation in Appendix F. In the future,
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we will selectively include more robustness dimen-
sions in our framework.

Limitation

Although we explore diverse robustness dimen-
sions, there are more possible dimensions to cover,
and we highly encourage future researchers to com-
plete our paradigm for more comprehensive robust-
ness evaluations. Moreover, our sample selection
strategy is base on the perturbation degree. While
being effective, this strategy is an approximate sub-
optimal solution to the problem. We leave finding
better selection strategies as future work.

Ethical Consideration

In this section, we discuss the intended use and
energy saving considered in our paper.

Intended Use. In this paper, we consider beyond
the textual attack-and-defense arms race and high-
light the role of adversarial attacks in robustness
evaluation. We design a systematic robustness eval-
uation paradigm to employ adversarial attacks for
robustness evaluation. We first summarize deficien-
cies in current works that limit the further use of
adversarial attacks in practical scenarios. Then we
propose a standardized paradigm to evaluate the
robustness of models using adversarial attacks. We
also develop an extensible toolkit to instantiate our
paradigm.

Energy Saving. We describe our experimental
details to prevent other researchers from unneces-
sary hyper-parameter adjustments and to help them
quickly reproduce our results. We will also release
all models we use in our experiments.
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Figure 6: Our robustness evaluation framework. The
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Figure 7: The current dilemma in adversarial NLP.

A Validity of Adversarial Samples

The original definition of adversarial samples in
computer vision requires the perturbation to be im-
perceptible to human (Goodfellow et al., 2014).
However in NLP, texts are made of discrete tokens,
where the changes are more apparent and difficult
to measure. Therefore, the common practice in ad-
versarial NLP recommend to evaluate the validity
of adversarial samples, which measures whether

the transformed samples preserve the same mean-
ings with the original samples, considering only the
rationale part (a.k.a., the contents that determine
the golden label). More precisely, valid adversarial
samples preserve (1) the original labels and (2) the
semantics of the rational part.

B Justification of Perceptible
Perturbations

Consider the sample crafted by adding typos: “I
love the way that it took chancs and really asks
you to takke these great leaps of faith and pays
off.” The common belief in adversarial NLP is to
make the perturbations as small as possible. So this
sample with obvious perturbations highlighted in
red will be dismissed in previous work. But in our
robustness evaluation framework, the requirement
is to employ attack methods to simulate real-world
inputs, which may contain some so-called percepti-
ble perturbations like the above example. Thus, we
include various kinds of samples with perceptible
perturbations in our framework provided that they
can simulate real-world inputs well.

C Computation of Perturbation Degree

For three transformation levels, we employ
different computational methods to measure the
perturbation degree. For char-level transformations
with the malicious tag, we adopt the relative
Levenshtein Distance. For char-level transfor-
mations with the general tag, we restrict the
algorithms to perturb less than two characters for
each word to better simulate inputs from benign
users and adopt the word modification rate to
measrue the perturbation degree. For word-level
transformations, we employ the word modification
rate. For sentence-level transformations, we
employ embedding similarity. Next, we introduce
how to compute these measurements.

Relative Edit Distance. We use relative edit dis-
tance to measure the perturbation degree of char-
level attacks with the malicious tag. Assume that
the original text has N, characters in total. We
modify n. characters in original text X and get a
new text X’. Then the Edit Distance between X
and X' is n., and the perturbation degree is:

Ne

N.

Word Modification Rate. We use word modifi-
cation rate to measure the perturbation degree of

D, =
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Figure 8: Comprehensive results of ROBERTa-base (Base) and RoBERTa-large (Large) on AG’s News. We consider
rule-based (Rule) and score-based (Score) attacks, and worst (Worst) and average (Average) performance estimation.

char-level attacks with the general tag and word-
level attacks. Assume that the original text has IV,,
words in total, and we perturb n,, words. Then the
perturbation degree is:

Specifically for char-level attack, we only con-
duct one char-level modification for each perturbed
word.

Embedding Similarity. We adopt embedding
similarity to measure the perturbation degree of
sentence-level attack. We get the sentence embed-
dings with Sentence-Transformers (Reimers and
Gurevych, 2019). Denote the sentence embedding
of original sentence x , the transformed sentence
embedding as «’, and the embedding similarity be-
tween x and x’ is calculated by cosine function
cos (x, x’). We compute the cosine similarity be-
tween two embeddings. Then the degree is:

Dg=1—cos (m,a:') .

D Human Annotation

D.1 Annotation Details

We conduct human annotation to evaluate the va-
lidity of adversarial samples generated by differ-
ent methods at different perturbation degrees. We
employ 3 human annotators, and use the voting
strategy to produce the annotation results. For each
method and perturbation degree, we sample 50
successful adversarial samples. The final score is
averaged over all 50 adversarial samples. Specif-
ically for the annotation, we show annotators the
original sample, the perturbed sample, and the orig-
inal label, and ask annotators to give a binary score.
1 represents (1) the original label is the same in the
perturbed sample, and (2) the semantic preserva-
tion of the rationale part is good. 0O indicates that
either rule is not satisfied, or the perturbed sam-
ple is hard to comprehend. Note that we don’t let
the annotators to predict the labels of the perturbed
samples and check the label consistency since valid-
ity is a higher-standard task that requires semantics
invariance.

In the annotation process, we first write an anno-
tation document containing some cases and instruc-
tions for annotators. Then we compose some cases
to test the annotators. Only qualified annotators are
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Degree | Typo-M  Glyph-M  Phonetic-M  Typo-G  Glyph-G  Phonetic-G  Synonym Contextual Inflection Syntax Distraction
0.05 0.96 1 1 1 1 1 0.44 0.46 1 - 0.98
0.1 0.94 0.98 1 1 1 1 0.32 0.44 1 0.28 0.94
0.3 0.26 0.94 1 1 1 1 0.20 0.32 1 0.06 0.94
0.5 0.06 0.86 1 0.82 1 1 0.14 0.20 0.98 0.02 0.82
0.8 0.02 0.70 0.98 0.64 1 0.98 0.14 0.06 0.98 0 0.64

Table 3: Human annotation of samples validity considering five perturbation degrees and all attack methods.

involved in the final annotation task.

D.2 Annotation Results

The human annotation results to verify the intuition
that adversarial samples with higher perturbation
degrees are more likely to become invalid are listed
in Table 3. Additionally, it is pertinent to mention
that our evaluation methodology for assessing va-
lidity can also be applied to textual backdoor learn-
ing, which faces the same evaluation challenge (Cui
etal., 2022).

E Additional Result

We list results on AG’s News in Figure 8 and results
on Jigsaw in Figure 9.

F Discussion

Chen et al. (2022b) categorizes four different roles
of textual adversarial samples. In this paper, we
consider how to employ adversarial attacks for au-
tomatic robustness evaluation, corresponding to the
defined evaluation role. In this section, we give a
further discussion about potential future directions
on adversarial NLP for robustness evaluation, con-
sidering both the attack and the defense sides.

F.1 Adversarial Attack

Complemented robustness dimension We con-
sider general and representative robustness dimen-
sions in our framework. We hope that future
work can identify more important dimensions span-
ning three transformation levels to complement the
framework. Specifically, task-specific dimensions
can be explored for more specific and comprehen-
sive evaluation.

Reliable evaluation For invalid adversarial sam-
ple filtering, we employ a heuristic weighted av-
erage in our framework. Further improvement is
needed for a more reliable robustness estimation.
The potential directions are: (1) Identify specific
metrics that are justifiable for expected valid adver-
sarial samples; (2) Thoroughly investigate the prob-
lem of validity-aware robustness evaluation. For

example, one can improve our method by using the
human annotation results to better characterize the
difference between various attack methods since
there exist methods that can craft valid adversarial
samples even in high perturbation degrees. Thus,
the human annotation scores can serve as weights
to average robustness scores computed at different
perturbation degrees.

Develop methods based on the model-centric
evaluation. The motivation of this paper is to
bring out the more practical significance of attack
methods. The core part is to shift towards model-
centric robustness evaluation and consider how at-
tack methods can actually contribute to the practi-
tioners. Thus, we recommend future research make
a mild shift in method development to better fit the
model-centric robustness evaluation scene. For ex-
ample, the central problem in the adversarial arms
race era is how to make the attack methods stronger
to achieve a higher attack success rate and beat the
defense methods. Now the model-centric evalu-
ation requires that the attack methods can better
reveal practical, important, and diversified vulnera-
bilities in models.

Additional work We note that there are some ad-
versarial methods that don’t fit into our paradigm
because we cannot clearly describe the concrete
distribution shift, including challenging samples
generated by the human-in-the-loop process (Wal-
lace et al., 2019, 2021; Kiela et al., 2021), non-
dimension-specified attack methods (Bartolo et al.,
2021; Guo et al., 2021; Deng et al., 2022). Future
works can explore characterizing the distribution
shift through natural language (Zhong et al., 2022)
or model estimation (Aharoni and Goldberg, 2020;
Chronopoulou et al., 2021) to include more dimen-
sions in the evaluation framework.

F.2 Adversarial Defense.

In our evaluation framework, we don’t approach
the defense side. We leave it for future work. Here
we discuss how we consider adversarial defense
methods and how we can benefit from them.
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Figure 9: Comprehensive results of RoOBERTa-base (Base) and RoBERTa-large (Large) on Jigsaw. We consider
rule-based (Rule) and score-based (Score) attacks, and worst (Worst) and average (Average) performance estimation.

Current practices often situate their defense
methods in the scenario of malicious attacks. We
present an alternative perspective that accompanies
our framework. As adversarial attack methods can
be employed to generate samples from different dis-
tributions, defense methods can also be employed
to deal with out-of-distribution samples, which can
address the challenge of diverse inputs from dif-
ferent users or attackers. However, the deficiency
in current defense methods is that they mostly can
only tackle a specific kind of distribution shift. For
example, Pruthi et al. (2019) consider samples con-
taining typos. Wang et al. (2021c) consider rich
vocabulary of real-world users. Currently, a gener-
alized and widely applicable defense method is
lacking. The promising directions include: (1)
Inference-time adaptation (Antverg et al., 2022);
(2) Learning robust features from in-distribution
data (Ilyas et al., 2019; Clark et al., 2019; Zhou
et al., 2021); (3) Distributionally robust optimiza-
tion (Hu et al., 2018; Oren et al., 2019).

G Single-model Robustness Report

We show robustness reports of two models
and three datasets. The robustness reports for
RoBERTa-base are shown in Figure 10 (SST-2),

Figure 12 (AG’s News), and Figure 14 (Jigsaw).
The robustness reports for RoOBERTa-large are
shown in Figure 11 (SST-2), Figure 13 (AG’s
News), and Figure 15 (Jigsaw).

H Robustness Comparison Report

We show the robustness report that compares the
two models’ robustness in Figure 16 (rule-based
evaluation) and Figure 17 (score-based evaluation).
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Figure 10: Robustness report for RoOBERTa-base on SST-2.
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Figure 11: Robustness report for RoBERTa-large on SST-2.
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143 12 744
743 735 886
349 331 732

Glyph

@ Typo

Typo-M
108

Distraction

Phonetic

Malicious(-M)

Synonym  Contextual

Inflection  Syntax

General(-G)

syrax
¢ ¢
& @
§ §
Inflection £ I
< 20 © 20]
Contoxtual - e =+ e
= T 0w OT 07 53 07 05 % ok 5T 97 53 0r 55 %
Synonym Retubaton pegres Ferubaton pegres
ORuleAversge  ORule Worst Rule-based Score-based
OScore Average  0Score Worst
Method | Degree 0 0.05 0.1 0.2 03 04 05 0.6 Final Score
Rule-Average 948 94.7 946 94.0 932 920 904 879 935
Rule-Worst 948 839 770 69.9 629 542 447 331 765
Score-Average 948 924 925 903 86.3 823 793 762 904
Score-Worst 948 91.0 89.1 85.0 80.0 735 68.1 59.8 872
Typo Glyph | Phonetic ~ Synonym  Contextual Inflection  Syntax  Distraction g
Typo-t Malicious(-M) | General(-G)
Oisraction Typo-
symuax anw .
] &
; j
nflection anc § g
H g
2 0
Contextual Phonetic-M = Vo Rl
ORI I RO NG EET
Symonym Phontic-6 Berubation Degree Rerurbation Degree
ORule-Average () Rule-Worst Rule-based Score-based
Oscore-Aversge  QScore-Worst
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rue-Average 948 947 945 936 921 895 82 784 92
Rule-Worst 948 82 80 755 674 545 388 254 798
Score-Average 948 924 925 899 853 797 741 667 901
Score-Worst 948 933 941 906 845 738 622 521 905
Typo Glyph | Phonetic | Synonym  Contextual Inflection  Syntax  Distraction 9
Typo-t Malicious(-M)  General(-G)
Disraction
symtax w
Inflection g, L.
H g
m |
— g ey
e R S T
Rerurpaton beres Batutaton Degres
Rule-based Score-based
Method | Degree 0.1 0.2 03 04 05 0.6 Final Score
Rule-Average 924 917 90.8 89.1 872 84.4 918
Rule-Worst E 762 695 618 525 379 224 76.1
Score-Average 948 904 895 846 80.8 747 702 63.0 871
Score-Worst 948 89.2 88.1 86.6 805 69.9 57.3 491 859
Typo Glyph  Phonetic ~ Synonym |Contextual Inflection ~ Syntax  Distraction 9
Typo-t Malicious(-M) ~ General(-G)
&
Disraction Typo-
—_—— —
Syntax Glyph-M 80] e, L
§ e §
3w el
i §
Inflection GG G §w
i H
H
20 )n
Contoxtuat Phonetic-M Bk et
R o e
Symonym Phonetc-G Rotunaton begres Retubaton begree
(ORule-Average ) Rule-Worst. Rul d Score-based
Oscore-Aversge  OScore Worst
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rue-Average 948 945 942 937 930 921 9Ll 900 93
Rule-Worst %48 859 83 7719 723 682 641 68 814
Score-Average 948 907 899 886 880 8.1 82 856 891
Score-Worst 948 918 914 904 900 83 80 888 %06
Typo Glyph  Phonetic  Synonym  Contextual Inflection | Syntax | Distraction e
Malicious(-M) ~ General(-G)
Disraction
Syntax b \
§ | —
Inflection 5wl
H 4
of
Contoxtual e,
= I OO
symonym Phonetc-G Feruroation Degres
(ORule-Average O Rule-Worst Rule-based Score-based
OScore Average  OScore Worst
Method | Degree 0 0.05 0.1 0.2 03 04 05 0.6 Final Score
Rule-Average 948 833 798 770 771 753 703 65.1 80.0
Rule-Worst 948 218 86 0.0 0.0

Score-Average = -
Score-Worst - B

9625

28 10

Figure 12: Robustness report for RoBERTa-base on AG’s News.
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Phonetic

Synonym

Malicious(-M)

Contextual

General(-G)

Inflection

Robustness Score

Robustness Score

T o TT 9r W3 or o5 0% T o o1 93 3 or o5 o%
Perubation Degree Petutbation Degree
Rule-based Score-based
01 02 03 04 05 06 Final Score
Rule-Average 952 948 937 89.0 778 60.6 459 372 897
Rule-Worst 952 784 683 331 87 40 28 19 611
Score-Average 952 910 86.1 725 56.5 421 314 216 816
Score-Worst 952 89.1 821 67.2 453 272 169 134 775
@ Typo Glyph | Phonetic  Synonym  Contextual ~Inflection ~ Syntax  Distraction e
oM Malicious(-M) ~ General(-G)
Oisracion
Symax w0
H H
2 @ 4
Inflaction H H
o H
2 2
k] T 2 .
20
Contextual el ol
T o ST 0T 1 oh o5 0% T o 51 o3 53 or 95 0%
Petusaton Degree Perurbation Degree
Rule-based Score-based
Method | Degree 0 005 01 02 03 04 o0s 06 Final Score
Rue-Average 952 | 943 921 784 515 338 284 211 849
Rule-Worst 952 717 602 135 37 21 11 10 559
Score-Average 952 906 845 619 303 252 239 255 774
Score-Worst 952 884 740 476 403 253 152 125 723
@ Typo Giyph | Phonetic | Synonym  Contextal Inflection = Syntax  Distraction @
Typo-m Malicious(-M) ~ General(-G)
B
Oisraction
Symtax a0
H H
2 F e
Inflection H £ wl
Contextual R~y T —
T o 01 53 53 or w5 0% T o 91 03 53 oi w5 0%
Seruroation Degree Serurbation Degree
Rule-based Score-based
Method | Degree 01 02 03 04 05 06 Final Score
. . 832 587 423 339 305 286 785
Rule-Worst 952 69.4 323 179 105 96 72 58 461
Score-Average 952 859 57.2 379 313 279 265 257 654
Score-Worst 952 828 541 374 229 156 127 109 618
@ Typo Glyph  Phonetic | Synonym | Contextual Inflection ~ Syntax  Distraction e
Malicious(-M) ~ General(-G)
Gyph-M gl ®
g ¢
3 6ol . # eo)
Glyph-G § o . § w©
2 T E
2 2
Phonetc-M - -
- © 005 01 02 03 04 05 06 G 005 01 02 03 04 05 06
Synonym Phonetic-G Petubation Degree Ferurbation Degree
O Rule-Average O Rule-Worst Rule-based Score-based
OScore-Average  Score-Worst
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rue-Average 952 935 919 884 &3 8.1 82 87 910
Rule-Worst 952 769 605 458 395 369 348 336 637
Score-Average 952 946 944 944 937 946 942 931 937
Score-Worst 952 932 922 914 %7 %1 82 888 916
@ Typo Glyph Phonetic ~ Synonym  Contextual | Inflection | Syntax  Distraction @
Malicious(-M)  General(-G)
— —— e
w a0
H H
% F e
4 H
20 2
[ — e
T om 01 w7 93 o1 95 G% T 0% 5102 w3 o4 w5 %
Ferturbation Deorse Feturbaton Desree
O Rule-Average O Rule-Worst Rule-based Score-based
OScore-Average  Score-Worst
Method | Degree o 0.05 01 02 03 04 05 06 Final Score
Rule-Average 952 95.0 950 95.1 950 951 951 952 943
Rule-Worst 952 924 919 911 907 905 90.1 898 912
Score-Average 952 935 931 930 930 933 928 924 926
Score-Worst 952 929 916 9209 903 901 887 89.2 913
Typo Glyph Phonetic ~ Synonym  Contextual Inflection Syntax  Distraction g
Malicious(-M)  General(-G)
Oisracton
Symtax w0
H H
g g
e i i
3 2
& )
20 2o
Contextual Py 3 T
T om 91 57 w3 or 5 e T om 51 97 w3 or 05 o
Perturbaton Degree Returbation Degree
Rule-based Score-based
Method | Degree 01 02 03 04 05 06 Final Score
Rue-Average | 952 | 951 | 941 | 909 89 85 | 778 762 921
Rule-Worst 952 914 84 516 209 213 164 131 751
Score-Average 952 926 910 879 822 784 763 755 894
Score-Worst 952 881 829 615 464 400 369 351 775

@ Typo

Dist

Syntax

Inflection

Contextual

Synomym
ORule-Average
OScoreAverage

Method | Degree

Rule-Average
Rule-Worst
Score-Average
Score-Worst

Distraction

Syntax

Inflection

Contextual

Synonym
ORule-Average
DOScore-Average

Method | Degree

Rule-Average.
Rule-Worst

Score-Average
Score-Worst

Typo

Typo-M
100

Distraction

syntax

Inflection

Contextual

Synonym
ORuleAverage
Oscore-Average

Method | Degree

Rule-Average
Rule-Worst
Score-Average
Score-Worst

Distraction

Syntax
Inflection

Contextual

Synonym
ORule-Average
OScore-Average
Method | Degree
Rule-Average
Rule-Worst
Score-Average
Score-Worst

Typo

Typo-M
100

Distraction

Syntax

Inflection

Contextual

Synomym
ORule-Average
Oscore-Average

Method | Degree

Rule-Average
Rule-Worst
Score-Average

Score-Worst

Glyph  Phonetic ~ Synonym  Contextual Inflection  Syntax  Distraction 9
Malicious(-M)  General(-G)
Glyph-M 0
¢ ¢
g o H
chen-e iw fw
H H
Phonetic-M f . f E—.
e REg
Phonetc-G 0% Berumaton degree. R
O Rule-Worst Rule-based Score-based
Oscore-Worst
0 005 01 02 03 04 05 06 Final Score
9.2 95.1 9.0 %8 945 9.0 935 927 942
9.2 869 838 790 741 699 645 58.4 826
9.2 944 9.0 928 906 885 865 856 927
952 923 903 873 840 802 781 741 892
Glyph  Phonetic  Synonym  Contextual Inflection ~ Syntax  Distraction 9
Malicious(-M) ~ General(-G)
Glyph-m of
§ H
% oo @ 6o
§ i
GG § o] § w0
i H
»
Phonetic-M P
Phonetc- O 0% Reubatondegrea O ReubatonDegres T
O Rule-Worst Rule-based Score-based
Oscore-Worst
0 005 01 02 03 04 05 06 Final Score
952 95.1 950 %8 944 936 927 914 941
952 884 854 801 753 705 644 549 839
952 944 940 928 905 881 857 843 927
952 938 919 884 852 808 780 706 905
Glyph | Phonetic = Synonym Contextual Inflection  Syntax  Distraction 9
Malicious(-M)  General(-G)
w0
H g w
0
T o o1 03 53 o1 05 0% T o T 03 53 91 05 0%
Perturbation Degrea Pertubation Degras
O Rule-Worst Rule-based Score-based
Oscore-Worst
0 005 01 02 03 04 05 06 Final Score
952 934 927 922 908 891 882 8.4 919
952 872 828 765 67.8 555 388 264 806
952 911 902 89 828 768 722 642 880
952 901 890 856 821 713 599 527 87
Glyph  Phonetic ~ Synonym Contextual Inflection ~ Syntax  Distraction 9
Malicious(-M) ~ General(-G)
—— . N E——
Gyphm w0 L 0|
§ pa—
@ 60 % 60
Glyph-G. § 40 g 0]
2| |
Phonetic-M e -
T 0% 91 03 53 07 5 0% T ebs ST 07 93 1 05 0%
Pertubation Deoree Perturbation Deoree
O Rule-Worst Rule- d Score-based
Oscore-Worst
0 005 01 02 03 04 05 06 Final Score
952 947 us %2 937 930 921 912 937
952 855 816 787 743 716 692 679 815
952 915 912 906 898 893 887 883 904
952 927 924 925 920 918 97 914 918
Glyph  Phonetic ~ Synonym  Contextual Inflection | Syntax  Distraction e
Malicious(-M) ~ General(-G)
.
Fal
[ -
20 b
Phonetc-G P Reatontegree T
O Rule-Worst Rule-based Score-based
Oscore-Worst
0 005 01 02 03 04 05 06 Final Score
9.2 837 796 767 766 749 7.2 678 801
952 233 144

89 36 12 03

Figure 13: Robustness report for RoOBERTa-large on AG’s News.

02 00



Contextual

Method | Degree
Rule-Average
Rule-Worst
Score-Average
Score-Worst

Contoxtual
‘Synonym
ORule-Average
Oscore-Average
Method | Degree
Rule-Average
Rule-Worst
Score-Average
Score-Worst

Contextual

Rule-Worst
Score-Average
Score-Worst

@ Typo

b

Contextual

Synonym
ORule-Average
OScore-Average

Method | Degree

Rule-Average
Rule-Worst

Score-Average
Score-Worst

Contextual

OscoreAverage
Method | Degree
Rule-Average
Rule-Worst
Score-Average
Score-Worst

Typo

Typo-M
Iypo-

Contextual

Rule-Average
Rule-Worst
Score-Average
Score-Worst

Phonetic | Synonym | Contextual | Inflection

Malicious(-M)

General(-G)

Syntax | Distraction 9

Robustness Score

T g g e T o
Rule-based
0.05 0.1 02 03 04
893 871 802 696 612
546 361 202 154 128
832 771 695 609 542
768 638 496 352 257
Phonetic ~ Synonym  Contextual Inflection

Malicious(-M) ~ General(-G)

T ok G103 03 G5 05 06
Perturbation Degree
Score-based

05 06  Final Score

57.3 554 840

15 108 405

536 514 763

218 19.1 640

e
fe— T i TR @ m h ww w
O Rule-Worst Rule-based Score-based
Score-Worst
o 005 01 02 03 04 05 06 Final Score
%9 | 884 850 765 667 | 591 | 542 503 823
%9 520 351 168 87 53 31 20 376
99 728 684 633 581 544 523 501 680
99 696 513 427 388  3/3 207 261 572
Giyph | Phonetic | Synonym  Contextal Inflection = Syntax  Distraction e
Malicious(-M) ~ General(-G)
£ s
2 ool 3
E H
ol [ [ [
T o T1 9T 53 oi w5 0%
Fetubation Degres Peturbaton Deoree
Rule-based Score-based
01 02 03 04 05 06 Final Score
I/ 812 798 779 764 748 734 816
9209 421 398 362 343 331 328 314 395
9209 798 776 743 719 699 69.1 68.3 769
9209 69.7 543 485 442 409 382 378 594
Glyph  Phonetic | Synonym | Contextual Inflection ~ Syntax  Distraction e
Malicious(-M) ~ General(-G)
Tt——— e \
w0 ol —
¢ ¢
Fal e %
2 a0 ¥ 4o
H H
. 2
Phonetic.M — o —
T om 9§19 o3 v 05 0% T om T 9T 53 o w5 e
Phoneti-G Perurbaton Degres Perubation Degres
O Rule-Worst Rule-based Score-based
OScore-Worst
o 005 01 02 03 04 05 06 Final Score
%9 | 883 869 846 844 | 837 | 840 837 863
99 649 582 536 513 497 488 481 596
99 875 822 791 186 7716 774 769 833
99 840 820 802 795 784 711 759 817
Glyph  Phonetic  Synonym  Contextual | Inflection | Syntax  Distraction e
Malicious(-M)  General(-G)
! w
H H
e G
H H
. 0
R~y B~y
T e 9T 03 3 05 o5 W% T om 91 03 1 0r a5 0%
Serubation Degree Fetubaton Degiee
Rule-based Score-based
Oscore-Worst
o 0.05 01 0.2 03 04 05 0.6 Final Score
909 903 902 90.1 902 90.1 900 899 895
909 89.7 896 89.0 888 886 884 883 888
909 90.0 89.7 896 89.7 89.5 894 894 891
909 899 89.7 896 894 89.2 89.1 889 890
Glyph Phonetic ~ Synonym  Contextual Inflection Syntax  Distraction g
Malicious(-M)  General(-G)
@ 3
H H
o 3
H H
& avarsge .
e 2 et
T o% o1 03 oy wi a5 W T o T 9 w3 5 @ o
Serurbation Degree Perturbaton Degree
Rule-based Score-based
01 02 03 04 05 06 Final Score
%9 98 96 898 8.7 | 83 843 828 894
%9 889 87 775 665 569 462 390 828
%9 888 794 713 693 621 5712 441 807
99 705 523 388 249 206 198 166 558

&) o Glyph  Phonetic  Synonym Contextual Inflection  Syntax  Distraction 9
Malicious(-M)  General(-G)
Disracton
Syntax nn R w
: .
% 0 2 w0
Inction [ g
g g
m »
Comtextual aid
0 maonvegres T O erurbaton begree
(ORule-Average ) Rule-Worst Rule-based Score-based
OScore Average  Ccore-Worst
Method | Degree o 0.05 01 02 03 04 05 06 Final Score
Rule-Average 909 90.5 90.2 89.7 889 879 86.6 846 89.3
Rule-Worst 909 705 622 533 447 373 310 26.1 621
Score-Average 909 873 86.6 83.1 816 812 770 740 851
Score-Worst 909 837 806 756 69.6 64.0 578 529 791
Typo | Glyph | Phonetic  Synonym Contextual Inflection  Syntax Distraction 9
Malicious(-M) | General(-G)

Distraction

syntax

Inflection

pa— i e
o g e T T o T ST 5 T e e
- f— Rupaton Begree Barurbaion eates
ORule-Average () Rule-Worst Rule-based Score-based
DscoreAverage  Dscore-Worst
Method | Degree 0 0.05 01 02 03 04 05 06 Final Score
Rule-Average 909 906 904 89.7 883 873 858 838 894
Rule-Worst 909 7 66.8 589 505 445 39.1 326 653
Score-Average 909 828 773 69.4 659 633 617 60.1 769
Score-Worst 909 773 701 64.3 495 441 408 372 696
Typo Glyph | Phonetic | Synonym  Contextual Inflection  Syntax  Distraction 9

Distraction

Malicious(-M)  General(-G)

Robustness Scare.
Robustness Score

o
o mverage

Contextual
— o O eubatonDegres 0P ferubtonteoree T
ORule-Average  CRule-Worst Rule-based Score-based
OScore-Average  C1Score-Worst

Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rule-Average 909 883 861 846 824 809 793 782 858
Rule-Worst 209 696 603 523 a7 333 290 241 607
Score-Average 909 802 713 752 743 728 712 706 774
Score-Worst 209 753 689 594 478 381 336 312 672
Typo Glyph  Phonetic ~ Synonym Contextual Inflection ~ Syntax  Distraction 9
pom Malicious(-M) ~ General(-G)
Distacton
——
symax ol DR I I N,
¢ T
o e 3w .
RS I |
Inflecton ol g ol
| |
Contextual ool o e
T o% T 03 53 o3 05 0% T o G107 03 5% 05 0%
Perurbaton Degree Pertubation Degree
ORule-Average  CRule-Worst Rule-based Score-based
Oscore-Average  OIscore-Worst
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rule-Average 909 87.4 872 865 862 850 836 811 863
Rule-Worst 909 625 584 543 515 501 487 473 586
Score-Average  90.9 796 790 785 773 764 751 739 783
Score-Worst 909 745 739 728 712 699 667 598 730

Distraction

Infletion

Contextual

Phonetic ~ Synonym  Contextual Inflection | Syntax  Distraction e

Malicious(-M) ~ General(-G)

Giyph-M

3
Roustness Scre

Perurbaton Degree
ORuleAverage O Rule Worst Rule-based Score-based
Oscore-Average  Oscore-Worst
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rule-Average 909 8856 851 822 800 785 773 167 851
Rule-Worst %09 67.3 324 96 59 a8 458

Score-Average -
Score-Worst -

9627

208 159

Figure 14: Robustness report for RoBERTa-base on Jigsaw.



Glyph | Phonetic | Synonym | Contextual | Inflection | Syntax | Distraction 9

" Malicious(-M)
oG

(<) e

General(-G)

Distraction,

syouax G
atection ane £ | H
] H
2
Contextual Phonetic-M o
ok 51 57 o3 i 5 o 5ok 5T 9 w3 o o
Ferunaion degree Feruriaton Degee
Rule-based Score-based
Method | Degree o 0.05 01 02 03 04 05 06 Final Score
Rule-Average 915 894 86.8 782 66.3 586 553 535 834
Rule-Worst 915 519 357 209 167 146 134 122 393
Score-Average 915 835 747 66.0 59.0 55.7 520 518 753
Score-Worst 915 80.1 66.0 499 345 260 203 173 662
Typo Glyph | Phonetic | Synonym  Contextual Inflection = Syntax  Distraction e
Ipom Malicious(-M) ~ General(-G)

Distraction,

Ao n

ERC o ol
Perturbation Degree Perturbation Degree
Rule-based Score-based
Method | Degree o 0.05 01 02 03 04 05 06 Final Score
Rule-Average 915 89.1 85.7 72 688 628 57.1 530 832
Rule-Worst 915 518 356 147 70 38 29 25 373
Score-Average 915 741 66.7 632 60.9 574 542 521 685
Score-Worst 915 718 562 493 365 321 287 262 601

Typo Glyph Phonetic . Synonym  Contextual Inflection Syntax  Distraction e

Malicious(-M) ~ General(-G)

Distraction,

syan
H
nacton of
Comtmaral ey e
OO Rerubaton begree O matonpeges ¢
Rule-based Score-based
Method | Degree 0 0.05 01 02 03 04 05 06 Final Score
Rule-Average 915 86.2 832 80.7 786 771 759 749 831
Rule-Worst 915 46.6 412 383 364 349 337 325 425
Score-Average 915 817 798 754 725 710 69.4 689 786
Score-Worst 915 733 586 516 464 423 407 395 629

Typo Glyph Phonetic | Synonym  Contextual Inflection Syntax Distraction e

Malicious(-M) ~ General(-G)
Oistraction
S \\“’_m
Syntax o w0 T
§ . H
3 - 3 o
nection 8 w fo
i i
*| - eaoe = woe
Contextual = Vors gy
T 0B 01 02 03 0% 05 06 T o6 01 02 03 o7 05 0%
o Perturbation Degree. Perturbation Degree
ORule-Average O Rule-Worst Rule-based Score-based
OScore-Average  C)Score-Worst
Method | Degree: 0 0.05 01 02 03 04 05 06 Final Score
Rule-Average 915 895 881 86.0 857 855 849 858 876
Rule-Worst 915 66.8 59.2 54.2 518 514 50.2 500 610
Score-Average 915 874 836 821 812 805 792 781 843
Score-Worst 915 842 813 795 785 770 756 746 814
Typo Glyph  Phonetic  Synonym  Contextual | Inflection  Syntax  Distraction @
Malicious(-M)  General(-G)
Distraction
————
Syntax GhphM o) o0,
¢ ¢
S i
Inflecton oo £, £ w
Contextual Phonatic- = e sl
T ok o1 0z 03 us o5 0% T ok o1 0z o3 us o5 0%
Synonym Phonetic-G Perturbation Degree Perturbation Degree
ORule-Average  ORule-Worst Rule-based Score-based
OScore-Average  OScore-Worst
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rule-Average 915 oL1 209 %08 909 %08 90.7 905 903
Rule-Worst 915 899 898 894 893 89.0 889 886 890
Score-Average 915 %08 906 %05 %02 900 89.9 899 899
Score-Worst 915 904 901 898 896 893 89.1 8838 894
Typo Glyph Phonetic = Synonym  Contextual Inflection Syntax | Distraction g
Malicious(-M) ~ General(-G)
Distraction Typo-o
Syntax \\ oM
g ]
inflection ohphG H
£ H
Contestu / Phonetic:M o e
T 0% o1 oz @3 01 05 06
Synonym Phonetic-G: Perturbation Degree
ORule-Average O Rule-Worst Rule-based
OScore-Average  O)Score-Worst
Method | Degree. 0 0.05 01 02 03 04
Rule-Average 915 914 913 904 885 869 851 836 901
Rule-Worst 915 902 874 786 680 58.1 473 400 839
Score-Average 915 89.7 853 741 709 632 594 473 831
Score-Worst 915 735 551 397 252 231 203 175 582

9628

Glyph  Phonetic ~ Synonym  Contextual Inflection  Syntax  Distraction ;’

o Malicious(-M) ~ General(-G)
Distraction Tyo-G.
H H
@ @ g0
Jr— e £ £,
H g
20
Contoxtusl Phonetic-M oo e
Smonym OO Pematon Degres O 0% Pematon Degres
ORule-Average Rule-based Score-based
OScore-Average
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rule-Average 915 909 905 901 889 879 864 842 896
Rule-Worst 915 699 622 530 441 364 299 242 617
Score-Average 915 879 878 857 816 789 s 767 860
Score-Worst 915 856 810 776 708 661 59.1 536 806
Typo Glyph | Phonetic ~ Synonym  Contextual Inflection ~ Syntax  Distraction 9
oM Malicious(-M)  General(-G)
Distraction -G
syntax w| e
]
3w
N §
nflection G
E
20
Comtortun f— o pe e
T ok 11 07 a3 on 05 0% T ok o1 T 0%
Synonym Phonetic-G Perturbation Degree Perturbation Degree.
ORule-Average  C)Rule-Worst Rule-based Score-based
OScore-Average  O)Score-Worst
Method | Degree. 0 0.05 01 02 03 04 05 06 Final Score
Rule-Average 915 911 911 90.4 89.3 884 86.7 84.9 90.0
Rule-Worst 915 737 69.0 59.9 50.4 437 386 322 67.0
Score-Average 915 832 791 703 66.8 64.0 621 613 778
Score-Worst 915 795 705 634 531 453 398 369 709
Typo Glyph | Phonetic  Synonym Contextual Inflection  Syntax  Distraction 9
et Malicious(-M)  General(-G)
Distraction Typo-G.
syntax Giyph-M
H H
E] g
o aerage |~ wera
Contextual Phonetic-M N o o
T 0% 71 07 73 0 0% 0% T 0% 51 07 73 o7 o5 0%
synonym Perturbaton Degrea Perturbation Degrea
ORule-Average Rule-based Score-based
Oscore-Average
Method | Degree 0 005 01 02 03 04 05 06 Final Score
Rule-Average 915 892 873 855 839 825 813 799 868
Rule-Worst 915 77 611 544 452 348 295 254 625
Score-Average 915 811 786 769 758 741 721 72 785
Score-Worst 915 786 695 612 483 396 354 27 694
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Figure 15: Robustness report for RoBERTa-large on Jigsaw.
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Figure 16: Robustness comparison report for rule-based evaluation on SST-2.
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