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Abstract

Contrastive Language-Image Pre-training
(CLIP) formulates image classification as an
image-to-text matching task, i.e., matching
images to the corresponding natural language
descriptions instead of discrete category
IDs. This allows for open-vocabulary visual
recognition, where the model can recognize
images from an open class set (also known
as an open vocabulary) in a zero-shot manner.
However, evaluating the openness of CLIP-like
models is challenging, as the models are open
to arbitrary vocabulary in theory, but their
accuracy varies in practice. To address this, we
resort to an incremental perspective to assess
the openness through vocabulary expansions,
and define extensibility to measure a model’s
ability to handle novel classes. Our evaluation
shows that CLIP-like models are not truly
open, and their performance deteriorates as the
vocabulary expands. We further dissect the
feature space of CLIP from the perspectives of
representation alignment and uniformity. Our
investigation reveals that the overestimation of
openness is due to confusion among competing
text features, rather than a failure to capture
the similarity between image features and text
features of novel classes. We hope that our
investigation and analysis will facilitate future
research on the CLIP openness issue.1

1 Introduction

An intrinsically open mechanism for visual recogni-
tion (Deng et al., 2009; He et al., 2016) has always
been a shared goal in the computer vision commu-
nity (Scheirer et al., 2013; Geng et al., 2021; Ben-
dale and Boult, 2015). This mechanism requires
models to maintain flexibility to cope with the scal-
ing of the recognition target, where both input im-
ages and the corresponding classes will dynami-
cally expand according to actual needs. For exam-
ple, in medical diagnosis (Razzak et al., 2017), new

1Our code is available at https://github.com/
lancopku/clip-openness

diseases emerge constantly, and in e-commerce,
new categories of products appear daily (Xu et al.,
2019), which cannot be predefined in a finite, fixed
class set.

Faced with the challenging task of open-world
recognition, Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021) and its open-
vocabulary learning paradigm demonstrate supe-
riority over traditional supervised classifiers (He
et al., 2016; Dosovitskiy et al., 2021). CLIP pre-
trains a vision-language model on web-scale collec-
tions of image-text pairs, learning semantic align-
ment between images and corresponding textual
descriptions. During inference, it formulates image
classification as an image-to-text matching task,
where the set of class names serves as a vocab-
ulary, and textual prompts like "a photo of a
[CLASSNAME]" are curated as class descriptions for
images. By varying the [CLASSNAME] placeholder
and computing the similarity between class descrip-
tions and images, CLIP can identity the most suit-
able class name and predict it as the target class.
This approach allows CLIP to operate with arbi-
trary vocabularies and adapt to novel classes by
expanding the vocabulary, enabling zero-shot infer-
ence for new input images and classes.

Nevertheless, previous evaluation protocols for
CLIP models only assess their accuracy on static,
closed vocabularies from downstream datasets,
leaving their actual performance on open tasks in
the shadows (Radford et al., 2021). In this work,
we delve into openness, the intriguing yet under-
explored property in CLIP-like models (Li et al.,
2021b; Mu et al., 2021; Yao et al., 2021; Zhou et al.,
2021), and present a novel protocol for evaluating
the openness from an incremental view. Specifi-
cally, we define a metric of extensibility to mea-
sure a model’s ability to handle new visual concepts
through vocabulary expansion. Different from pre-
vious metrics, our metric explicitly models the dy-
namics of the real open world, and formulates the
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empirical risk of CLIP when new vocabularies in-
crementally emerge. Additionally, we define a met-
ric of stability to explore how stable the model’s
predictions are for old classes when new classes
are introduced, which provides a tool to analyze
the compatibility between different classes.

Using our protocol, we conduct a systematic
and comprehensive evaluation of CLIP-like mod-
els. Our experimental results based on extensibility
show that CLIP and its variants have a significant
drop in accuracy as the vocabulary size increases.
For example, CLIP (RN101) on CIFAR100 expe-
riences a 12.9% drop in accuracy when the vocab-
ulary size expands from 5 to 100. This indicates
that the limited zero-shot capability of CLIP-like
models is inadequate for supporting their deploy-
ment in the open world. What’s worse, through
an analysis of the prediction shift during vocab-
ulary expansion, we find that the performance of
CLIP can be dramatically reduced by adding only
three adversarial class names into the vocabulary,
exposing the model’s poor stability and security
risks. Furthermore, we investigate the representa-
tion space of CLIP-like models via three metrics:
margin, inter-modal alignment, and intra-modal
uniformity. Our results show that the small margin
between positive and negative class descriptions
leads to prediction shifting when competing class
features appear. Therefore, enforcing the distin-
guishability of class features increases the margin
and improves the stability of these models.

In summary, our contribution is threefold: First,
to the best of our knowledge, we are the first to
systematically quantify the openness of CLIP, for
which we design the evaluation protocol and two
indicators of extensibility and stability. Second,
we conduct extensive experiments on CLIP-like
models based on our protocol and find that their
openness is overestimated and their performance
declines as the vocabulary expands. Finally, we
analyze the feature space of CLIP from the perspec-
tives of representation alignment and uniformity,
observing that the uniformity of the textual space
is critical for better extensibility.

2 Related work

Contrastive language-image pre-training and
open-vocabulary learning. CLIP (Radford et al.,
2021) introduces the paradigm of open-vocabulary
learning and learns transferable visual models from
natural language supervision. The CLIP model con-

sists of an image encoder and a text encoder, which
are utilized to encode image-text pairs into a joint
feature space for learning the semantic alignment
of vision and language. The paired images and
texts are pulled together in the feature space, while
the others with dissimilar semantics are pushed
apart via a contrastive loss. After pre-training on
large-scale image-text pairs, CLIP is able to map
images to their corresponding language descrip-
tions, which makes visual recognition generalize
in the wild. Recent studies further improve CLIP
by using more pre-training data (Jia et al., 2021),
incorporating self-supervision (Mu et al., 2021),
fine-grained supervision (Yao et al., 2021), and
widespread supervision (Li et al., 2021b) to pre-
training. Another line of recent studies (Li et al.,
2021a; Wang et al., 2022; Yu et al., 2022; Alayrac
et al., 2022) adopts seq2seq generation instead of
contrastive discrimination framework to achieve
open-vocabulary recognition. We leave the investi-
gation of their extensibility for future work.

Open Set and Open-World Visual Recognition.
Open Set Recognition (OSR) (Scheirer et al., 2013;
Geng et al., 2021) and Open World Recognition
(OWR) (Bendale and Boult, 2015) are paradigms
aiming to cope with input images from novel
classes during inference. OSR requires classifiers
to identify images that have not been introduced
during training as “unknown”. While OWR raises
higher demands, models are supposed to incremen-
tally extend and retrain the multi-class classifier
as the unknowns are labeled as additional training
data. Contrary to the above research, CLIP-based
Open-vocabulary Recognition (OVR) aims to iden-
tify novel classes in a zero-shot manner by using
natural language representations of categories in-
stead of discrete label IDs. This allows CLIP to
directly synthesize textual descriptions of novel
classes for matching, eliminating the need for rela-
beling additional training data and re-training the
entire model. A more detailed comparison of OSR,
OWR, and OVR can be found in Appendix A.1.

3 Openness, Extensibility, and Stability

In this section, we first review CLIP’s visual recog-
nition paradigm and demonstrate how it realizes
open-vocabulary image classification through vo-
cabulary expansion (§ 3.1). To quantify the actual
performance of CLIP-like models as the vocabulary
expands, we define the metric of extensibility and
propose a systematical evaluation protocol (§ 3.2).
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Figure 1: Left: the original accuracy of CLIP with target vocabulary (Eq.(1)) and the conditional accuracy of
CLIP with non-target vocabulary (Eq.(4)). In the latter, the classes from the non-target vocabulary are involved
as distractors for input images restricted in the target vocabulary. Upper right: calculation of Acc-E (Eq.(2)). It
measures the extensibility of models when recognition targets, including both classes and the associated input
images, are scaling simultaneously. Bottom right: calculation of Acc-S (Eq.(5)), a sub-problem introduced by
Acc-E. It measures the prediction stability on the images from the target vocabulary as the distractors from the
non-target vocabularies are incorporated incrementally.

The experimental results and further analysis reveal
that, as the vocabulary expands, CLIP’s predictions
become unstable and prone to drift towards newly
introduced competing class descriptions, which
limits its extensibility and poses a huge security risk
when deployed in real-world applications (§ 3.3).

3.1 Openness of CLIP

CLIP (Radford et al., 2021) models image classifi-
cation as an image-to-text matching task. Formally,
let f be the CLIP model, fT and fI be the text and
image encoders in CLIP, respectively. The CLIP
model takes an image x and a target vocabulary
V(T ) = {wi} of the class names wi as inputs, and
predicts the image label as:

f
(
x,V(T )

)
= argmax

i
P (y = i | x)

= argmax
i

esim(fT (ti),fI(x))

|V(T )|∑
j=1

esim(fT (tj),fI(x))

,

where ti is the textual description of the class name
wi in a prompt format, e.g., “a photo of a wi”,
and sim(·, ·) denotes cosine similarity. Such a
modeling paradigm can realize open-world image
classification in theory by extending the target vo-
cabulary V(T ) to arbitrary degrees. However, in
most previous work (Radford et al., 2021; Li et al.,
2021b; Mu et al., 2021; Yao et al., 2021; Zhou et al.,
2021), CLIP is evaluated with a fixed vocabulary

V(T ) of a downstream dataset D(T ):

Acc
(
V(T )

)
=

1

|D(T )|
∑

(x,y)∈D(T )

I
(
f
(
x,V(T )

)
= y

)
,

(1)

where |D(T )| is the size of the dataset and I(·) is
the indicator function. This vanilla evaluation set-
ting, utilizing restricted input images and classes,
falls short for open recognition tasks. It fails to con-
sider the dynamic expansion of vocabulary during
inference and, as a result, cannot accurately reflect
CLIP’s openness in real-world scenarios where the
number of classes may increase.

3.2 Quantifying extensibility for open world

To quantify the model’s capability in dealing with
newly emerged recognition targets, we propose an
evaluation protocol and define a metric of extensi-
bility based on vocabulary expansion. Concretely,
we incrementally expand the vocabulary V(T ) in
Eq.(1) by introducing new classes and their asso-
ciated input images, then evaluate the accuracy
after each expansion. These accuracy values reflect
the model’s dynamic performance as openness in-
creases, and the expected average of these values
is defined as the model’s extensibility. In practice,
we achieve this expansion by incrementally union-
ing N disjoint target vocabularies2 as shown in the

2Since V(T ) is bound with D(T ) in Eq.(1), expanding the
target vocabulary also implies expanding D(T ) (including
input images and their labels) at the same time, which we omit
for brevity.
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CIFAR100 ImageNet (Entity13) ImageNet (Living17)

Extensibility Stability Extensibility Stability Extensibility StabilityModel
Acc-C

Acc-E ∆ Acc-S ∆
Acc-C

Acc-E ∆ Acc-S ∆
Acc-C

Acc-E ∆ Acc-S ∆

CLIP (RN101) 68.3 55.4 -12.9 54.9 -13.4 80.4 77.4 -3.0 77.3 -3.1 77.6 74.5 -3.1 74.4 -3.2
CLIP (ViT-B/32) 78.0 69.6 -8.4 68.9 -9.1 80.8 78.0 -2.8 77.8 -3.0 78.0 74.4 -3.6 75.0 -3.0
CLIP (ViT-B/16) 79.7 72.6 -7.1 72.0 -7.7 83.5 81.1 -2.4 81.0 -2.5 79.5 77.9 -1.6 77.6 -1.9

SLIP (ViT-B/16) 63.9 51.1 -12.8 50.4 -13.5 65.7 62.3 -3.4 62.0 -3.7 65.7 62.6 -3.1 62.5 -3.2
DeCLIP (ViT-B/32) 78.7 70.8 -7.9 70.4 -8.3 81.9 79.2 -2.7 79.1 -2.8 82.1 80.2 -1.9 80.0 -2.1

PE (ViT-B/32) 78.3 70.3 -8.0 69.9 -8.4 81.9 79.4 -2.5 79.2 -2.7 78.7 76.0 -2.7 75.8 -2.9
PE (ViT-B/16) 79.6 72.6 -7.0 72.0 -7.6 85.3 83.2 -2.1 83.1 -2.2 79.6 78.2 -1.4 78.0 -1.6

CoOp (ViT-B/16) 83.6 76.9 -6.7 76.7 -6.9 87.5 85.3 -2.2 85.5 -2.0 82.7 82.6 -0.1 81.3 -1.4

Table 1: Extensibility and stability of CLIP-like models on CIFAR100 and ImageNet datasets. ∆ refers to the
decline of Acc-E/Acc-S (%) compared to Acc-C (%). All models exhibit a clear drop in performance as the openness
of tasks increases. PE denotes Prompt Ensemble. CoOp requires fine-tuning with the additional training data in
downstream datasets (16-shot for all classes), which can be viewed as the upper bound of other zero-shot models.

upper right panel of Figure 1.

Definition 3.1 (Extensibility). Given N disjoint
target vocabularies {V(T )

1 , · · · ,V(T )
N }, we denote

the set of all possible permutations of these vo-
cabularies as SN , and V(T )

si as the i(th) vocabulary
in a permutation s ∈ SN . When we union the
i(th) vocabulary with the previous i− 1 vocabular-
ies, we achieve a vocabulary expansion and obtain
V(T )
s1 ∪ · · · ∪ V(T )

si . The extensibility refers to the
averaged classification accuracy across N incre-
mental expansions as i increases from 1 to N :

Acc-E = E
s∈SN

1

N

N∑

i=1

Acc
(
V(T )
s1 ∪ · · · ∪ V(T )

si

)
.

(2)

Experimental settings We evaluate the ex-
tensibility of CLIP and its variants, includ-
ing DeCLIP (Li et al., 2021b), SLIP (Mu
et al., 2021), Prompt Ensemble (Radford et al.,
2021), CoOp (Zhou et al., 2021), on the CI-
FAR100 (Krizhevsky and Hinton, 2009) and Ima-
geNet (Deng et al., 2009) datasets. Non-matching
methods (Gao et al., 2021; Zhang et al., 2021;
Wortsman et al., 2021), such as linear probing, are
NOT included since they train a classifier with fi-
nite class vectors, and thus are not suitable for class
scaling in operation. To construct the vocabulary,
we leverage the underlying superclass-class hier-
archical structure of the two datasets (Krizhevsky
and Hinton, 2009; Santurkar et al., 2021) by group-
ing classes that belong to the same superclass into
a vocabulary. Accordingly, CIFAR100 has 20 vo-
cabularies, each with 5 classes. For ImageNet, we

utilize two superclass-class structures (Santurkar
et al., 2021): Entity13 and Living17. The former
has 13 vocabularies, each with 20 classes, while
the latter has 17 vocabularies, each with 4 classes.
Tables in the Appendix A.2 list all the vocabularies
in the two datasets. For each dataset, we calculate
Acc-C, the averaged classification accuracy across
all single vocabularies, based on Eq.(1):

Acc-C =
1

N

N∑

i=1

Acc
(
V(T )
i

)
. (3)

It represents the original model performance on
closed vocabularies. To calculate the expectation
in Acc-E, we sample 100×N permutations for N
vocabularies and take the average.

Results As shown in Table 1, all models exhibit
a clear drop in performance as the vocabulary ex-
pands. The accuracy of CLIP (RN101) after vo-
cabulary expansion (Acc-E) sharply decreases by
12.9% compared to the accuracy on closed vocab-
ulary (Acc-C). The performance on the data splits
in ImageNet is relatively better, with an average
decline of 2.7%. Appendix A.3 provides results
of expansion at the dataset level, where the ex-
panded vocabularies are from five other datasets.
These results show a more dramatic decline of an
average of 15.3% on generic dataset expansion. It
demonstrate that the openness of CLIP-like mod-
els is overestimated under the vanilla evaluation
mechanism. Besides, there are some interesting
findings: (1) From the perspective of pre-training,
introducing a stronger vision backbone (ViT (Doso-
vitskiy et al., 2021) vs. ResNet (He et al., 2016)),
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Figure 2: Acc-C and Acc-S (%) of CLIP and its variants on CIFAR100. The horizontal axis represents the extended
non-target vocabularies in order. PE refers to Prompt Ensemble.

widespread supervision (DeCLIP (Li et al., 2021b)
vs. CLIP), and more pre-training data (CLIP vs.
SLIP (Mu et al., 2021)) can improve the extensibil-
ity of models on open tasks. (2) During inference,
the performance of CLIP can be boosted by ensem-
bling different prompts. (3) The most extensible
results are obtained by CoOp (Zhou et al., 2021),
which performs prompt tuning on all classes of
CIFAR100 and ImageNet. However, the prompt
tuning method utilizes the additional category infor-
mation and training data, which cannot be applied
to real-world open tasks.

3.3 Stability during vocabulary expansion

As the vocabulary expansion introduces new
classes incrementally, some images belonging to
previous vocabularies may be incorrectly predicted
as new classes, resulting in a drop in accuracy and
poor extensibility. To analyze the prediction sta-
bility of CLIP during vocabulary expansion, we
introduce the non-target classes. They do NOT
correspond to any input images, and only serving
as distractors for the target classes. Based on it, we
define conditional classification accuracy as:

Acc
(
V(T )

∣∣∣V(T ) ∪ V(NT )
)

=
1

|D(T )|
∑

(x,y)∈D(T )

I
(
f
(
x,V(T ) ∪ V(NT )

)
= y

)
,

(4)

where V(NT ) is the non-target vocabulary, i.e., the
vocabulary of non-target classes. The conditional

accuracy is depicted in the left panel of Figure 1.
In Eq.(4), the categories of the input images are
limited to the target vocabulary ((x, y) ∈ D(T )),
but CLIP is asked to distinguish all categories from
a larger vocabulary V(T ) ∪ V(NT ). In other words,
compared to traditional closed-set classification,
CLIP is expected to reject all the negative cate-
gories from V(NT ). The model is required to dis-
tinguish visual concepts stably and robustly, rather
than making wrong predictions in the presence of
other distractors. Based on Eq.(4), we define the
stability of CLIP in the open task as:

Definition 3.2 (Stability). Given a target vo-
cabulary V(T ) and M non-target vocabularies
{V(NT )

1 , · · · ,V(NT )
M }, we denote SM as their full

permutation, and V(NT )
si as the i(th) vocabulary in

a permutation s ∈ SM . We design the local stabil-
ity to measure the averaged classification accuracy
of CLIP on the given target vocabulary when non-
target vocabularies are extended incrementally:

Acc-S̃
(
V(T ),V(NT )

)
=

E
s∈SM

1

M

M∑

i=1

Acc
(
V(T )

∣∣∣V(T ) ∪
(
V(NT )
s1 ∪ · · · ∪ V(NT )

si

))
.

(5)

As Eq.(5) only reflects the local stability with re-
spect to a single target vocabulary, we further de-
sign the general stability as an average of local
stability over a set of target vocabularies to re-
duce the bias from data distribution and vocab-
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Figure 3: Adversarial non-target vocabulary for CIFAR datasets. Adding 3 adversarial non-target classes leads to
severe performance (Acc-S) deterioration, revealing the vulnerability of CLIP when faced with malicious vocabulary.

ulary sampling. Specifically, given N vocabularies
{V1, · · · ,VN}, we regard each vocabulary Vi as
the target vocabulary V(T ) and the rest V̸=i as the
non-target vocabularies V(NT ), and then formulate
the general stability as:

Acc-S =
1

N

N∑

i=1

Acc-S̃ (Vi, V̸=i) . (6)

Experimental settings and results The models
and datasets adopted for evaluation are consistent
with that in § 3.2. For the calculation of stability,
take CIFAR100 with N = 20 vocabularies as an
example, we treat each vocabulary as the target
vocabulary and the rest are treated as the non-target
vocabularies. To calculate the expectation in Eq.(5),
we sample 100 permutations for M = 19 non-
target vocabularies and report the averaged scores.

Table 1 demonstrates the stability of CLIP-
like models. On CIFAR100, the Acc-S of CLIP
(RN101) decreased by 13.4%. Figure 2a shows
Acc-S on CIFAR100 during non-target vocabu-
lary expansion. Given a closed V(T ) = Insects,
CLIP (ViT-B/32) achieves an accuracy of 81.2%.
However, when the remaining 19 non-target vo-
cabularies are incorporated, the accuracy sharply
drops to 57.0%. The decrease of Acc-S brought
by the introduction of each non-target vocabulary
indicates that more images from Insects are incor-
rectly classified into the new vocabulary. Figure 2b
demonstrates the difference between Acc-C and
Acc-S for each target vocabulary. When V(T ) =
Medium-sized Mammals, CLIP is most easily in-
terfered with by the non-target vocabularies, with
a 21.08% performance drop. It suggests that the
unstable predictions lead to the poor extensibil-
ity of CLIP when new categories are introduced.
Besides, we notice that CLIP performs stably on
groups like Flowers, where its Acc-S only declines
by 0.53% compared to Acc-C. The different behav-
iors of different groups indicates that the stability

is also influenced by the inherent property of the
image categories and naming variation (Silberer
et al., 2020; Takmaz et al., 2022).

3.3.1 Adversarial non-target vocabulary
In order to explore the lower bound of the stability
of CLIP, we define the adversarial non-target vo-
cabulary V(ANT ) as the non-target vocabulary that
reduces Acc-S the most:

V(ANT ) = min
V(NT )

Acc
(
V(T )

∣∣∣V(T ) ∪ V(NT )
)
.

(7)
To build V(ANT ), we refer to the method of ad-
versarial examples generation (Ren et al., 2019)
to traverse the words in a large vocabulary, e.g.,
the vocabulary of nouns in WordNet (Fellbaum,
2000), which are regarded as non-target classes in
order to calculate Acc-S, and then take the most
confusing words to form the adversarial non-target
vocabulary.

We constrain the size of V(ANT ) to 3. Results in
Figure 3 illustrate the performance with nouns in
WordNet and class names in ImageNet as the can-
didate vocabulary, respectively. First, we observe
a clear performance degradation on both datasets
under adversarial attack, e.g., adding bitmap, auto-
mobile insurance and equidae leads to an absolute
52.7% accuracy drop on CIFAR10. Besides, we
find that the selected adversarial words are much
less concrete than common visual concepts like
Flower, indicating the potential reason behind is
the poor semantic modeling of CLIP on those ob-
jects with higher abstraction levels. This investiga-
tion reveals that CLIP is vulnerable when facing
malicious non-target vocabulary, and we hope fu-
ture work may pay more attention to the robustness
of CLIP under open recognition tasks.

4 Dissecting the extensibility of CLIP

Our experimental results in § 3 reveal the poor
performance of CLIP on open tasks. In this section,
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Figure 4: Cosine similarity between image (-I) and text (-T) features of
CLIP on CIFAR100. Each value in the matrix are averaged over 100
samples. The expansions from the red box to the green box (diagonal)
and the yellow box (horizontal) refer to the calculation of extensibility
and stability, respectively. The circle represents that more than 15 wrong
predictions have arisen after adding this class.
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Figure 5: Cosine similarity histogram
of positive (pos) and negative (neg)
image-text pairs with large overlap.
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Figure 6: Margin distribution of sim-
ilarity scores, which are centered
around zero with a median value of
.005 (the blue vertical line). It indi-
cates that the predictions can be eas-
ily inverted with competing classes ap-
pearing.

we delve into the representation space of CLIP to
understand its extensibility. We first point out that
the small margin between positive and negative
class descriptions leads to the prediction shifting
when competing class features appear, which thus
limits the stability of CLIP (§ 4.1). Further, we
investigate the representation space of CLIP-like
models via two metrics: inter-modal alignment
and intra-modal uniformity. The results show that
enforcing the distinguishability of class features
increases the margin and makes the models scale
more stably (§ 4.2).

4.1 Small margin limits the stability of CLIP

Since CLIP formalizes the visual recognition as an
image-to-text matching task, each text feature of
the class description corresponds to the class vector
in traditional classifiers, and the image-text similar-
ity scores are analogous to the logits in classifica-
tion. Ideally, regardless of vocabulary expansion,
for an image, the similarity of the positive pair (the
image with the text specifying the ground-truth
class) should be higher than that of the negative
pairs (the image with the texts specifying other

classes) to ensure the correct prediction on open
tasks. In other words, the margin (Jiang et al., 2019)
between positive and the largest negative similarity
is a direct contributor to stability.

Unfortunately, the similarity and margin distri-
bution of CLIP do not meet our expectations. Fig-
ure 4 illustrates the averaged cosine similarity of
CLIP (ViT-B/32) on 15 classes of CIFAR100. The
diagonal elements represent the similarity of the
positive image-text pairs, while the others repre-
sent that of the negative ones. In general, the cosine
similarity of image-text pairs is very low, with an
average of 0.20. This number is only 0.26 even for
the positive pairs. Besides, the similarities of pos-
itive and negative pairs are very close, indicating
the low distinguishability between different classes.
As shown in Figure 5 and Figure 6, the similarity
histogram of positive and negative pairs has a large
overlap, and the margin is clustered around zero,
leaving the predictions of models at risk of being
reversed to new non-target classes. For example,
as the vocabulary extends from the red box to the
green box (diagonal) or the yellow box (horizon-
tal) in Figure 4, more deceptive classes (circles)
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Figure 7: ℓalign and ℓuniform of CLIP-like models. For
both two metrics, lower numbers are better. The color
of points and numbers denote the extensibility perfor-
mance (Acc-E) on CIFAR100 (higher is better).

with negative margins are added, leading to pre-
diction shift. Particularly, the classes belonging to
the same vocabulary3 have higher similarity and
smaller margin, making them more likely to be
confused with each other.

4.2 Inter-modal alignment and intra-modal
uniformity ground the margin

According to the results in § 4.1, the ideal feature
space for CLIP-like models should have a large
margin between different classes to ensure stability
in open-vocabulary recognition tasks. To achieve
this, the text feature of a class name should be
close to the features of the images it describes (Ren
et al., 2021), and the intra-modal features, espe-
cially textual features, should be uniformly dis-
tributed to make the descriptions of competing
categories more distinguishable (Wang and Isola,
2020). In order to measure the quality of repre-
sentations in the vision-and-language domain, we
propose two metrics, inter-modal alignment and
intra-modal uniformity. Inter-modal alignment
calculates the expected distance between features
of positive image-text pairs ppos :

ℓalign ≜ E
(x,t)∼ppos

∥fI(x)− fT (t)∥2 , (8)

while intra-modal uniformity measures how well
the image or text features are uniformly distributed:

ℓuniform ≜ℓuniform-I + ℓuniform-T

≜ log E
xi,xj∼pdata-I

e−2∥fI(xi)−fI(xj)∥2+

log E
ti,tj∼pdata-T

e−2∥fT (ti)−fT (tj)∥2 ,

(9)

3Every 5 adjacent classes in Figure 4 constitute a vocabu-
lary (superclass), see Table 4 in Appendix A.2
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Figure 8: Representation visualization of CLIP and
CoOp (ViT-B/16). The five classes with different colors
are from CIFAR100. • refers to image features (-I),
while × and ⋆ refers to text features (-T) of CLIP and
CoOp, respectively. The color of ⋆ from transparent to
opaque indicates the optimization trajectory during the
CoOp prompt-tuning process.

where pdata-I and pdata-T denotes the image and text
data distribution, respectively. Figure 7 and Ta-
ble 2 provide quantified loss of alignment and uni-
formity. CLIP with only cross-modal contrastive
learning results in poor intra-modal uniformity
(ℓuniform > −2.0), especially on the text side. How-
ever, models like SLIP and DeCLIP that incorpo-
rate intra-modal contrastive learning in pre-training
can better separate image and text features by
classes, resulting in a much lower intra-modal uni-
formity loss (ℓuniform < −4.5). Additionally, the
prompt tuning method (CoOp (Zhou et al., 2021))
achieves better inter-modal alignment and the low-
est intra-modal uniformity loss on the text side. Ac-
cording to the visualization via Multidimensional
Scaling (MDS) (Borg and Groenen, 1997) in Fig-
ure 8, the optimization trajectory of prompts in
CoOp leads to the cluster center of corresponding
image features while also dispersing the position of
prompt features, thereby improving both text uni-
formity and inter-modal alignment and achieving
the best extensibility.

4.3 Discussions

After the preliminary explorations on openness of
CLIP-like models, we present potential ways to
enhance the models’s extensibility and stability.

(1) For pre-training: In order to improve the qual-
ity of CLIP’s feature space and enhance alignment
and uniformity, more high-quality pre-training data
and effective supervision signals such as ℓalign and
ℓuniform can be introduced during pre-training.

(2) For zero-shot inference: Recall that in vanilla
CLIP-like models, the context (hard prompt) for
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Model Alignment & Uniformity Accuracy

ℓalign (↓) ℓuniform-T (↓) ℓuniform-I (↓) ℓuniform (↓) Acc-C (↑) Acc-E (↑)

CLIP (RN101) 1.15 -1.16 -0.57 -1.73 68.3 55.4
CLIP (ViT-B/32) 1.48 -0.96 -0.93 -1.89 78.0 69.6
CLIP (ViT-B/16) 1.50 -0.97 -0.81 -1.78 79.7 72.6

SLIP (ViT-B/16) 1.73 -2.86 -1.69 -4.55 63.9 51.1
DeCLIP (ViT-B/32) 1.62 -2.96 -1.87 -4.83 78.7 70.8

PE (ViT-B/32) 1.46 -0.96 -0.93 -1.89 78.3 70.3
PE (ViT-B/16) 1.48 -0.97 -0.81 -1.78 79.6 72.6

CoOp (ViT-B/16) 1.40 -3.16 -0.81 -3.97 83.6 76.9

Table 2: Inter-modal alignment (ℓalign), text uniformity (ℓuniform-T), image uniformity (ℓuniform-I), intra-modal unifor-
mity (ℓuniform), Acc-C (Eq. (3)), and Acc-E (Eq. (2)) of CLIP-like models on CIFAR100. For the first four metrics,
lower numbers are better. For the last two metrics, higher numbers are better.

each class name is the same during inference, mak-
ing it difficult to discriminate between distinct vi-
sual categories because the semantics of each can-
not be holistically represented. To remedy this, we
suggest customizing class descriptions with diverse
captions retrieved from the pre-training corpus as a
prompt ensemble. The effectiveness of this idea is
verified through experiments, details can be found
in Appendix A.5.

5 Conclusion

In this paper, we evaluate the extensibility of CLIP-
like models for open-vocabulary visual recognition.
Our comprehensive study reveals that as the vocab-
ulary expands, the performance of these models
deteriorates significantly due to indistinguishable
text features among competing classes. We hope
that our investigation and analysis will facilitate
future research on the CLIP openness issue.

Limitations

To facilitate future research, we analyze the difficul-
ties and possible solutions in this new area. (1) As
we present extensive empirical results and address
the weakness of CLIP on vocabulary expansion, its
theoretical risk on open tasks is urged to be inves-
tigated. (2) The current evaluation protocol is an
approximation of the real open world. An evolv-
ing benchmark could facilitate future research. (3)
For various visual categories, their degree of ab-
straction, the ease of describing them in natural
language, and their density in the data distribution
can also influence the extensibility and stability of
models, which are worth studying.
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A Appendix

A.1 Comparison of related work

Table 3 provides a more detailed comparison of
Closed Set Recognition (OSR) (Scheirer et al.,
2013; Geng et al., 2021), Open World Recogni-
tion (OWR) (Bendale and Boult, 2015), and Open-
vocabulary Recognition (OVR) (Radford et al.,
2021) from 5 perspectives of paradigm, goal, sig-
nal, classes type in training, and classes type in test-
ing, respectively. Contrary to the above research,
CLIP-based OVR aims to identify novel classes
in a zero-shot way. Since categories of images in
CLIP are represented by natural language rather
than discrete label IDs, CLIP can directly synthe-
size textual descriptions of novel classes for match-
ing, sparing relabeling additional training data and
re-training the entire model.

A.2 Superclass-class hierarchy for vocabulary
construction

To construct the vocabularies in § 3, we lever-
age the underlying superclass-class hierarchical
structure of CIFAR100 (Krizhevsky and Hinton,
2009) and ImageNet (Deng et al., 2009), and group
the classes belonging to the same superclass into
a vocabulary. Table 4 lists the vocabularies in
CIFAR100, which are specified by (Krizhevsky
and Hinton, 2009). There are 20 vocabularies,
each with 5 classes. For ImageNet, we utilize
two superclass-class structures, Entity13 and Liv-
ing17 (Santurkar et al., 2021), as shown in Table 5
and Table 6, respectively. Entity13 has 13 vocabu-
laries, each with 20 classes, while Living17 has 17
vocabularies, each with 4 classes.

A.3 Dataset-level extensibility

The evaluation protocol in § 3 estimates the exten-
sibility and stability within a single task dataset,
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Task Paradigm Goal Signal Training Testing

Closed Set Recognition Classification Identifying known classes Supervised Known classes Known classes

Open Set Recognition Classification
Identifying known classes &
rejecting unknown classes

Supervised Known classes
Known classes &
unknown classes

Open World Recognition Classification

Identifying known classes &
detecting unknown classes &

labeling unknown data &
incrementally learn and extend classifier

Supervised
Incremental

known classes
Known classes &
unknown classes

Open-vocabulary Recognition Matching Identifying classes via natural language Unsupervised - Classes in a vocabulary

Table 3: A comparison of Closed Set Recognition, Open Set Recognition (OSR), Open World Recognition, and
Open-vocabulary Recognition (OVR).

where the input images and classes during the vo-
cabulary expansion come from the same data dis-
tribution. While the protocol is only an approxi-
mation of the real open world, current CLIP-like
models have exhibited serious performance degra-
dation. In this section, we take a step further toward
real open recognition by conducting a vocabulary
expansion setting at the dataset level, where the
expanded vocabularies are from different datasets.
In this way, the relationship between vocabularies
is more uncertain and thus can be viewed as a rig-
orous stress test for the CLIP-like models. Specifi-
cally, we group all categories in a dataset into one
vocabulary. Afterward, the inputs and classes of the
entire new dataset are introduced at each expansion.
Classes in the new vocabulary will be removed if
they already exist in the previous vocabularies.

The experiments are conducted with datasets for
generic objects, including CIFAR10 (Krizhevsky
and Hinton, 2009), CIFAR100 (Krizhevsky and
Hinton, 2009), Caltech101 (Fei-Fei et al., 2004),
SUN397 (Xiao et al., 2010) and ImageNet (Deng
et al., 2009), and specialized datasets focus-
ing on fine-grained categories, including Flow-
ers102 (Nilsback and Zisserman, 2008), Oxford-
Pets (Parkhi et al., 2012) and StanfordCars (Krause
et al., 2013). Without loss of the generality, we
merge 3 datasets and evaluate the following dataset
compositions:

(1) CIFAR100-Caltech101-SUN397

(2) CIFAR10-CIFAR100-ImageNet

(3) Flowers102-OxfordPets-StanfordCars

Composition (1) and (2) probe the performance
when all the expanded datasets are generic thus
the classes in different datasets are potentially
semantic-correlated, while the composition (3) tar-
gets at scenarios where the coming datasets have
little correlation with previous ones. To eliminate

the effect of vocabulary expansion order, we report
the average performance of all A3

3 = 6 possible
trials for each composition.

Table 7 demonstrates the result of the dataset-
level expansion. First, the performance of CLIP-
like models on generic dataset expansion drops
dramatically. For example, the accuracy (Acc-E)
of CLIP (RN101) decreases by an averaged abso-
lute point of 14.2 on the CIFAR100-Caltech101-
SUN397 composition during expansion, and 14.5
on the CIFAR10-CIFAR100-ImageNet composition.
Due to the existence of subclass-superclass relation-
ship for some classes in different generic datasets,
e.g., cat in CIFAR10 and tiger cat in ImageNet,
CLIP is extremely unstable on such expansion
across generic datasets. For example, the Acc-
S of CLIP (RN101) on the CIFAR10-CIFAR100-
ImageNet composition is 28.2% lower than Acc-C,
indicating the models are prone to be confused
about the subclass-superclass relationship. Mean-
while, the CLIP-like models exhibit much bet-
ter extensibility and stability on the dataset-level
expansion across specialized datasets, e.g., the
Flowers102-OxfordPets-StanfordCar composition.
The vocabularies of this composition are intrinsi-
cally disjoint in semantics, so the model can be
stably extended. In summary, our investigations
on the dataset level expansions along with the task
level in the paper show the current CLIP-like mod-
els fail to meet the expectation of conducting real
open vocabulary recognition.

A.4 Incremental Acc-E and Acc-S on
CIFAR100

We record the Acc-E (Eq.(2)) and Acc-S (Eq.(5))
after each vocabulary expansion on CIFAR100 to
investigate the openness of CLIP-like models.

Figure 10 shows the Acc-E for 20 trials as new
vocabularies are merged incrementally. The falling
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Vocabulary (Superclass) Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 4: Superclass-class hierarchy in CIFAR100. Each superclass corresponds to a vocabulary, and each vocabulary
has 5 classes. There are 20 kinds of vocabulary in total, specified by (Krizhevsky and Hinton, 2009).

lines indicate that the model is either performing
poorly on the new input images, or that some im-
ages that were correctly identified before are mis-
classified after introducing the new classes.

Figure 11 shows Acc-S of CLIP-like models
during non-target vocabulary expansion. Each sub-
figure represents the situation when one vocabu-
lary is selected as the target vocabulary. As the
remaining 19 non-target vocabularies are incorpo-
rated and the model is required to recognize the 5
target classes from 100 potential classes, the accu-
racy drops sharply. The decrease of Acc-S brought
by each introduction of non-target vocabulary indi-
cates that more images from the target vocabulary
are incorrectly classified into the new non-target
vocabulary by models.

A.5 Retrieval-enhanced prompt engineering

In light of the previous investigations, we propose
a simple yet effective method named Retrieval-
enhanced Prompt Engineering (REPE) to enforce
the distinguishability of class features and the
image-class semantic alignment (Cao et al., 2020;
Ren et al., 2021). Recall that the context for each
class name is the same in vanilla CLIP-like models
(e.g., “a photo of a [CLASSNAME]”), making
it difficult to discriminate between distinct visual
categories because the semantics of each cannot be
holistically represented (Zhou et al., 2022).

To remedy this, we propose to customize each
class description with diverse captions retrieved
from the pre-training corpus as a prompt ensemble.
Specifically, for each class description based on
the original prompt, we utilize CLIP to recall the
most similar images from the pre-training dataset
via image-text similarity, then obtain their corre-
sponding captions. The retrieved captions with
no appearance of the class name are filtered out,
yielding K captions. Such a workflow leverages
both visual semantics and class names, achieving
better performance. Table 8 shows some cases
of the captions retrieved by our proposed REPE
on CIFAR100. They share the same target of in-
terest with the original prompt, i.e., “a photo of
a [CLASS]”, but provide the context in which the
class name is located and thus have richer seman-
tics. For example, given a class like bridge, the
retrieved captions describe its possible properties
(e.g., “golden”, “wooded”), connections to other
objects (e.g., “over a mountain river”), etc., yield-
ing more expressive and distinguishable text fea-
tures of the class.

After retrieval, we encode the retrieved captions
and conduct a mean pooling operation among them.
The final text representation is:

fREPE
T (ti) = (1− λ)fT (ti) + λ

1

K

K∑

j

fT (rtij),
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Vocabulary (Superclass) Classes

garment

trench coat, abaya, gown, poncho, military uniform,
jersey, cloak, bikini, miniskirt, swimming trunks,
lab coat, brassiere, hoopskirt, cardigan, pajama,
academic gown, apron, diaper, sweatshirt, sarong

bird

African grey, bee eater, coucal, American coot, indigo bunting,
king penguin, spoonbill, limpkin, quail, kite,
prairie chicken, red-breasted merganser, albatross, water ouzel, goose,
oystercatcher, American egret, hen, lorikeet, ruffed grouse

reptile

Gila monster, agama, triceratops, African chameleon, thunder snake,
Indian cobra, green snake, mud turtle, water snake, loggerhead,
sidewinder, leatherback turtle, boa constrictor, garter snake, terrapin,
box turtle, ringneck snake, rock python, American chameleon, green lizard

arthropod

rock crab, black and gold garden spider, tiger beetle, black widow, barn spider,
leafhopper, ground beetle, fiddler crab, bee, walking stick,
cabbage butterfly, admiral, lacewing, trilobite, sulphur butterfly,
cicada, garden spider, leaf beetle, long-horned beetle, fly

mammal

Siamese cat, ibex, tiger, hippopotamus, Norwegian elkhound,
dugong, colobus, Samoyed, Persian cat, Irish wolfhound,
English setter, llama, lesser panda, armadillo, indri,
giant schnauzer, pug, Doberman, American Staffordshire terrier, beagle

accessory

bib, feather boa, stole, plastic bag, bathing cap,
cowboy boot, necklace, crash helmet, gasmask, maillot,
hair slide, umbrella, pickelhaube, mit- ten, sombrero,
shower cap, sock, running shoe, mortarboard, handkerchief

craft

catamaran, speedboat, fireboat, yawl, airliner,
container ship, liner, trimaran, space shuttle, aircraft carrier,
schooner, gondola, canoe, wreck, warplane,
balloon, submarine, pirate, lifeboat, airship

equipment

volleyball, notebook, basketball, hand-held computer, tripod,
projector, barbell, monitor, croquet ball, balance beam,
cassette player, snorkel, horizontal bar, soccer ball, racket,
baseball, joystick, microphone, tape player, reflex camera

furniture

wardrobe, toilet seat, file, mosquito net, four-poster,
bassinet, chiffonier, folding chair, fire screen, shoji,
studio couch, throne, crib, rocking chair, dining table,
park bench, chest, window screen, medicine chest, barber chair

instrument

upright, padlock, lighter, steel drum, parking meter,
cleaver, syringe, abacus, scale, corkscrew,
maraca, saltshaker, magnetic compass, accordion, digital clock,
screw, can opener, odometer, organ, screwdriver

man-made structure

castle, bell cote, fountain, planetarium, traffic light,
breakwater, cliff dwelling, monastery, prison, water tower,
suspension bridge, worm fence, turnstile, tile roof, beacon,
street sign, maze, chain-link fence, bakery, drilling platform

wheeled vehicle

snowplow, trailer truck, racer, shopping cart, unicycle,
motor scooter, passenger car, minibus, jeep, recreational vehicle,
jinrikisha, golfcart, tow truck, ambulance, bullet train,
fire engine, horse cart, streetcar, tank, Model T

produce

broccoli, corn, orange, cucumber, spaghetti squash,
butternut squash, acorn squash, cauliflower, bell pepper, fig,
pomegranate, mushroom, strawberry, lemon, head cabbage,
Granny Smith, hip, ear, banana, artichoke

Table 5: Superclass-class hierarchy in ImageNet (Entity13). Each superclass corresponds to a vocabulary, and each
vocabulary has 20 classes. There are 13 kinds of vocabulary in total, specified by BREEDS (Santurkar et al., 2021).
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Vocabulary (Superclass) Classes

salamander eft, axolotl, common newt, spotted salamander
turtle box turtle, leatherback turtle, loggerhead, mud turtle
lizard whiptail, alligator lizard, African chameleon, banded gecko
snake night snake, garter snake, sea snake, boa constrictor
spider tarantula, black and gold garden spider, garden spider, wolf spider
grouse ptarmigan, prairie chicken, ruffed grouse, black grouse
parrot macaw, lorikeet, African grey, sulphur-crested cockatoo
crab Dungeness crab, fiddler crab, rock crab, king crab
dog bloodhound, Pekinese, Great Pyrenees, papillon
wolf coyote, red wolf, white wolf, timber wolf
fox grey fox, Arctic fox, red fox, kit fox
domestic cat tiger cat, Egyptian cat, Persian cat, Siamese cat
bear sloth bear, American black bear, ice bear, brown bear
beetle dung beetle, rhinoceros beetle, ground beetle, long-horned beetle
butterfly sulphur butterfly, admiral, cabbage butterfly, ringlet
ape gibbon, orangutan, gorilla, chimpanzee
monkey marmoset, titi, spider monkey, howler monkey

Table 6: Superclass-class hierarchy in ImageNet (Living17). Each superclass corresponds to a vocabulary, and each
vocabulary has 4 classes. There are 17 kinds of vocabulary in total, specified by BREEDS (Santurkar et al., 2021).

CIFAR100-Caltech101-SUN397 CIFAR10-CIFAR100-ImageNet Flowers102-OxfordPets-StanfordCars

Extensibility Stability Extensibility Stability Extensibility StabilityModel
Acc-C

Acc-E ∆ Acc-S ∆
Acc-C

Acc-E ∆ Acc-S ∆
Acc-C

Acc-E ∆ Acc-S ∆

CLIP (RN101) 65.9 51.7 -14.2 52.7 -13.2 62.4 47.9 -14.5 34.2 -28.2 65.8 63.1 -2.7 65.7 -0.1
CLIP (ViT-B/32) 72.0 59.4 -12.6 61.2 -10.8 70.9 52.7 -18.2 41.3 -29.6 65.8 62.0 -3.8 65.8 -0.0
CLIP (ViT-B/16) 74.6 60.6 -14.0 61.7 -12.9 74.7 56.6 -18.0 43.3 -31.4 72.3 69.6 -2.7 72.3 -0.0

SLIP (ViT-B/16) 58.6 44.4 -14.2 46.3 -12.3 55.6 36.7 -18.9 30.5 -25.1 35.0 26.0 -9.0 35.0 -0.0
DeCLIP (ViT-B/32) 74.3 60.8 -13.5 63.3 -11.0 73.0 55.4 -17.6 45.1 -27.9 70.2 63.3 -6.9 70.2 -0.0

PE (ViT-B/32) 71.8 59.9 -11.9 59.6 -12.2 72.2 53.5 -18.7 41.6 -30.6 65.7 62.0 -3.7 65.7 -0.0
PE (ViT-B/16) 75.0 61.5 -13.5 62.5 -12.5 75.4 56.7 -18.7 41.3 -34.1 72.5 70.0 -2.5 72.5 -0.0

Table 7: Extensibility and stability of CLIP and its variants during dataset-level vocabulary expansion. ∆ refers to
the decline of Acc-E/Acc-S (%) compared to Acc-C (%). PE denotes Prompt Ensemble.

Class Retrieved captions

apple
“Apple slices stacked on top of each other”
“Apples growing on a tree”
“Still life with apples in a basket”

woman
“Portrait of a young woman”
“Woman standing at the window”
“Confident woman in a red dress and gold crown”

bridge
“The golden bridge in Bangkok”
“Bridge on the River Kwai ∼Video Clip”
“Wooden bridge over a mountain river”

ray
“Stingray in the Grand Cayman, Cayman Islands stock photography”
“Common Stingray swimming close to the sea floor.”
“Sun Rays Tours: Go Pro captured the rays under water”

Table 8: Instances of the captions retrieved by our REPE on CIFAR100.
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CIFAR100 ImageNet (Entity13) ImageNet (Living17)
Model

Acc-C Acc-E Acc-S Acc-C Acc-E Acc-S Acc-C Acc-E Acc-S

CLIP (RN101) 68.3 55.4 54.9 80.4 77.4 77.3 77.6 74.5 74.4
REPE (RN101) 68.4 (+0.1) 55.5 (+0.1) 55.2 (+0.3) 81.7 (+1.3) 79.2 (+1.8) 79.0 (+1.7) 77.8 (+0.2) 75.3 (+0.8) 75.2 (+0.8)
CLIP (ViT-B/32) 78.0 69.6 68.9 80.8 78.0 77.8 78.0 74.4 75.0
REPE (ViT-B/32) 78.5 (+0.5) 70.9 (+1.3) 70.6 (+1.7) 82.3 (+1.5) 79.8 (+1.8) 79.6 (+1.8) 79.0 (+1.0) 76.4 (+2.0) 76.2 (+1.2)
CLIP (ViT-B/16) 79.7 72.6 72.0 83.5 81.1 81.0 79.5 77.9 77.6
REPE (ViT-B/16) 79.8 (+0.1) 72.9 (+0.3) 72.6 (+0.6) 85.4 (+1.9) 83.3 (+2.2) 83.2 (+2.2) 79.9 (+0.4) 78.4 (+0.5) 78.2 (+0.6)

Table 9: Extensibility and stability of our REPE method on CIFAR100 and ImageNet datasets.

Method K-shot CIFAR100 ImageNet

CLIP-Adapter 4 66.6 63.0
CLIP-Adapter + REPE 4 67.5 (+0.9) 63.3 (+0.3)
CLIP-Adapter 16 69.0 64.6
CLIP-Adapter + REPE 16 69.8 (+0.8) 64.9 (+0.3)

Table 10: Accuracy of CLIP-Adapter and our REPE
method with few-shot learning.

where rtij is the j(th) retrieved caption for class
i and λ is a weighting factor. After that, the en-
semble text representation fREPE

T (ti) is adopted as
the class anchor for conducting the image clas-
sification. With REPE, the representation of the
class description shifts towards that of the repre-
sentative captions in the pre-training dataset, which
alleviates the semantic inconsistency between pre-
training and inference.

Experiments We retrieve the images and cap-
tions from CC12M (Changpinyo et al., 2021), a
subset of the pre-training dataset of CLIP. The im-
ages and captions are pre-encoded within an hour
using a single RTX TITAN GPU, then we build
their indices for KNN search with the FAISS frame-
work (Johnson et al., 2019), which also takes about
an hour. Once the indices are built, we can ef-
ficiently search over the dataset according to the
query image in less than 5 ms, which is applicable
for query-intensive scenarios.

Table 9 shows the results of REPE. The hyper-
parameter K is 100 and λ is 0.25. REPE con-
sistently improves the extensibility and stability
of CLIP by an average of 1.2% across all three
datasets. We further evaluate the quality of the en-
hanced representations by analyzing the loss of text
uniformity and inter-modal alignment. As shown in
Figure 7, our proposal effectively reduces ℓuniform-T
from −0.8 to −1.0 and ℓalign from 1.5 to 1.4, veri-
fying its effectiveness in improving the class anchor
for better extensibility and stability. Additionally,

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
Margin

0

100

200

300

400

500

600

700

800 CLIP (ViT-B/32)
REPE

Figure 9: Margin distribution of similarity scores of our
REPE (blue) and CLIP (ViT-B/32) (red). The median
value of REPE’s distribution (the blue vertical line) is
larger than that of CLIP (the red line), indicating that
the predictions of REPE are harder to be inverted with
competing classes than the original CLIP.

as shown in Figure 9, REPE increases the median
value of the margin distribution from 0.005 to 0.01
and pushes the overall distribution towards the pos-
itive side compared to vanilla CLIP. It indicates
that REPE widens the gap between positive and
negative class features, making it more difficult to
invert predictions with competing classes. These
findings support REPE’s effectiveness in alleviat-
ing the openness issue.

It is worth noting that compared to the method
that requires computation-intensive pre-training
procedures (DeCLIP and SLIP), and the prompt-
tuning approach (CoOp) demands access to
the downstream target dataset, our REPE is a
lightweight framework for the zero-shot inference
stage without fine-tuning. Besides, since REPE is
model-agnostic and orthogonal to parameter-tuning
methods, it can also be combined with fine-tuning
methods like adapter-tuning (Gao et al., 2021), to
achieve a further performance boost of 0.6 on CI-
FAR100 and ImageNet, which demonstrates the
adaptability and superiority of our method. Please
refer to Table 10 for details.
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Figure 10: Incremental Acc-E of CLIP and its variants on CIFAR100.
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Figure 11: Incremental Acc-S of CLIP and its variants on CIFAR100.
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