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Abstract

In the wake of responsible AI, interpretability
methods, which attempt to provide an explana-
tion for the predictions of neural models have
seen rapid progress. In this work, we are con-
cerned with explanations that are applicable to
natural language processing (NLP) models and
tasks, and we focus specifically on the analysis
of counterfactual, contrastive explanations. We
note that while there have been several explain-
ers proposed to produce counterfactual expla-
nations, their behaviour can vary significantly
and the lack of a universal ground truth for
the counterfactual edits imposes an insuperable
barrier on their evaluation. We propose a new
back translation-inspired evaluation methodol-
ogy that utilises earlier outputs of the explainer
as ground truth proxies to investigate the consis-
tency of explainers. We show that by iteratively
feeding the counterfactual to the explainer we
can obtain valuable insights into the behaviour
of both the predictor and the explainer models,
and infer patterns that would be otherwise ob-
scured. Using this methodology, we conduct a
thorough analysis and propose a novel metric
to evaluate the consistency of counterfactual
generation approaches with different character-
istics across available performance indicators.1

1 Introduction

The eXplainable AI (XAI) field has risen to promi-
nence in recent years, spurred on by the success of
opaque (black-box) deep learning models, which
despite their impressive performance cannot be
used in practice in many cases due to ethical and
legal (Goodman and Flaxman, 2017) concerns. To
mitigate this, multiple explanation methodologies

1Data and Code available at: https://github.com/
geofila/Counterfactuals-of-Counterfactuals

Figure 1: Using the back-translation framework to feed
back the edited text to MiCE: We see the evolution of
edits (centre) and predicted labels (left) through multiple
feedback steps (right). As feedback steps increase, we
observe an amplification of erroneous edits.

have been proposed for different tasks, data do-
mains and use-cases (Bodria et al., 2021). One
family of methods for explaining classifiers are
counterfactual or contrastive explanations (Verma
et al., 2020; Stepin et al., 2021; Balkir et al., 2022).
These answer the question “What should change
in an input sample for it to be classified to class B
instead of class A” and can be especially useful in
real-world applications as they offer recourse to a
user. For example someone who was declined a
loan by a bank’s AI could ask "what is the smallest
change I should do for my loan to be approved"
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(Wachter et al., 2017).

However, many XAI methods have come un-
der scrutiny, as they can often be misleading and
cause more problems than they solve (Rudin, 2019).
Specifically counterfactual explainers have been
shown to suffer from issues of robustness (Slack
et al., 2021; Rawal et al., 2020; Delaney et al.,
2021), and while there have been attempts to for-
malise notions of interpretability and its evaluation
(Doshi-Velez and Kim, 2017), there is no agree-
ment on what constitutes a good explanation (Lip-
ton, 2018). This ambiguity regarding the desiderata
for a good explanation and the fact that they can
vary according to the use-case, transcends to the
chosen evaluation methods used, which vary ac-
cordingly and offer a limited perspective of the
editor(s) behaviour. Thus it is imperative that we
develop further ways to evaluate and compare XAI
methods in more depth.

For counterfactual explanations, existing met-
rics enable comparisons between different meth-
ods, however the absence of a ground truth does not
allow us to assess the quality of a single explainer
in a standalone mode and evaluate its output on
how close it is to a (theoretically attainable) ideal
explanation. Finding such an ideal explanation in
practice is not easy, but we can expand on the idea
of evaluation by comparison, and compare a coun-
terfactual system’s performance against itself. Fol-
lowing this rationale, we propose a methodology
that is inspired by back-translation, which has been
used for evaluating and improving machine trans-
lation systems (Tyupa, 2011; Edunov et al., 2018).
Specifically, by feeding the output of the system
to itself (a counterfactual of a counterfactual), we
would expect the result to be “at least as good as”
the original input since we know that the original
input exists, is actionable, and feasible, thus it con-
stitutes a “lower bound” for the generated edit, and
a proxy for ground truth.

This methodology can be applied to obtain a
lower bound on several metrics; in this work we
focus on its application to minimality since it is the
metric that most of the editors attempt to minimise
as a primary criterion (Guidotti, 2022). One of the
desired characteristics of counterfactual explana-
tions is that they constitute minimal changes to the
input sample, and minimality is the metric used
to measure the distance between the original and
the edited samples. Due to the lack of an ideal
explanation to be used as ground truth, there is

no way to know if a specific value of minimality
is optimal (and generally good or bad). Given a
ground truth explanation, it is possible to calculate
the optimal minimality to be obtained, but without
it, it is only possible to compare minimality values
across different edits/editors.

Using our proposed methodology we introduce
a metric (which we call inconsistency) that uses
the editor’s previous outputs as reference points to
evaluate an editor’s capability to produce minimal
edits. We feed the output of the editor back to it as
input to produce a new edit, and we expect the new
edit to be at least as good as the edit of the previous
step. For example, in Figure 1 we see the outputs
through different steps of our feedback loop ap-
proach, so when we feed the first edit (“This movie
was awful!”) back to the counterfactual system,
we expect the generated edit to be at least as good
as the original text (“This movie was fantastic!”).
However, we see that the editor adds an erroneous
whitespace to the generated edit (see 2:second edit
in Figure 1) so we know that there exists a better
output that the system was not able to find, thus
for sure the system did not produce the optimal
output. Note that a counterfactual system with a
non-zero value of inconsistency is guaranteed to be
sub-optimal, however a zero value does not indicate
that it is optimal. This approach essentially sets
a lower bound for the editor, but we do not have
access to the higher bound which could be impossi-
ble to define automatically. In the rest of the paper
we provide a detailed description of our proposed
methodology and novel metric and demonstrate its
application on several frequently used editors with
different characteristics.

2 Background

In this paper we are concerned with systems that
attempt to minimally edit a given textual input so
that they change the prediction of a classifier; we
will henceforth refer to such systems as counterfac-
tual editors, or simply editors. Below, we provide
a categorisation of such systems, along with related
literature, in addition to an overview of how they
are being evaluated in related works.

2.1 Counterfactual Editors

The intended use-case of editors varies, as do the
methodologies they use for achieving their goal.
For example, approaches such as MiCE (Ross et al.,
2020), and DoCoGen (Calderon et al., 2022) op-
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timise their edits directly on the output of a given
predictor, g() by pseudo-randomly masking words
in the text and optimising the proposed replace-
ment to change the output of g. On the contrary,
editors such as Polyjuice (Wu et al., 2021) aim to
identify generic text perturbations that can change
the semantics of a sentence, without targeting a spe-
cific predictor. They frame this as general purpose
counterfactuals since they can be used for a wider
range of purposes, from data-augmentation to pro-
ducing counterfactual explanations or conditioned
to a specific task/dataset. Finally, a large family
of editors aim to generate adversarial examples,
whose intended use-case is to identify vulnerabil-
ities of a classifier and expose them. Adversarial
models may differ from other counterfactual edi-
tors in that they do not necessarily aim to generate
a minimal or fluent edit of the original input, hence
the edits might include addition of noise, etc. A
collection of adversarial example generators for
NLP including TextFooler (Jin et al., 2020) and
Bert-Attack (Li et al., 2020), is implemented in the
TextAttack framework (Morris et al., 2020). The
intuitively simpler form of such methods concerns
using gradient-descent on the instance to generate
examples that alter the predictor’s class while si-
multaneously optimising the value of one or more
metrics (Mothilal et al., 2020). Instead of attempt-
ing random permutations to generate counterexam-
ples, other editors alter only the important features
of each text. This importance is calculated in a
variety of ways, including training a classifier to
extract the correlation of each term with the task
(Wang and Culotta, 2021), measuring the effect of
a feature deletion on the prediction of the classifier
(Jin et al., 2020), or using the predictor’s attention
(Ross et al., 2020). Then the important terms can
be replaced with synonyms, antonyms, important
terms from other tasks or using pre-trained seq2seq
models (Madaan et al., 2021; Ross et al., 2021,
2020; Wu et al., 2021; Fern and Pope, 2021). In
our experiments, we employed editors with differ-
ent intended use-cases and internal logic, namely
MiCE, Polyjuice and TextFooler.

2.2 Evaluation of Counterfactual Editors

A practical criterion for evaluating editors mea-
sures how often the output of a predictor flips to
the desired class, referred to as flip-rate, validity,
fidelity or attack success rate. Other metrics relate
to the quality of generated text and include fluency,

as used for example in MiCE, Polyjuice , and CAT
(Chemmengath et al., 2021), grammaticality and
semantics as defined in Textattack and perceptibil-
ity as defined in counterfactualGAN (Robeer et al.,
2021). These metrics rely on the use of language
models, either comparing masked language model
loss between original and edited text, or computing
a semantic similarity between original and edited
text. Proximity as described in (Verma et al., 2020;
Keane et al., 2021) refers to generic distance mea-
sures between edited and original data. For natural
language processing, the distance metric used is
typically the word level Levenshtein edit distance
(Levenshtein et al., 1966), referred to also as mini-
mality (MiCE), closeness (Polyjuice) and edit dis-
tance (CAT). There are more criteria that have been
used for the evaluation of counterfactuals, such as
sparcity (Keane et al., 2021) referring to the num-
ber of features being changed, and closeness to the
training data (Verma et al., 2020) or relative dis-
tance (Keane et al., 2021) involve comparing the
explanations with instances from the training data.
Finally, a more recent approach for evaluating coun-
terfactual explanations involves measuring the de-
gree to which the explanations help a student model
(Pruthi et al., 2022) or a human (Doshi-Velez and
Kim, 2017; Treviso and Martins, 2020) to learn to
simulate a black-box teacher model. This provides
a measure of informativeness of the explanations.

In this work we focus on evaluation with auto-
mated metrics that do not require human input or
external data, and are most frequently used in ed-
itor evaluation, namely, minimality, flip-rate and
fluency. These metrics aim to quantify different
aspects of editors’ behaviour in a comparative fash-
ion. Instead, we propose an inconsistency metric
which allows to set a lower bound on the editor’s
ability to reach an optimal counterfactual and as
such can be useful without the need to compare
to other editors. For instance, a minimality value
for a given editor carries no information on its own
regarding optimality. However, if an editor has a
value inc@1 = x for the inconsistency of mini-
mality, it means that on a given test-set it missed
the optimal counterfactual solution at least by an
average of x tokens.

3 Back-translation for analyzing editors

We formalise our problem as follows. We assume
access to a classifier g such that g : L → [0, 1]C ,
where L the set of text for a specific language and C
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is the number of different classes. We then consider
the counterfactual editors for g as functions f :
L → L, and we assume that the goal of the editor
f is threefold:

1. The edited text is classified to a different class
argmax g(f(x)) ̸= argmax g(x).

2. The edits are minimal with respect to some dis-
tance metric d: f = argminh∈F d(x, h(x)),
where F is the set of functions for which
argmax g(f(x)) ̸= argmax g(x).

3. The edited text f(x) is fluent and within the
distribution of L.

To examine the degree to which these criteria
hold, we analyse the behaviour of editors when
they are iteratively fed back with their output, i.e.,
we are studying the function f(f(f(...f(x)))), and
evaluating the three criteria described above after
n applications of the editor. Specifically, we first
define a novel evaluation metric to quantify the
second criterion based on the iterative feedback
approach, and then we discuss how the first and
third criteria can be more thoroughly checked by
measuring performance metrics after n steps of
feedback (notated as metric@n).

3.1 (In)consistency of minimality

Intuitively, since the edits are ideally minimal, if
a sentence A is edited into sentence B and their
distance is d(A,B), then feeding back sentence B
to the editor should yield a sentence C for which
d(B,C) ≤ d(A,B), otherwise C is not the result
of a minimal edit. This inequality holds based on
that (a) we know that A exists, (b) we assume all
textual edits to be reversible, hense A is reach-
able from B and (c) d is symmetric, meaning
d(A,B) = d(B,A). Thus, in this case, A can
be used as a proxy to a ground truth, to be com-
pared with C. Given a distance metric d (such
as Levenshtein distance, embedding cosine simi-
larity, etc.), we can measure how consistent the
counterfactual editor is w.r.t d by iteratively feed-
ing back the edited text to the editor and measuring
the change in the value of d. Specifically, given
an editor f : L → L, a text x ∈ L and a distance
d : L × L → R+ we define the inconsistency of f
with respect to d, for x as:.

inc(f, x) = relu[d(f(f(x)), f(x))− d(f(x), x)].
(1)

The difference d(f(f(x)), f(x)) − d(f(x), x)
shows how much the distance d changes between
consecutive applications of the editor f and the
relu function allows to take into account only the
increase of the distance. This is important, because
a decrease in the distance, which would correspond
to a negative difference, is not necessarily an in-
dicator of a good set of edits. It could, for exam-
ple, indicate that not enough changes were made,
and there is no way to know if that is the case, or
if a better, more minimal set of edits was found.
Contrarily, when the value is positive, we have a
guarantee that a better set of edits exists, namely,
the one of the previous feedback step. Equation 1
counts the difference in d after a single feedback it-
eration though the editor, but as with other metrics
in this work, we can keep feeding back the output
of the editor to itself, and compute inc(f, f(x)) to
get more information about the editor’s inconsis-
tency. When we do this, we measure the average
inconsistency after n steps of feedback as:

inc@n(f, x) =
1

n

n−1∑

i=0

inc(fi+1(x), fi(x)), (2)

where f0(x) = x and fi(x) = f(fi−1(x)).

3.2 Diverging from the distribution

Of the desiderata for counterfactual editors, the
constraint that f(x) is fluent and within distribu-
tion can be hard to verify, as the true distribu-
tion of texts L may be inaccessible, and fluency
is hard to evaluate in a systematic and automated
way. The token-level perplexity of a large language
model is a frequently used proxy to the fluency
estimation, employed in multiple NLP tasks (John
et al., 2018; Wang and Cho, 2019; Vasilakes et al.,
2022). It involves using a language model MD
trained on a large dataset D and computing the
averaged perplexity over a given sequence of text
x = x1, x2, ..., xT as follows:

PPL(x) = exp

{
1

T

T∑

t=1

log pMD(xt|x1:t−1)

}
.

(3)
Note that for the fluency estimation MD in equa-

tion 3 is not finetuned on L. Assuming L is ac-
cessible, we can also fine-tune MD on it, obtain-
ing a model ML that we can use to detect out-
of-distribution (OOD) cases (Arora et al., 2021)
using the same PPL formula described in equation
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3, since in this case we can assume that the prob-
ability over each token predicted by ML reflects
the probability under the distribution of L. We
employ and compare both PPL over MD (PPLD)
and PPL over ML (PPLL) in our experiments.
Furthermore, PPLL@n and PPLD@n could more
clearly show the divergence from the distribution of
generated samples, and the deterioration of fluency.

3.3 Flip rate

So far we have not taken under consideration the
ability of the editor to change the predicted class,
which is typically measured as flip rate. Many re-
cently proposed counterfactual editors achieve flip
rates above 95%, leaving a small margin to confi-
dently compare editors with respect to this metric.
Using the proposed feedback methodology, we can
measure the flip rate after n loops of feedback to
get more detailed information about the ability of
the editor to consistently change the predicted class
after several perturbations of the sentence.

4 Experimental Setup

We evaluate our approach on two different datasets
and classifiers trained on them. Specifically, we
use a binary classifier trained for sentiment classifi-
cation on the IMDb dataset (Maas et al., 2011) and
a multi-class short-document classifier trained on
Newsgroups (Lang, 1995). We provide details and
statistics for each dataset in Appendix A.

Using these classifiers, we apply our methodol-
ogy on the three counterfactual editors described
in §4.2 and examine the metrics described in §3 by
generating edits, testing the classifiers on them and
feeding back the edited text to the editor for n = 10
steps. For each editor we apply our methodology
as follows: for a given input text x, at step n we
select from the pool of generated edited texts the
one with the minimum minimality that alters the
prediction, if such an output exists, otherwise we
select the minimum minimality output. We repeat
this process until n = 10 and discuss the behaviour
of each editor across metrics in §5 and §6.

We also study the impact of test-set size on the
observed differences between results and the statis-
tical significance of findings. We present detailed
results in Appendix E. We found that for a test
set size greater than 200 texts results converge on
both datasets and we obtain statistically significant
differences. Based on these findings we randomly
sample 500 texts from the IMDb dataset for our ex-

periments, to reduce the computational load. Since
NewsGroups is smaller, we use the full dataset.

4.1 Evaluation

The metrics that we use with our methodology are:
Minimality: The word-level Levenshtein distance
between original and edited text.
inc@n: Inconsistency of word-level Levenshtein
distance as per equation 2.
Flip rate: The ratio nflipped

nall
, where nall is the size of

the dataset, and nflipped are the samples for which
the prediction changes after applying the editor.
ppl-base: Language model perplexity of GPT-2,
a large, general-domain language model (Radford
et al., 2019), as per equation 3.
ppl- fine: Language model perplexity of GPT-2,
fine-tuned on IMDB 2 and on Newsgroups 3. Used
to examine how “unexpected” the edited text is
with respect to each dataset.

We also compute the above metrics after n steps
of feedback, with the exception of inc@n, which
uses the feedback steps by definition.

4.2 Editors

We experimented with three editors with different
characteristics. Brief descriptions of each editor
and the main differences between them are pre-
sented below, and more details in Appendix B.

Polyjuice Polyjuice is a general-purpose coun-
terfactual generator that produces perturbations
based on predefined control types. This editor em-
ploys a GPT-2 model that was fine-tuned on various
datasets of paired sentences (input-counterfactual),
including the IMDb dataset. Polyjuice does not use
the classifier predictions during the generation of
the counterfactual texts but rather focuses on the
variety of the edits based on a learned set of control
codes such as "negation" or "delete".

MiCE MiCE is a two-step approach to generat-
ing counterfactual edits. It uses a T5 deep neural
network to fill the blanks on a text, which is fine-
tuned in the first step to better fit the dataset distri-
bution. In the second step, the input text is masked
either randomly or by using predictors attention in
a white box manner, and the fine-tuned model fills
these blanks. This step aims to learn the minimum
edits that will alter the classifier’s prediction. In our
experiments, we employed MiCE in a white box

2https://huggingface.co/lvwerra/gpt2-imdb
3https://huggingface.co/QianWeiTech/GPT2-News
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manner, meaning that the fine-tuning is done by
using the predictor’s outputs (and not the ground-
truth label), and for selecting the masks’ locations,
the classifier’s attention is used in order to com-
pare its result with Polyjuice which also utilised a
deep neural network for the generation, but uses
the predictor in a black box manner.

TextFooler TextFooler is a method for generat-
ing adversarial examples for a black-box classi-
fier. The generation process differs from other ed-
itors since it does not employ a deep neural net-
work, such as GPT2 or T5, to construct the pro-
duced counterfactual. Instead consists of finding
the words that are influential to the predicted class
and replacing them in a more deterministic way.
The influence of each word is calculated by mea-
suring how its removal alters the predictor’s output
(Liang et al., 2017). The alternatives that can re-
place a word are predefined to be the closest match
in the embedding space and are thus independent
of the rest of the sentence and the classifier. Hence,
TextFooler chooses single word replacements that
are synonyms with the removed word, with the
added constraint of having the same part-of-speech.

5 Interpreting the inc@n metric

In Table 1 we show the results of the proposed
inc@n metric. It is important to mention that there
is an intuitive interpretation of the inc@n metric.
Since we use Levenstein distance in our experi-
ments, inconsistency corresponds to the mean num-
ber of tokens that the editor is altering on top of
those that were needed to produce a valid counter-
factual. The reasons behind inconsistency could
vary depending on the mechanism of selecting im-
portant parts of the source text, the generation pro-
cedure, or the algorithm for locating the best edits.

We can observe significant differences for inc@n
between the editors, reflecting the differences in the
underlying approach. TextFooler is the most consis-
tent editor, with low inc@n values that imply very
rare increases in minimality between steps. This
shows that the controlled nature of TextFooler’s
approach for selecting replacements is beneficial
to the generation of consistent explanations. MiCE
and Polyjuice on the other hand are less consistent,
which could be attributed to the use of large lan-
guage models in the generation process, which are
more sensitive to small perturbations that can alter
their output (Jin et al., 2020).

The comparatively high value of inconsistency

Table 1: Inconsistency (inc@n) computed on the IMDb
and Newsgroups datasets.

MiCE Polyjuice TextFooler
IMDb

inc@1 ↓ 0.86 6.21 0.01
inc@2 ↓ 5.95 4.65 0.33
inc@3 ↓ 4.65 3.98 0.36
inc@5 ↓ 4.87 2.9 0.47
inc@9 ↓ 4.73 2.22 0.49

Newsgroups
inc@1 ↓ 11.11 0.99 0.04
inc@2 ↓ 7.97 1.29 0.55
inc@3 ↓ 7.89 1.35 0.46
inc@5 ↓ 6.92 1.3 0.49
inc@9 ↓ 6.11 1.21 0.46

for Polyjuice at the first steps for IMDb, can be
explained by the fact that it has to “guess” the lo-
cations it should change in the text without access
to the predictor. Especially for longer inputs, the
search space of Polyjuice is exponentially larger.
This forces it to make more aggressive edits to
achieve the same result, often deleting a large por-
tion of the source text and seems to contribute
to Polyjuice’s reported robustness issue (Madsen
et al., 2022). For example, Polyjuice erased over
70% of the original text for 83% of the first two
steps of edits on the IMDb dataset (candidates with
lower minimality may be produced but failed to
change the class and were rejected). An exten-
sive analysis of this tendency across all editors and
datasets is presented in the Appendix D. This “ex-
treme erasure” pattern disappeared in the next steps,
where the input length was significantly smaller
(for instance original texts have on average 204 to-
kens, while the edited ones produced by Polyjuice
have 29). On the other hand, for shorter texts, for
which the search space is smaller, Polyjuice is more
consistent, without radical changes on the original
input. We hence attribute the differences between
the first and later steps of the inc@n metric to this
tendency of Polyjuice to reduce the length of long
texts. After the first step since the length of the
input texts have already been significantly reduced,
its behaviour is more consistent. This pattern is
invariant between the two datasets but not visible
on the first steps of Newsgroups results since it
contains texts with 43% fewer tokens than IMDb
on average.

To better understand what these values of inc@n
represent, in Figures 3a, 3b we show box-plots of
minimality and inc@n after each step of feedback
for the IMDb dataset (box-plots for Newsgroups
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appear in Appendix C). While the tendency is for
minimality to decrease, implying that the editors
tend to perform fewer edits after each feedback
step, there are cases where it increases, implying
inconsistency.

In Figure 3b, what stands out is the higher value
of inc@n for MiCE when n is even. Since even
steps correspond to the attempt to move from the
original class to a different one, higher inc@n in-
dicates that it is easier to transition to the original
class than from it. This could be attributed to rem-
nants of the original input text pushing the classifier
towards the original prediction, and thus requiring
fewer edits. For instance in Figure 2 we can see
an example of an edit produced by MiCE, where
clearly parts of the original text indicating positive
sentiment (marked in bold) were left unchanged.
On Newsgroups, MiCE is significantly more incon-
sistent especially in the first steps, probably due to
its requirement to select a specific target class in
contrast to the other editors (see also Appendix C).

These observations highlight the need for feed-
forward evaluations of such systems since the mini-
mality@1 reveals only a limited, dataset-dependent
aspect of editors’ capabilities and performance.
Furthermore, they show the effectiveness of ad-
ditional feedback steps to more accurately quantify
the difference between the samples produced by an
editor, and obtain a proxy for a global minimum.
In Table 1 we see that from inc@3 on the obtained
inc@n values start to converge for both datasets.

It is important to mention that the inconsistency
of minimality captures different attributes of the
editor than the minimality itself. High minimality
means that the editor made more edits in order to
alter the label of the input text. This may be due to
either a weakness of the editor or the input itself re-
quiring more edits to change class. To exclude the
latter hypothesis, it is necessary to find counterfac-
tual examples with lower minimality than the one
produced, to confirm that there are better states that
the editor could not explore. However, these states
must meet the exact same conditions that the editor
takes into account. The three editors analysed in
this study have a secondary objective of producing

Figure 2: MiCE example of an IMDb dataset sample.

Table 2: Flip-rate after feeding the original text to the
editor once (@1), and after 9 steps of feedback (@9) for
the IMDb and Newsgroups dataset.

MiCE Polyjuice TextFooler
IMDb

Flip Rate@1 ↑ 1.000 0.8747 0.6195
Flip Rate @9 ↑ 0.8561 0.9675 0.7865

Newsgroups
Flip Rate@1 ↑ 0.87 0.77 0.79
Flip Rate @9 ↑ 0.836 0.968 0.89

realistic counterexamples; hence, for instance, the
addition of random characters in the middle of the
text is not a desirable goal state, despite the fact that
it may result to a label flip with lower minimality.
Along the same lines, TextFooler aims to replace
every word with a synonym; therefore, a counterex-
ample that replaces a word with an antonym (e.g.,
’love’ with ’hate’) is not an acceptable goal state for
it. To our knowledge, there have been no efficient
or impartial methods for finding counterexamples
with a lower value of a specified metric (such as
minimality) that also meet exactly the same require-
ments as the editor. The proposed methodology
comes to fill this gap, and the inconsistency metric
can quantify the weaknesses of the editor in terms
of the studied metric, in this case, minimality. In
short, a positive inconsistency proves that there are
goal states with a lower value of the corresponding
metric that the editor should, but did not explore.

6 Additional insights from
counterfactuals of counterfactuals

Besides measuring minimality and inc@n, we also
investigated how the feedback approach can give
us additional insights for the other two desiderata
for editors, flip-rate and fluency.

6.1 Flip Rate

In Table 2 we show flip-rate measured after apply-
ing the feedback methodology. At the first step
MiCE has a perfect flip rate; if analysed in solitude
this observation might lead to the erroneous conclu-
sion that the model can always alter the class of any
text. However, this is a test-set-dependent result
and does not apply in general since the flip rate
reduces significantly in the following steps. Hence,
there are instances closer to its distribution (Section
6.1) in which MiCE could not alter the predicted
class. Conversely, the flip-rate of Polyjuice and
TextFooler increases for later feedback steps.
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(a) Minimality. (b) Inconsistency of minimality.

(c) Probability of the target class. (d) PPL of base GPT-2. (e) PPL of fine GPT-2.

Figure 3: Minimality, inc@n, and predictor probability, base-ppl and fine-ppl, after each step of feedback and for
each editor on the IMDb dataset.

To investigate this, in Figure 3c we show the
prediction probabilities for the target class after ap-
plying each editor and after each step of feedback,
where a sample is flipped if it has a target prediction
probability greater than 0.5. Comparing this figure
with the corresponding figure of the inconsistency
of minimality (Figure 3b), we can observe the same
patterns, such as differences in even and odd steps
for MiCE. Thus this figure seems to corroborate
the difficulty of the editor to return to the original
class from the counterfactual.

6.2 Fluency

We use two metrics to approximate the fluency of
the generated texts, shown in Table 3. For the ppl-
base indicator, TextFooler has the lowest value, in-
dicating fluent text, while the value does not change
after several feedback steps, which further supports
the editor’s consistency. In contrast, MiCE’s flu-
ency slightly deteriorates after feedback, which co-
incides with the editor’s inconsistency (compared
to TextFooler). Furthermore, in Figures 3d, 3e
we show the evolution of the two fluency related
metrics for each feedback step. TextFooler’s flu-
ency is relatively stable across both metrics, on
par with its low inconsistency. On the other hand,
Polyjuice appears to deteriorate in fluency, as both
the base-PPL and fine-PPL indicators have an in-

creasing trend. The most striking difference in
the perplexity patterns lies between MiCE and
Polyjuice, where for the base model perplexity is
consistently increasing for both editors, while for
the fine-tuned model, MiCE’s perplexity decreases
and Polyjuice’s continues to increase. We can thus
deduce that while both editors produce changes
that have a negative impact in the overall fluency,
in the case of MiCE which is trained exclusively on
IMDb data, the edited texts are closer to the IMDb
distribution, hinting at an “overfitting” behaviour
of sorts. Instead, Polyjuice takes advantage of dif-
ferent datasets during training and produces more
diverse edits.

7 Conclusion

In this work we introduced a methodology for
analysing different aspects of counterfactual editors
and obtaining an approximate ground truth by iter-
atively feeding back their output. Combined with
evaluation metrics from related literature, our pro-
posed approach provides new ways to understand
the counterfactual editors’ behaviour and perfor-
mance based on their intended use case, and thus
help develop better editors. We proposed inc@n, a
metric to measure the consistency of editors, and
we showed how the proposed approach can help di-
agnose and analyse a diverse set of existing editors
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Table 3: Metrics for measuring fluency computed for
three counterfactual editors, of the IMDb and News-
groups datasets, after feeding the original text to the
editor once (@1), and after 8 additional steps of feed-
back (@9)

MiCE Polyjuice TextFooler
IMDb

ppl-base@1 ↓ 4.2546 7.4525 4.1178
ppl-base@9 ↓ 4.4512 7.3825 4.1161
ppl-imdb@1 ↓ 16.5315 33.4798 18.0662
ppl-imdb@9 ↓ 14.6069 27.8074 17.9917

Newsgroups
ppl-base@1 ↓ 5.164 8.926 4.801
ppl-base@9 ↓ 5.36 7.878 4.776
ppl-newsgroup@1 ↓ 4.27 6.67 3.99
ppl-newsgroup@9 ↓ 4.4 5.90 3.98

and gain new insights on their behaviour, such as
those made apparent by observing the discrepan-
cies of odd and even steps of feedback.

Our findings allow for a more interpretable eval-
uation of editors that goes beyond mere compar-
isons between them. The results motivate further
research in this direction including experiments
on additional evaluation metrics, editors and tasks.
Apart from expanding the scope of our experiments,
we intend to look into using the feedback informa-
tion to automatically address the weaknesses and
inconsistencies of editors during fine-tuning, to ob-
tain more robust and interpretable counterfactual
edits. Along these lines, we also plan to investigate
the benefit of integrating the feedback rationale
into the training of counterfactual generation al-
gorithms; for example a back-translation inspired
objective could help alleviate the problematic be-
haviour and boost performance.

Limitations

This work focused on experiments on English
datasets and did not explore other languages. While
we expect that our assumptions hold across lan-
guages and the proposed methods and metrics can
be applied without any further modifications to
other languages this has not been explicitly verified.
Additionally, we ensured to experiment with coun-
terfactual editors that are representative of the main
counterfactual editing methodologies, however we
did not exhaustively cover all publicly available
editors as our main goal was to demonstrate that
our proposed method is widely applicable rather
than to exhaustively compare editors.
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A Dataset Analytics

A.1 IMDb

The original IMDb dataset consists of 50K movie
reviews split evenly between positive and negative
ones (binary classification). We randomly sample
500 documents from the dataset to generate a test-
set for our experiments.

In the sampled test-set, the mean number of to-
kens and characters of the selected comments are
204 and 1000, with a standard deviation of 112
and 562, respectively. In addition, 52% of these
comments are classified as "positive" while 48%
as "negative". The mean number of characters and
tokens for inputs that are classified with "positive"
sentiment is 990 and 530, with a standard deviation
of 204, and 108, respectively. The distribution for
texts that are classified with "negative" sentiment is
similar, where the mean number of characters and
tokens is 1006± 589 and 204± 115, respectively.

A.2 Newsgroups

The original Newsgroups dataset consists of 20K
short documents split evenly between 20 news-
group classes, representing the document topic. We
use the test-set partition which consists of 7K doc-
uments for our experiments, as it is provided from
scikit-learn library 4, since the train set has already
used for fine-tuning some of the editors. The mean
number of characters and tokens for this dataset is
603 and 207, with a standard deviation of 495 and
103, respectively.

The list of the 20 classes present in the
dataset is: [comp.graphics, comp.os.ms-
windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x,
rec.autos, rec.motorcycles, rec.sport.baseball,
rec.sport.hockey sci.crypt, sci.electronics,
sci.med, sci.space, misc.forsale,
talk.politics.misc, talk.politics.guns,
talk.politics.mideast, talk.religion.misc,
alt.atheism, soc.religion.christian]

B Experimental Setup

For both of our experiments, we used the predic-
tors that are used in MiCE (since MiCE requires
white box access to the predictor, and we wanted
to intervene as little as possible in editors’ code).
These predictors were built based on ROBERTA-
LARGE and were fixed during the evaluation. The

4https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

predictors’ accuracy is the same as stated in the
proposed paper, 95.9% for IMDb and 85.3% for
the Newsgroups.

We compare three counterfactual editors (MiCE,
Polyjuice, and TextFooler) using the same classi-
fier by making changes, testing the classifier on
them, and feeding back the modified text to the
editor ten times. Editors create numerous altered
versions at each feedback stage and for each in-
put text. We choose the output with the lowest
minimality that changes the prediction (counterfac-
tual goal), if such an output exists; otherwise, we
choose the output with the lowest minimality. This
design choice was made because there were cases
in which an editor may not alter the prediction of
the produced text by it made this transformation in
the following steps.

MiCE For the editor of mice, we used the pre-
trained T5 model that the authors provided5 6. This
model was fine-tuned on the same data as the pre-
dictor. For the generation procedure, we left the
default arguments for each one of the datasets as
the authors supplied on its page 7, where we also
got the code for our experiments. The only addition
that was made to this code is integrating our data
as an input to generate counterfactuals at each step.

Polyjuice We use Polyjuice through this mod-
ule8. For the generation procedure, we searched
in all the control codes (’resemantic’, ’restructure’,
’negation’, ’insert’, ’lexical’, ’shuffle’, ’quantifier’,
’delete’), and we produce as many perturbations
as it is possible for each instance. We did this
by setting the num_perturbations = 1000. In
none of our experiments, Polyjuice had returned
this plethora of results.

TextFooler We utilised TextFooler through Tex-
tAttack module9. For the sake of fair comparison,
we chose the same parameters as those presented in
the paper by the authors. The constraints concern
the disallowing of the modification of stopwords
and already modified words. Also, the threshold
of the word embedding distance that two words
are considered synonyms is defined as 0.5, and we
force the replacements to be based on pos tagging.

5https://storage.googleapis.com/allennlp-public-
models/mice-imdb-predictor.tar.gz

6https://storage.googleapis.com/allennlp-public-
models/mice-newsgroups-editor.pth

7https://github.com/allenai/mice
8https://github.com/tongshuangwu/polyjuice
9https://textattack.readthedocs.io/en/latest/
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C Newsgroups further analysis

Figure 6 depicts the inconsistency of minimality,
the perplexity of base GPT-2, and the perplexity
of fine GPT-2 for each editor on the Newsgroups
dataset. As this task is not binary, there is no pattern
between odd and even steps that we observed on
the IMDb dataset, but there is consistent behaviour.
More specifically, since the editor does not have to
return to the original class, but to any other class at
each feedback step, the difficulty of flipping labels
is similar between even and odd steps. In fact, if
we isolate the cases where the editor returns to the
original class, the behaviours observed on IMDb
still hold. Furthermore, the fact that Newsgroups is
a multi-class dataset, seems to make MiCE strug-
gle more than the other editors (see also Table 1)
due to the fact that MiCE requires a target class
to be specified, and edits the text accordingly to
flip to that class, while Polyjuice and TextFooler
allow the option to perform edits just to change
the class of the input, to any other class. We ad-
dress this requirement by defining as a target class
for each step, the second class of the prediction,
which is also the default methodology that the edi-
tor’s creators follow in their study. So the task that
MiCE performs is harder than the others (editing
a text to be classified from class A to class B is
at least as hard as editing the text to be classified
from class A to any other class), and could lead to
the observed higher inconsistency values for MiCE
and the different behaviour compared to the IMDb
dataset.

Based on the figures, we can conclude that the
proposed method produces consistent results for
the behaviour of each editor even with fewer steps.
We can thus significantly reduce the computational
cost of the method, as just two or three steps are
enough for drawing reliable conclusions.

D Length of Counterfactual texts

In order to further investigate the behaviour of each
editor regarding the number of tokens of the in-
put text, we present Figure 4, which depicts the
mean number of tokens of the edited texts relative
to the number of input tokens. The output texts
of MiCE and Textfooler are distributed equally
with the input text for both of the studied datasets.
However, Polyjuice produces text with a limited
length. There are also cases where the produced
text of Polyjuice is longer, but they are not rep-
resentative. It is worth mentioning that this may

(a) Mean number of tokens of the edited text regarding the
number of tokens of the input of the IMDb Dataset.

(b) Mean number of tokens of the edited text regarding the
number of tokens of the input of the Newsgroups Dataset.

Figure 4: Mean number of tokens of the edited text
regarding the number of tokens of the input.

(a) Minimality@n for the Newsgroups dataset.

Figure 5: Minimality@n for the Newsgroups Dataset.

be caused due by the inner mechanism (e.g. GPT-
2) of this method but also due to the evaluation
method. As Polyjuice is a method for counterfac-
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tual generation, for the evaluation procedure, we
preferred a text that has a different label than the
original text (achieve the counterfactual goal) in-
stead of one closest one that is classified on the
same class (Madsen et al., 2022). This, combined
with the task-agnostic nature of Polyjuice, forced it
to make more aggressive edits by pruning a signifi-
cant portion of the original text, which is a constant
behaviour along the datasets.

E Size of test set

In order to investigate the effect of the sample size
on the results of the proposed metric, we conducted
multiple t-tests for different sample sizes, feedback
steps, and datasets. In particular, we selected four
subsets of 10, 50, 100, and 200 samples, and we
performed t-tests between the values of their in-
consistencies of every pair of the editors in order
to find out at which point their values are signif-
icantly different from each other. The p-values
of these experiments are shown in Table 4 for the
IMDb dataset and Table 5 for the Newsgroups. In
these tables, the values that are consistently (for
each feedback step) less than 0.05 are shown in
bold. For every feedback step in the IMDb dataset,
p is less than 0.05 for sample sizes greater than
100, while for Newsgroups, the same holds true for
sample sizes greater than 200.
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(a) Inconsistency of minimality. (b) Perplexity of base GPT-2. (c) Perplexity of fine GPT-2.

Figure 6: Inc@n, Perplexity of base GPT-2 and Perplexity of fine GPT-2 for the Newsgroups Dataset.

MiCE
Sample Size: 10

1 2 3 4 5 6 7 8
Polyjuice 0.2812 0.588 0.3563 0.3219 0.1093 0.3376 0.3039 0.133

TextFooler 0.4788 0.4853 0.2538 0.2107 0.2014 0.6249 0.0695 0.1658
Sample Size: 50

Polyjuice 0.0383 0.342 0.0266 0.0073 0.1714 0.0377 0.0852 0.1184
TextFooler 0.2805 1.232e-05 0.2646 0.004 0.03 0.0054 0.1028 0.0063

Sample Size: 100
Polyjuice 0.0252 0.0168 0.0001 0.0001 0.0048 0.0091 0.0081 0.0003

TextFooler 0.0495 6e-08 0.0104 0.0001 0.0016 0.0003 0.0032 0.0001
Sample Size: 200

Polyjuice 0.0084 0.0036 1e-08 4.02e-05 2.72e-05 0.0012 0.0007 5.66e-06
TextFooler 0.0461 2.73e-14 0.0013 1.3e-10 0.0006 4.89e-07 2.2e-05 4.2e-08

Sample Size: 500
Polyjuice 0.00043 0.0 0.036 0.0 0.0006 1e-08 0.001 0.0

TextFooler 0.0368 0.0 1.76e-06 0.0 1.86e-06 0.0 4.2e-05 0.0

Polyjuice
Sample Size: 10

1 2 3 4 5 6 7 8
mice 0.2812 0.588 0.3563 0.3219 0.1093 0.3376 0.3039 0.133

textfooler 0.2831 0.3649 0.3056 0.2198 0.073 0.3337 0.1573 0.047
Sample Size: 50

mice 0.0383 0.342 0.0266 0.0073 0.1714 0.0377 0.0852 0.1184
textfooler 0.0378 0.0015 0.021 0.0011 0.11 0.021 0.0199 0.0261

Sample Size: 100
mice 0.0252 0.0168 0.0001 0.0001 0.0048 0.0091 0.0081 0.0003

textfooler 0.0246 4.733e-05 4.351e-05 9e-06 0.0026 0.0038 0.0003 4.258e-05
Sample Size: 200

mice 0.0084 0.0036 1e-08 4.028e-05 2.723e-05 0.0012 0.0007 5.66e-06
textfooler 0.0082 0.0 0.0 6e-08 1.367e-05 0.0002 1.6e-07 1.3e-07

Sample Size: 500
mice 0.0004 0.0 0.036 0.0 0.0007 1e-08 0.0011 0.0

textfooler 2.2e-05 0.0001 3.88e-05 0.0016 0.0058 0.0009 0.0192 0.0007
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TextFooler
Sample Size: 10

1 2 3 4 5 6 7 8
polyjuice 0.2831 0.3649 0.3056 0.2198 0.073 0.3337 0.1573 0.047

mice 0.4788 0.4853 0.2538 0.2107 0.2014 0.6249 0.0695 0.1658
Sample Size: 50

polyjuice 0.0378 0.0015 0.021 0.0011 0.11 0.021 0.0199 0.0261
mice 0.2805 1.232e-05 0.2646 0.004 0.03 0.0054 0.1028 0.0063

Sample Size: 100
polyjuice 0.0246 4.733e-05 4.351e-05 9e-06 0.0026 0.0038 0.0003 4.258e-05

mice 0.0495 6e-08 0.0104 0.0001 0.0016 0.0003 0.0032 0.0001
Sample Size: 200

polyjuice 0.0082 0.0 0.0 6e-08 1.367e-05 0.0002 1.6e-07 1.3e-07
mice 0.0461 0.0 0.0013 0.0 0.0006 4.9e-07 2.225e-05 4e-08

Sample Size: 500
polyjuice 2.28e-05 0.0001 3.882e-05 0.0016 0.0058 0.0009 0.0192 0.0007

mice 0.0369 0.0 1.76e-06 0.0 1.86e-06 0.0 4.251e-05 0.0

Table 4: P-value of the inconsistency of different sample sizes of the IMDb dataset.

MiCE
Sample Size: 10

polyjuice 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809
textfooler 0.0717 0.2283 0.0924 0.3264 0.165 0.2194 0.5411 0.0453

Sample Size: 50
polyjuice 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809
textfooler 0.0006 0.0064 0.0338 0.1265 0.008 0.1015 0.0995 0.0101

Sample Size: 100
polyjuice 0.0033 2.64e-06 0.0177 1e-08 0.0017 2.878e-05 0.081 0.0049
textfooler 1.29e-06 0.0004 0.0034 0.0001 0.0009 0.0104 0.0344 0.0007

Sample Size: 200
polyjuice 0.0 0.0005 4.937e-05 0.0002 2.13e-06 0.0003 0.006 0.0041
textfooler 1.513e-05 0.0 2.8e-07 0.0 3.5e-07 0.0 0.0043 2e-08

Sample Size: 500
polyjuice 0.0 2.32e-06 0.0 1.09e-06 0.0 5e-08 0.0 1e-08
textfooler 0.0 3.3e-07 0.0 3e-08 0.0 0.0 0.0 0.0
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Polyjuice
Sample Size: 10

1 2 3 4 5 6 7 8
mice 0.3306 0.0995 0.1407 0.0043 0.7421 0.4028 0.1387 0.2846

textfooler 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809
Sample Size: 50

mice 0.9654 0.0065 0.6376 8e-08 0.7342 0.3373 0.1692 0.9168
textfooler 0.0033 2.64e-06 0.0177 1e-08 0.0017 2.878e-05 0.081 0.0049

Sample Size: 100
mice 0.3659 1e-08 0.719 0.0 0.5959 0.173 0.1055 0.7947

textfooler 0.0004 0.0 0.0002 0.0 0.0001 1e-08 0.0358 4.421e-05
Sample Size: 200

mice 0.0468 0.0 0.5025 0.0 0.8023 0.0176 0.0384 0.2746
textfooler 1.513e-05 0.0 2.8e-07 0.0 3.5e-07 0.0 0.0043 2e-08

Sample Size: 500
mice 0.0 2.32e-06 0.0 1.09e-06 0.0 5e-08 0.0 1e-08

textfooler 0.0005 0.026 5.3e-07 0.0643 1.8e-07 0.0037 0.0 0.0019

TextFooler
Sample Size: 10

1 2 3 4 5 6 7 8
polyjuice 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809

mice 0.0717 0.2283 0.0924 0.3264 0.165 0.2194 0.5411 0.0453
Sample Size: 50

polyjuice 0.0033 2.64e-06 0.0177 1e-08 0.0017 2.878e-05 0.081 0.0049
mice 0.0006 0.0064 0.0338 0.1265 0.008 0.1015 0.0995 0.0101

Sample Size: 100
polyjuice 0.0004 0.0 0.0002 0.0 0.0001 1e-08 0.0358 4.421e-05

mice 1.29e-06 0.0004 0.0034 0.0001 0.0009 0.0104 0.0344 0.0007
Sample Size: 200

polyjuice 1.513e-05 0.0 2.8e-07 0.0 3.5e-07 0.0 0.0043 2e-08
mice 0.0 0.0005 4.937e-05 0.0002 2.13e-06 0.0003 0.006 0.0041

Sample Size: 500
polyjuice 0.0005 0.0213 5.3e-07 0.0643 1.8e-07 0.0037 0.0 0.0019

mice 0.0 3.3e-07 0.0 3e-08 0.0 0.0 0.0 0.0

Table 5: P-value of the inconsistency of different sample sizes of the Newsgroup dataset.

9523



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Introduction (1)

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Experimental Setup (4), Interpreting the inc@n metric (5), Additional insights from counterfactuals of

counterfactuals (6), and supplementary material

�3 B1. Did you cite the creators of artifacts you used?
Experimental Setup (4), Interpreting the inc@n metric (5), Additional insights from counterfactuals
of counterfactuals (6)

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We provide references and links where the reader can find the license or terms. We used everything
according to the license and terms.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Experimental Setup (4), Interpreting the inc@n metric (5), Additional insights from counterfactuals
of counterfactuals (6)

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We used publicly available datasets and we do not display any sensitive information in the paper.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Please see section 4, and appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9524

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Sections 5 and 6

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We provide information regarding the models used and details/references for reproducibility purposes,
but we did not manage to calculate the computational budget, but since we only used publicly
available models, the computational budget of their training/inference can be retrieved from the
respective references.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Sections 5 and 6

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9525


