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Abstract
Tabular data analysis is performed every day
across various domains. It requires an accurate
understanding of field semantics to correctly
operate on table fields and find common pat-
terns in daily analysis. In this paper, we in-
troduce the AnaMeta dataset, a collection of
467k tables with derived supervision labels for
four types of commonly used field metadata:
measure/dimension dichotomy, common field
roles, semantic field type, and default aggre-
gation function. We evaluate a wide range
of models for inferring metadata as the bench-
mark. We also propose a multi-encoder frame-
work, called KDF, which improves the meta-
data understanding capability of tabular mod-
els by incorporating distribution and knowl-
edge information. Furthermore, we propose
four interfaces for incorporating field metadata
into downstream analysis tasks.

1 Introduction

Tabular data analysis is performed every day in
popular tools such as Excel, Google Sheets, and
Tableau (Rebman Jr et al., 2022) for a wide range of
domains including education, research, engineer-
ing, finance, HR, etc. To help non-expert users,
various machine learning tasks are proposed to au-
tomate and accelerate the analysis process. For
example, TableQA & Text2SQL (Dong and Lap-
ata, 2016; Katsogiannis-Meimarakis and Koutrika,
2021), analysis & visualization recommendations
(Zhou et al., 2021; Wu et al., 2021), insights min-
ing (Ding et al., 2019; Law et al., 2020), etc.

These analysis tasks require an accurate under-
standing of field semantics to correctly operate
on table fields (or columns) and to further find
common patterns in daily analysis. Such analy-
sis knowledge of field semantics is often shared
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across multiple tasks. In real-world applications,
we also call it field metadata in contrast to the raw
tabular input which does not directly provide this
information.

For example, measure / dimension dichotomy
is one such metadata used in Tableau (Hoelscher
and Mortimer, 2018) and Excel (Ding et al., 2019)
across diverse features. Its definition is inspired
by dimensional modeling in databases (Golfarelli
et al., 1998; Kimball and Ross, 2013). It involves
categorizing each field in a table as either measure
or dimension. A measure (field) contains numeri-
cal measurement results on which calculations can
be made, such as sum, count, average, minimum,
and maximum. E.g., “Price” and “Discount” fields
of Table 1 are measures. On the other hand, a di-
mension (field) contains categorical information
and can be used for filtering, grouping, and label-
ing. E.g., “Product Name” and “Category” fields of
Table 1 are dimensions. Infeasible analysis might
be generated based on incorrect classification of
measures and dimensions in a table, because the
feasible operations for measure and dimension are
largely different. E.g., for Table 1, it is impossi-
ble to draw a bar chart without measures – only
mapping dimension “Product Name” to x-axis and
dimension “Product Id” to y-axis.

Beyond the simple dichotomy of measure / di-
mension, what are other types of useful field meta-
data? For each type of metadata, where do we find
labels to evaluate or train models? To address these
questions, in this paper we define the following
four types of commonly used field metadata, and
collect the AnaMeta (Analysis Metadata) dataset
incorporating tables from 3 diverse sources with
derived supervision labels of the metadata:

§2.1 Measure/dimension dichotomy: Categoriz-
ing each field in a table as a measure or dimension.

§2.2 Common field roles: Identifying whether
a measure field is commonly used as an analysis
target, whether a dimension field is a natural key or
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Figure 1: An Example Table of AnaMeta dataset with Field Metadata Task Supervision and Downstream Analysis.

commonly used for breakdown operation.
§2.3 Semantic field type: Identifying types of

measure fields and dimension fields from our es-
tablished measure type taxonomy (e.g., “Money”,
“Ratio” in Figure 1) and a dimension type taxonomy
provided by a knowledge graph (e.g., “Consumer
Product” in Figure 1), and determining whether
two measures are comparable with each other.

§2.4 Default aggregation function: Identifying
the most appropriate default aggregation function
for a measure field. (e.g., “Avg”, “Sum”in Figure 1)

The collection of the AnaMeta dataset is a com-
plex process that requires a significant amount of
data and supervision. Due to the limitations of
obtaining this information directly from raw ta-
bles, we have employed a multi-source approach
to collecting AnaMeta, which includes spreadsheet
datasets (45,361 tables), public web table datasets
(404,152 tables), and public synthetic datasets
(17,995 tables). Supervision is smartly collected
from downstream tasks, manual labels through
crowdsourcing, and existing information attached
to tables(§3.2). After preprocessing, AnaMeta
contains 152,092 fields with measure/dimension,
149,197 with common field roles, 1,730,494 with
semantic field type and 38,030 with aggregation.
Additionally, we have conducted quality inspection
and further checks to ensure accuracy and reliabil-
ity.

Based on the AnaMeta dataset, in the rest of the
paper, we first evaluate a wide range of models on
inferring metadata in order to check how well they
learned the knowledge of field semantics. In §6.1,
pre-trained tabular (TURL, TAPAS, TABBIE) and
large language (GPT-3/3.5 family) models are com-
pared through additional classification heads and
zero- / few-shot prompts. Semantic information
captured by the pre-trained tabular models brings

great gain to metadata tasks.
To improve the metadata understanding capa-

bility of tabular models, in §4 we further propose
a multi-encoder KDF (Knowledge and Distribu-
tion Fusion) framework for transformer-based pre-
trained tabular models. Knowledge fusion incorpo-
rates knowledge graph information (such as lined
entities, column type, and properties). Distribution
fusion adds distribution information by calculating
field data statistics. KDF outperforms the best base-
line by 3.13% (see §6.2). This indicates that suc-
cessful knowledge and distribution fusion brings a
better representation of fields.

Finally, we demonstrate one general approach to
leveraging metadata to enhance downstream analy-
sis tasks – taking field metadata as an intermediate
step and injecting the knowledge through different
interfaces for downstream models. In order to in-
corporate metadata into downstream analysis tasks
at various stages of the process, four interfaces are
proposed in §5. These interfaces provide different
forms of metadata, including field metadata clas-
sification results, column embeddings, metadata
strings of the field, and field metadata tasks as pre-
training objectives. In §6.3, we apply these inter-
faces on downstream tasks (TableQA and visualiza-
tion recommendation) and observe that metadata
knowledge helps downstream tasks when injected
through appropriate interfaces.

In summary, our main contributions are:
• We collect a large AnaMeta dataset with the

definition and taxonomy of field metadata and
smart supervision. The dataset and code will
be open-sourced in https://github.com/
microsoft/AnaMeta.

• A wide range of models are compared on meta-
data learning and retaining capabilities.

• We propose a KDF framework with distribution
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fusion and knowledge fusion, which bring a bet-
ter representation of fields.

• Four interfaces are proposed to improve the per-
formance of downstream applications at various
stages of the process.

2 Metadata Definition

In this section, we delve deeper into the concept
of metadata and its definitions. To facilitate un-
derstanding, we provide an example in Figure 1.
When creating charts and pivot tables, individuals
typically begin by analyzing common fields and
assigning different roles to them, e.g., using the pri-
mary key – "Product Name" field as the x-axis in a
bar chart. After selecting the fields, further analysis
is required for each field. In the case of pivot ta-
bles, it is necessary to determine that the "original
prices" field should be summed. We formulate the
metadata tasks as machine learning classification
tasks with the table as input. The specifics of this
formulation can be found in §B.6.

2.1 Measure / Dimension Dichotomy

Measure and dimension fields play different roles
in data analysis. The measure/dimension di-
chotomy metadata can tell downstream tasks the
legal analysis operations for each field, thus could
help greatly instruct their search spaces. They are
simply defined in (Ding et al., 2019).

Definition 1 (Measure). A measure (MSR) field
contains numerical measurement values on which
calculations can be made.

Definition 2 (Dimension). A dimension (DIM)
field contains categorical values. It provides func-
tions of filtering, grouping, and labeling. A dimen-
sion is called a breakdown (or group-by) dimen-
sion when its values have duplication. Otherwise, a
dimension with unique values is a key dimension.

2.2 Common Field Roles

Fields have been identified with measure and di-
mension, while not all of them are highly regarded.
In daily analysis activities, measures and dimen-
sions with some semantic meanings are more fre-
quently selected. In other words, there are common
patterns about which fields are more preferred than
others within a table. As shown in Figure 1, we
mark common preferences of measure, breakdown
dimensions, and key dimensions by shade (darker
means more preferred).

Definition 3 (Natural Key). Natural Key is a di-
mension field with all unique data values and uses
them to represent each record in semantic terms.

Definition 4 (Common Breakdown). Common
Breakdown is the dimension field(s) that are the
most commonly used for breaking down (grouping
by) among a given table in data analysis.

Definition 5 (Common Measure). Common Mea-
sure is the measure field(s) that are the most com-
monly used for further analysis (e.g., applying
aggregation function, composing chart) among a
given table in data analysis.

2.3 Semantic Field Type

Semantic types for common fields are important
to data cleaning, table interpretation, data analysis,
and so on. There are several existing works focus-
ing on identifying semantic types for columns as
described in §A.2, e.g., column type identification.

However, most works focus on dimension fields,
especially the subject columns. Less than 5% of
column types denote measure fields, which are
statistics on existing column type datasets (Sher-
lock (Hulsebos et al., 2019), TURL (Deng et al.,
2020), and Semtab (Jiménez-Ruiz et al., 2020;
Cutrona et al., 2020)). Thus, we propose semantic
field type, including dimension and measure type.

Definition 6 (Dimension Type). The common
semantic types for dimension fields, are based
on knowledge graph type of entities. We adopt
TURL (Deng et al., 2020) column types as dimen-
sion type. Details are shown in §B.3

Definition 7 (Measure Type). The common mutu-
ally exclusive types for measure fields, are based
on unit, magnitudes, and entity property. See the
taxonomy in Table 1.

Table 1: Measure Type Taxonomy.

Category Type Category Type

Dimensionless

Count (Amount)

Scientific

Length
Ratio Area
Angle Volume(Capacity)
Score Mass(Weight)
Rank Power
Factor/Coefficient Energy

Money Pressure

Data/file size Speed

Time
Duration Temperature

Frequency Others

In Table 1 you can find the commonly seen mea-
sure types in daily data analysis scenarios. These
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19 types (except “Others”) can be further grouped
into 5 categories. The taxonomy is based on the
units in Wikidata1, the International System of
Units2 and DBPedia properties in T2D Golden
Standard3. As we will discuss in §3.2, we only
keep the measure types with a number of appear-
ances above the threshold. More details in §B.4.

Many tables contain multiple same-typed mea-
sures, among which further analysis can be made,
implying multi-measure analysis.

Definition 8 (Measure Pair). Within a table, a mea-
sure pair is a pair of comparable measures – they
should have the same type of unit (including con-
vertible ones), related semantic meanings, and a
similar numerical value range.

2.4 Default Aggregation Function
Definition 9 (Default Aggregation Function). De-
fault aggregation function is an aggregation func-
tion that is the most commonly used for applying
to the measure field. Popular aggregation (AGG)
functions and their statistics are shown in Figure 4.

3 AnaMeta Dataset

After defining the field metadata, the next challenge
is to locate the supervision labels needed for train-
ing and evaluation. In this section, we will bring
several sources together to prepare the labels.

3.1 Table Sources
3.1.1 Spreadsheet Tables
From the public Web, we crawled millions of Excel
spreadsheet files with English-language tables in
them. Lots of these files contain analysis artifacts
created by users. From these spreadsheets, we
extract the following datasets:

1) Chart dataset: There are 59,797 charts (e.g.,
the one in Figure 1) created from 36,461 tables.
Line, bar, scatter, and pie charts are the most dom-
inant chart types, covering more than 98.91% of
charts. The x-axes of bar and pie charts directly
display the data values of their reference field one
by one, which play the role of natural key. Y-axes
display data size or trend, which plays the role of
measure. And in some charts, the y-axis is plotted
with multi-fields, which are measure pair.

1https://www.wikidata.org/wiki/
Wikidata:Units

2https://www.bipm.org/en/
measurement-units

3http://webdatacommons.org/webtables/
goldstandard.html#toc2

2) Pivot dataset: There are 23,728 pivot tables
(e.g., the one in Figure 1) created from 8,900 tables.
Pivot table has “rows”, “columns” and “values”.
Both the rows and columns hierarchically break
down records into groups, which play the role of
common breakdown. Its values are for applying
aggregation to each group, which plays the role of
common measure and provides default aggregation
functions.

3.1.2 Web Tables

Several web table (HTML table) datasets have been
extracted in prior work, and the following datasets
are used in this work:

(1) T2D dataset: T2D Gold Standard (Ritze and
Bizer, 2017) is a dataset for evaluating matching
systems on the task of matching Web tables to the
DBpedia knowledge base. It contains schema-level
correspondences between 1,724 Web tables (con-
sisting of 7,705 fields) from the English-language
subset of the Web Data Commons Web Tables Cor-
pus (Lehmberg et al., 2016) and DBpedia4. In total,
more than 2,000 fields are mapped to ∼290 DBPe-
dia properties.

(2) TURL dataset: TURL (Deng et al., 2020)
constructs a dataset based on the WikiTable corpus,
and utilizes each cell hyperlink (link to Wikipedia
pages) to get entity linking, column type, and re-
lation extraction supervision labels. Our work uti-
lizes TURL tables with column types that contain
2,368,990 columns from 403,450 tables.

3.1.3 Synthetic Tables

To utilize richer data and supervision labels, syn-
thetic datasets are also taken into consideration.
SemTab challenge (Jiménez-Ruiz et al., 2020) aims
at benchmarking systems dealing with the tabular
data to knowledge graph matching problem, includ-
ing the CEA task (matching a cell to a KG entity),
the CTA task (assigning a semantic type to a col-
umn), and the CPA task (assigning a property to
the relationship between two columns). This chal-
lenge provides large datasets automatically gen-
erated from the knowledge graph. SemTab 2020
dataset contains 131,289 tables and 68,001 tables
with CPA task labels. To avoid data leakage, 17,995
schemata are extracted from 68,001 tables, and ran-
domly keep one table in each schema.

4https://www.dbpedia.org/
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Table 2: Supervision Labels and Statistics from Each Dataset. Each row represents one task, and its labels are
obtained from different ways and datasets. The last row (“Statistics”) refers to the number of samples with labels.

Supervision Chart dataset Pivot dataset T2D dataset TURL dataset SemTab dataset Statistics (field or pair)

Measure Y-axis field Value field Msr. type field - - 110,614

Dimension X-axis field
(ex. scatter, line chart) Rows and columns field Primary key field - - 41,478

Com. measure Chart msr. Pivot msr. - - - 110,352 pos, 299,268 neg
Com. breakdown - Non-unique dim. - - - 18,815 pos, 117,996 neg

Natural key Single unique dim. - Primary key - - 20,030 pos, 84,496 neg

Dim. type - - - Column type
(cell hyperlinks) - 1,235,831

Msr. type - - Msr. property
(manual label) - Msr. property

(from synthetic info.) 494,663

Msr. pair Same chart axis msr. - - - - 33,100

Agg. function - Agg. for value field - - - 38,030

Statistics (schema & table) 21,733 & 36,461 7,041 & 8,900 702 & 702 403,450 & 403,450 17,995 & 17,995 -

3.2 Supervision Labels

Based on the above datasets, supervision labels
are prepared in three ways: First, from the analy-
sis artifacts created in downstream tasks including
chart and pivot table; Second, from manual labels
in the public dataset (i.e., T2D) and by ourselves;
Third, from the information attached to the table
(i.e., SemTab, TURL). Table 2 shows supervision
labels for each task from each dataset.

In Table 2 rows 1-2, for the measure / dimension
dichotomy in §2.1, the positive samples (measures)
are the fields referenced by y-axis in charts and
“values” in pivot tables, the negative samples (di-
mensions) are x-axis (except scatter and line charts)
in charts and “rows” and “columns” in pivot tables.

For the common field roles in §2.2, the labels
are slightly modified on measure / dimension di-
chotomy labels. In Table 2 row 4, for the common
breakdown, positive samples come from the non-
unique dimensions in pivot tables. In Table 2 row
5, for natural key, samples come from dimensions
in charts, and satisfy that 1) data values are unique
2) don’t have multi-dimensions in the table. The
negative samples are all other fields besides the
positive samples in a given table.

In Table 2 row 8, for measure pair in §2.3, its
positive labels come from pairs of measure fields
referenced by the same chart axis. For each table,
we randomly sample the same number of negative
samples (numerical field pairs) as positive sam-
ples. In Table 2 row 7, for measure type labels, we
merge two label sources together: DBPedia prop-
erty labels in T2D, and Wikidata property labels
in SemTab. We have organized the measure type
taxonomy and map supervisions from the datasets,
and details are shown in §B.4. In row 6, for di-
mension type labels, we utilize column types in
TURL(Deng et al., 2020).

In Table 2 row 9, for default aggregation ranking
scores in §2.4, we focus on the 9 most frequently
used aggregation functions in pivot tables as shown
in Figure 4. For a field, the actual aggregation
applied by users has a score = 1, otherwise, unused
functions are assigned with 0 score.

3.3 Quality Inspection

To assess the quality of our corpus, we conducted
a quality inspection with 5 experts who have analy-
sis experience. We ensured accuracy by informing
the annotators of the scoring standards during the
annotation process. The score uses ordinal scale
values(1, 0.75, 0.5, 0.25, 0) with corresponding
definitions. Our results showed that the AnaMeta
dataset labels got 0.97 (out of 1) on the macro aver-
age with manual annotation, which demonstrates
that our corpus contains high-quality data and su-
pervision. Details of inspection and results are
shown in §C.2.

4 KDF Framework

As discussed in §1, To improve the metadata under-
standing capability of tabular models, we propose
KDF (Knowledge and Distribution Fusion) frame-
work to infuse information. In this section, we
provide a detailed description of Metadata model
architecture as depicted in Figure 5.

4.1 Overall Model Architecture

Our model is based on the pre-trained tabular model
and utilizes a transformer encoder on top. Be-
cause distribution and knowledge graph informa-
tion describes both cells and columns, we design
two encoders for KDF framework. The first en-
coder is sub-token or cell level (depending on the
pre-trained tabular model), and the second one is
column level. Details of KDF overall architecture
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Figure 2: Knowledge Fusion Module in KDF Frame-
work. The module represents each sequence.

are shown in §D.1.
The pre-trained tabular model could be almost

any transformer-based pre-trained models. In this
work, we use TAPAS(Herzig et al., 2020) and TAB-
BIE(Iida et al., 2021) to illustrate effectiveness.

4.2 Knowledge Fusion Module
Knowledge graph information provides extra
knowledge about tables and helps the model in-
terpret tables. In this subsection, we describe how
to get that information and how to use them.

Fusion module is illustrated in Figure 2. Model
respectively fuses cell entity in cell level, column
type, and property type in column level. Because
one tabular token needs to pay attention to several
entities, e.g., a cell token needs to pay attention to
a specific entity in the same column or row, knowl-
edge fusion module applies attention to fuse tabular
embedding and knowledge graph embedding, as
shown in the following equation.

H = W3 (Attention(TOK,ENT,ENT ) + ENT )

Attention(Q,K, V ) = W2 softmax(QW1K
T + lnM) V

where, TOK ∈ Rn×dtok is the sequence of tab-
ular model embedding, ENT ∈ Rn×dent is the
sequence of knowledge graph embedding, W1 ∈
Rdtok×dent , W2 ∈ Rdent×dent and W3 ∈ Rdent×dh

are trainable weights. M ∈ Rn×n is visibility ma-
trix.

The visibility matrix is to control whether an
entity is visible to a tabular model token, as shown
in Equation (1). Besides, it only works in sub-token
(or cell) level fusion.

Mi,j =





1 token i and j are from the same cell
m i is only in the same column or row with j
0 others

(1)

where, m ∈ (0, 1) is half visible hyper parameter.
After getting attentive entity embedding (H), we

concatenate tabular model embedding (TOK) with
it as the module’s output.

4.3 Distribution Fusion Module

It is hard for a pre-trained tabular model to capture
the entire column distribution, which is important
to analyze metadata tasks. To learn numerical dis-
tribution, we extract 31 data statistics features and
6 categories for each field (Zhou et al., 2021). In
this module, tabular model embedding and field
categories are added together after linear layer and
embedding lookup respectively. The output of the
module is the concatenation of the embedding and
statistics features. Details of architecture and fea-
tures are shown in §D.3.

5 Downstream Interfaces

Field metadata is formulated as classification prob-
lems, which can be effectively learned through the
KDF framework. However, it remains a challenge
to effectively incorporate this metadata into down-
stream applications. To address this challenge, we
propose four interfaces including metadata IDs,
embeddings, sentences, and pre-training. These
interfaces allow for the integration of metadata at
different stages of the analysis process and facili-
tate its use in downstream applications.

Metadata IDs Interface provides downstream
applications with the classification results of field
metadata tasks. This interface can be used to pro-
vide more specific and targeted uses of field meta-
data. For example, IDs can be used as rules to limit
the scope of downstream searches. During Quick-
Insights(Ding et al., 2019), different data mining
strategies are applied based on whether a field is
classified as a measure or dimension. Additionally,
ids can be used as tags in language models.

Metadata Embeddings Interface provides
downstream applications with each column embed-
dings, which are augmented with metadata knowl-
edge. These embeddings can represent columns
in a continuous, dense, and low-dimensional vec-
tor space. Thus they can be used in a variety of
data analysis tasks to classify columns, generate
analysis according to the column, and so on. Addi-
tionally, they can be used as features in downstream
machine learning models.

Metadata Sentences Interface provides down-
stream applications with string sentences, which
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Table 3: Benchmarks and KDF Framework Results on Metadata Tasks. All metric numbers are in % and averaged
over 3 runs. For each task the bold number is the best one. ∆ means the best results of “KDF” metric minus
the corresponding evaluation metric, and color formatting reacts value size. “TML” means traditional machine
learning, “TPLM” means tabular pretrained language model, “LLM” means large language model.

Model
Msr Natural Key Com. Breakdown Com. Measure Dim Type Msr Type Msr Pair Aggregation

Acc. ∆ HR1 ∆ HR@1 ∆ HR@1 ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Rule based 96.68 -2.26 88.42 -6.62 49.72 -15.77 67.02 -4.71 12.99 -84.98 25.91 -53.41 32.04 -46.97 90.53 -0.95

TML
GBDT 96.94 -1.99 89.38 -5.66 55.50 -9.99 66.84 -4.90 24.44 -73.53 63.86 -15.47 62.55 -16.46 90.55 -0.94
RF 98.07 -0.87 92.75 -2.29 59.47 -6.01 67.13 -4.61 45.56 -52.41 66.32 -13.00 63.76 -15.25 90.84 -0.65

TPLM
TURL 97.65 -1.28 92.65 -2.39 62.38 -3.11 70.37 -1.37 96.55 -1.42 66.92 -12.41 69.38 -9.63 91.15 -0.33
TAPAS 97.09 -1.84 93.79 -1.25 58.62 -6.87 70.01 -1.73 96.21 -1.76 78.49 -0.83 75.20 -3.81 89.96 -1.52
TABBIE 97.49 -1.45 94.42 -0.62 62.36 -3.13 71.16 -0.58 95.34 -2.63 77.39 -1.94 77.70 -1.32 88.43 -3.05

LLM
GPT-3.5 0-shot 87.18 -11.75 88.39 -6.65 41.51 -23.98 50.18 -21.56 46.11 -51.86 35.10 -44.22 51.45 -27.57 77.46 -14.02
GPT-3.5 1-shot 91.14 -7.79 82.47 -12.57 44.80 -20.69 57.30 -14.43 46.38 -51.59 29.32 -50.00 55.36 -23.66 75.66 -15.82

KDF
KDF+TAPAS 98.45 -0.48 95.04 0.00 64.03 -1.46 71.09 -0.65 97.97 0.00 79.32 0.00 77.50 -1.52 91.48 0.00
KDF+TABBIE 98.93 0.00 94.99 -0.06 65.49 0.00 71.74 0.00 97.33 -0.64 78.74 -0.58 79.01 0.00 90.58 -0.90

describe the metadata knowledge associated with
a field. These sentences can provide a human-
readable summary of the metadata. As language
models with a seq2seq structure have become pop-
ular in recent years, using sentences as an interface
to combine different models and make use of their
knowledge is a current trend. Therefore, by using
metadata sentences, it is possible to easily incorpo-
rate metadata into various downstream tasks.

Metadata Pretraining Interface provides
metadata tasks as pre-training or continue pre-
training objectives. This allows for the direct incor-
poration of metadata knowledge into downstream
models during the training stage. Additionally, it
should be noted that metadata can be formulated as
question-answer tasks to make it more adaptable to
a wider range of language models, rather than just
classification tasks.

6 Experiments

We conducted three parts of experiments to eval-
uate field metadata tasks on the AnaMeta dataset
and demonstrate how to incorporate analysis knowl-
edge. First, a variety of models are evaluated on all
metadata tasks as a benchmark. Second, the KDF
framework is evaluated on all metadata tasks Fi-
nally, we evaluate the performance of downstream
applications using four interfaces. All the exper-
iments are run on Linux machines with 448 GB
memory, and 4 NVIDIA Tesla V100 16G-memory
GPUs.

6.1 Benchmark
To compare the performance of existing models
on all tasks, we use four kinds of baselines – rule-
based baseline, traditional machine learning base-
lines (GBDT and Random Forest), pre-trained tab-
ular model baselines (TURL), and large language

model (GPT-3.5: text-davinci-003). Because there
is no direct existing experiment on metadata tasks,
we slightly change the above models to adapt to
our tasks. Details of implementations and GPT-3.5
prompt engineering are shown in §E.3. As de-
scribed in Table 3, we find the following insights:

Semantic information captured by the pre-
trained tabular models brings great gain to meta-
data tasks. Tabular pre-trained language model
outperforms rule-based and traditional machine
learning approaches, especially on common field
roles and semantic field types (e.g. dimension type
outperforms about 80% and 60%). Traditional ma-
chine learning is good at representing field distribu-
tion, while it lacks semantic information and entire
table understanding. Pre-trained tabular model fills
the gap.

In our preliminary experiments, we investigated
the capability of large language models (LLMs)
to extract metadata from tables. As shown in Ta-
ble 3, our results indicate that GPT-3.5 has the abil-
ity to extract metadata, though it is not yet ideal.
One limitation is that GPT-3.5 may not have been
exposed to enough metadata during its training,
which can result in performance that is worse than
traditional heuristic rules. However, we found that
providing GPT-3.5 with one example improved its
performance on more than half of the metadata
tasks, suggesting that with proper in-context learn-
ing, GPT-3.5 could have even better metadata ex-
traction capabilities. Additionally, our initial ex-
ploration with naive prompt designs may not have
fully leveraged the knowledge present within the
large language models. Further research in these
areas is warranted.
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6.2 KDE Framework
Experiments are conducted on all metadata tasks.
We respectively use TAPAS (Herzig et al., 2020)
and TABBIE (Iida et al., 2021) as a pre-trained
tabular model to illustrate the effectiveness of KDF
framework. Details of KDF experiment setting are
shown in §E.2. As described in Table 3, we find
the following insights across tasks.

Successful distribution and knowledge fusion
brings a better representation of fields. KDF mod-
els exceed the performance of the other pre-trained
tabular models, especially on common field roles,
measure type, and measure pair tasks. On the mea-
sure type task, KDF (TAPAS) outperforms TURL
by 12.41%. Our KDF framework explicitly fuses
distribution and knowledge information. Thus, it
can better represent the whole field and integrate
useful external information. More analysis of the
two fusions is described in ablation experiments
(§E.6).

On the dimension type task, KDF (TAPAS)
achieves the top result and improves over the per-
formance of TURL by 1.42%. It’s worth noting
that this task is one of TURL’s original tasks, while
our Metadata model still has advantages. It bene-
fits from better knowledge fusion and pre-training
model representation.

6.3 Downstream Interfaces

Table 4: Metadata IDs and Embeddings Interfaces Re-
sults on Table2Chart. All metric numbers are averaged
over 3 runs.

Interface Precision Recall F1

w/o Metadata 80.60% 77.28% 78.91%
Metadata IDs 81.45% 77.73% 79.55%

Metadata Embeddings 82.44% 77.56% 79.92%

Table 5: Metadata Sentences and Pre-training Inter-
faces Results on TableQA. All metric numbers are av-
eraged over 3 runs.

Interface HybridQA WikiTQ

w/o Metadata 53.69% 36.70%
Metadata Sentences 54.59% 37.83%

Metadata Pre-training 53.62% 36.14%

In order to evaluate the performance of four in-
terfaces introduced in §5, and demonstrate the im-
portance of field metadata, we conducted experi-
ments using interfaces in several downstream anal-
ysis tasks. For the Metadata IDs and embeddings

interfaces, which take column features (embed-
dings) as input, we chose visualization generation
tasks and applied the interfaces to the Table2Charts
model (Zhou et al., 2021). For the metadata sen-
tences and pre-training interfaces, which are suit-
able for tasks solved by pre-trained language mod-
els with string sentences as inputs, we chose the
popular TableQA task and applied the interfaces
to the UnifiedSKG framework (Xie et al., 2022).
Results can be found in Table 4 and Table 5. More
implementation details can be found in §E.7.

Field metadata knowledge can improve down-
stream analysis tasks when used with the appropri-
ate interface. As seen in Table 4, the Metadata em-
beddings interface outperforms the baseline with
a 1.84% increase in precision. Additionally, in Ta-
ble 5, the metadata sentences interface improves
the TableQA task, even though this task does not
directly use metadata as output. These results high-
light the importance and necessity of field metadata
knowledge learned from field metadata tasks.

Different downstream tasks may benefit from dif-
ferent interfaces depending on factors, such as in-
put, task characteristics, model characteristics, etc.
In addition to downstream task inputs that strictly
limit the choice of interfaces, the characteristics
of the task and model are also important. In Ta-
ble 5, Metadata sentences interface can boost the
task while metadata pre-training gives the model a
bad influence. Metadata tasks have different logic
of reasoning with TableQA tasks, although it can
help understand tables. When using metadata task
as pre-training objectives, it destroys the original
logic of reasoning and brings side effects.

7 Related Work

7.1 Table Interpretation

There is a long line of work trying to understand
tables symbolically, especially for entity or content
tables where we can conduct entity linking, col-
umn type annotation, and relation extraction (Wang
et al., 2012; Kacprzak et al., 2018; Hulsebos et al.,
2019; Cutrona et al., 2020; Wang et al., 2021).
Some domain ontology or knowledge graph, such
as DBPedia (Lehmann et al., 2015) and Wiki-
data (Vrandečić and Krötzsch, 2014), is often pro-
vided for alignment. Column type annotation and
relation extraction are related to our measure / di-
mension (§2.1) and field type (§2.3) classification.
However, most previous work focus on the en-
tity type of the columns (Hulsebos et al., 2019;
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Deng et al., 2020), and few public datasets pro-
vide real-world tables with rich labels of measure-
ments (Ritze and Bizer, 2017; Cutrona et al., 2020).

7.2 Pre-trained Tabular Models

Pre-trained language models (Devlin et al., 2019;
Brown et al., 2020) are widely used in NLP tasks.
Recently also emerge several pre-trained tabu-
lar models with transformer as the primary back-
bone (Dong et al., 2022), such as, TAPAS (Herzig
et al., 2020), TABBIE (Iida et al., 2021) and
TURL (Deng et al., 2020). The semantic infor-
mation within those models contains an amount of
metadata knowledge, however, the models still lack
the ability to understand things like table distribu-
tions, which we demonstrate in §6

8 Conclusion

In conclusion, this paper has presented the
AnaMeta dataset, a collection of tables with derived
supervision labels for four types of commonly used
field metadata. We have also proposed a multi-
encoder framework, called KDF, which incorpo-
rates distribution and knowledge information. Ad-
ditionally, we have proposed four interfaces for
incorporating field metadata into downstream anal-
ysis tasks. Through evaluations of a wide range of
models, we have shown the importance of accurate
metadata understanding for tabular data analysis
and the effectiveness of the KDF framework and
interfaces in improving the performance of down-
stream tasks.

Limitations

The type of field metadata tasks is limited in this
paper and it can be explored more. There are far
more types of analysis metadata to be discovered
and inferred. On the one hand, inspired by data
profiling metadata, the dependency between multi-
fields in one table plays an important role. There
are several common dependencies or relationships
among columns. How to identify them is future
work. On the other hand, in Table 8 only a limited
taxonomy is provided. A more comprehensive one
is future work.

Our initial research explored the ability of large
language models (LLMs) to extract metadata from
tables. The results were not optimal, likely due to
a lack of exposure to metadata during the training
process of the LLM and limitations in the design
of the prompts used. Further investigation is nec-

essary to improve the performance of LLMs in
extracting metadata from tables.

Ethical Statements

We collect AnaMeta dataset from 3 source datasets.
For spreadsheet dataset, we crawl them from web-
sites, which means original spreadsheet are public.
Thus, We believe there is no privacy issue related
to this dataset. For web tables and synthetic tables,
we apply public datasets and follow their License.
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A Related Work

A.1 Dimensional Modeling and Metrology
The terms “measure” and “dimension” have
their roots in dimensional modeling from data
warehousing and business intelligence (Golfarelli
et al., 1998). In relational and multidimensional
databases, dimensional models are implemented
as star schemas and online analytical processing
(OLAP) cubes (Kimball and Ross, 2013). Our def-
inition of “dimension” extends the concept in di-
mensional modeling. As we will discuss in §2.1, it
contains primary keys and natural keys in addition
to the dimension attributes. Most of our analysis
metadata involves measures. As the scientific study
of measurements, Metrology includes the defini-
tion of quantities and units of measurement. In
§2.3, we will define our measure types with com-
mon units from the International System of Units
(SI) (BIdPe, 2019; iso), which is a widely accepted
metric system.

A.2 Data Profiling
(Abedjan et al., 2018) has the similar term “meta-
data”. These metadata, such as statistics about the
data or dependencies among columns, can help
understand and manage new datasets.

Analysis metadata is proposed for further analy-
sis tasks based on part of data profiling metadata.
The details about their relationship for each task
are as follows: (1) Unique column combination
and primary key. There is plenty of work to ex-
plore them, while key with semantics is not their
focus. (Bornemann et al., 2020) proposed natural
key based on primary key, and they use engineered
features and Random Forest to solve the problem.

(2) Identifying semantic domain of a column.
(Zhang et al., 2011) first propose semantic domain
labeling by clustering columns. (Vogel and Nau-
mann, 2011) matches columns to pre-defined se-
mantics with specific features and Naive Bayes.
This track of works evolves towards column type
identification in table interpretation, which we dis-
cuss in §7.1.

(3) Quantity name recognition: This activates
detecting the quantity name for a column, which
is highly correlated with measure type in analy-
sis metadata. (Sarawagi and Chakrabarti, 2014)
point out that unit extraction is a significant step
for queries on web tables, and design unit extrac-
tors for units in column names by developing a unit
catalog tree. (Yi et al., 2018) extends to inferring

Table 6: Numerical Dimension.

Header Records

Class 1,2,3,4,5...
Rank 11,12,13,14,15...
ID 9131115,22112723,1111145,30320912...
QP Code 1256,1245,1237,2134...
Style 4,4,2,2,2...

unknown units with extracted feature and Random
Forest. However, those existing works heavily de-
pend on units appearing in the table, so we propose
measure types that can also identify measure fields
without units and property.

State-Of-Art of those related works often ex-
tracts specific features and uses traditional machine
learning to solve the problem, which lacks fur-
ther semantic representation with the pre-training
model.

A.3 Downstream Analysis Tasks

Lots of intelligent data analysis features could
benefit from analysis metadata. Typical exam-
ples include automatic insights discovery (Ding
et al., 2019; Law et al., 2020), chart and pivot
table recommendations (Zhou et al., 2020, 2021;
Wu et al., 2021), Text2SQL and query recommen-
dations (Dong and Lapata, 2016; Katsogiannis-
Meimarakis and Koutrika, 2021; Yu et al., 2021),
table expansion (Zhang and Balog, 2017, 2019),
etc. Most of these tasks involve searching, enumer-
ating, and comparing in a large space. Analysis
metadata could help narrow down possible can-
didates (prioritized searching order) and provide
good ranking references.

B Problem Definition

B.1 Measure / Dimension Dichotomy

First, not all numerical fields are measure fields. In
Table 6, “Style” fields consist of categorical num-
bers, thus is dimension. “ID” and “QP Code” fields
represent keys, thus are dimensions. Second, there
exists a weak dependency between field positions
and roles. Starting from the left, usually, key dimen-
sions come before breaking down dimensions, and
measures come after dimensions. An ML model
should take vague hints among fields into account.

B.2 Common Field Roles

It’s worth noting that there are several existing
works on “primary key”, while “natural key” is
different from “primary key” as described in §A.2.
Both of them are chosen to represent records, while
“primary key” focuses on unique (e.g., ID) and “nat-
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ural key” focuses on semantic terms (e.g., name).
Sometimes it is also called key / core / subject /
name / entity column in relational tables (Ritze and
Bizer, 2017; Zhang and Balog, 2020). As discussed
in §7.1, natural key can be used for entity linking
and other table understanding tasks.

B.3 Dimension Type
We adopt TURL (Deng et al., 2020) column types
as dimension type. It contains 255 types and the
most frequency dimension types are shown in Ta-
ble 7.

Table 7: The Most Frequency Dimension Types.

Dimension type

people.person government.political_party
location.location location.administrative_division
organization.organization sports.sports_league_season
sports.sports_team soccer.football_player
sports.pro_athlete sports.sports_league
soccer.football_team government.politician
time.event film.film
location.country business.business_operation
location.citytown ...

B.4 Measure Type
Each type represents a magnitude, and each type
is mutually exclusive. Each measure type corre-
sponds to a set of convertible units (see “Common
Units” in Table 8), and highly correlated concepts
(see “Common Examples” in Table 8). “Dimen-
sionless” category with 6 types is summarized in
the taxonomy. Different from the existing magni-
tude or units taxonomy, there is plenty of measure
without units and corresponding measure types are
important in analysis. Thus we summarize the most
common mutually exclusive 6 dimensionless mea-
sure types.
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Figure 3: Measure Type. (Taking the logarithm of y-
axis with base 4)

The field still has a measure type, when values of
the measure field are not entity or property in KG.
Measure type is important to all common measure

fields. But the existing column type identification
and relation extraction task need table values to be
entities or properties in the knowledge graph. And
more than 90% of numerical fields can not match
entity or property in KG (we perform statistics on
non-WikiTable (Web table and spreadsheet) men-
tioned in §3 and match with MTab(Nguyen et al.,
2019)). For example, “Final Exam” in Table ??
can not match KG, while it has “Score” measure
type.

When determining the measure type taxonomy,
we also collect manual labels on 882 tables (con-
sisting of 6,715 fields) randomly sampled from
our spreadsheet dataset. We start with a longer
list of measure types as discussed in Definition7,
map DBPedia properties to the list for T2D, map
Wikidata properties for SemTab and mark all 3,139
measures with types in the 882 sampled tables. As
mentioned in §2.3, we only keep measure types
with ≥10 labels (in T2D and sampled tables) or
≥100, resulting in 36,859 fields fall in our measure
taxonomy in Table 8. Although TURL dataset also
has property (relation extraction in its paper) labels,
there are less than 1% labeled as measure property,
so they are not used in this task.

B.5 Default Aggregation Function
An essential operation in data analysis is to aggre-
gate multiple measurements from a field, usually
grouped by another breakdown dimension. For
each measure, there are some AGG functions more
widely applied to it. The most suitable AGG func-
tion could be adopted as default calculation by
downstream analysis tasks. For most measures,
AVG can be applied directly, but often SUM is a
better choice if possible. For some downstream
scenarios, AVG/SUM can cover most usage cases.
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Figure 4: Default Aggregation Functions. (Taking the
logarithm of y-axis with base 4)

B.6 Problem Formulation
The machine learning formulation of the metadata
is a Binary classification of measure/dimension for
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Table 8: Measure Type Taxonomy and Details.

Category Type Common Examples Common Units

Dimensionless

Count (Amount) Population, daily passenger flow, ...
Ratio Percentage, change rate, proportion, ...
Angle Angle, longitude, latitude ...
Factor / Coefficient Coefficient of thermal expansion, drag coefficient, ...
Score Rating, exam score, indicator (index), ...
Rank University ranking, projected GDP ranking, ...

Money Sales, asset, income, revenue, cost, GDP, ... $, C, £, ...
Data/file size Memory size, disk size, ... GB, kb, ...

Time Duration Age, runtime, time length, ... s, min, hr, d, yr, ...
Frequency Audio frequency, rotational speed, ... Hz, RPM, ...

Scientific

Length Length, width, elevation, depth, height, ... m, cm, yard, feet, ...
Area Surface area, gross floor area, ... m2, acre, ...
Volume (Capacity) Vital capacity, water capacity, ... m3, L, ...
Mass (Weight) Body weight, salt consumption, ... kg, lbs, ...
Power Source power, rated power, ... kW, ...
Energy Calories, energy consumption, ... J, kcal, ...
Pressure Atmospheric pressure, blood pressure, ... Pa, mmHg, ...
Speed Velocity, average speed, ... m/s, km/h, ...
Temperature Effective temperature, melting point, boiling point, ... ◦C, K, ...

each field of a given table.
To help downstream tasks on prioritizing search

order and re-ranking results, we formulate common
field roles as three machine learning tasks provid-
ing 0∼1 commonness score (higher means more
preferred in general) for each field of a given table
and recommend fields list for each table in order of
commonness score.

The machine learning task for measure pair iden-
tification is a binary classification of any pair of
numerical fields within a given table. For mea-
sure type and dimension type, it is a 19-way and
255-way classification problem.

The machine learning task for the default aggre-
gation function is to provide 0∼1 ranking scores
for popular AGG functions.

C Corpus

C.1 Dataset Preprocessing
To avoid data leakage and imbalance, we carry out
the following steps. Note that for a fair comparison,
we adopt TURL dataset train/valid/test split, so do
not perform the following steps.

1. Table Deduplication. To avoid the “data leak-
age” problem that duplicated tables are allo-
cated into both training and testing sets, tables
are grouped according to their schemas5.

2. Down Sampling. After deduplication, the
number of tables within each schema is very

5Two tables are defined to have the same schema if they
have the same number of fields, and each field’s data type and
header name are correspondingly equal.

imbalanced – 0.23% schemas cover 20% of
these tables. To mitigate this problem, we
randomly sample unique tables under the
threshold (11 for the Chart dataset, 2 for the
Pivot dataset, 1 for Vendor & T2D & Semtab
dataset).

The schemas are randomly allocated for training,
validation, and testing in the ratio of 7:1:2.

For spreadsheet datasets, we follow the steps in
(Zhou et al., 2021) and (Zhou et al., 2020), includ-
ing extraction charts and pivot tables.

For all six datasets, we extract data features
(§4.3) and map knowledge graph (§4.2) as the input
of our models.

C.2 Data Quality

The inspection focused on the Chart and Pivot
datasets, as the quality of the T2D, TURL, and
SemTab datasets had already been checked by their
authors (for tasks with different labels, we also
performed a manual mapping). We conducted the
quality inspection with 5 experts who have analysis
experience. All experts are from China. During the
inspection, we randomly selected 100 tables from
the Chart and Pivot datasets, and asked experts to
score the labels of the corresponding tasks, and the
score is between 0 and 1. Our results showed that
measure / dimension dichotomy got 0.99, common
field roles got 0.97, aggregation functions got 0.93
and measure pair got 0.97 on average. This demon-
strates that our corpus contains high-quality data
and supervision.
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D KDF Framework

D.1 Overall Model Architecture
KDF overall architecture is as follows:

(1) Pre-trained tabular models are used as pre-
liminary encoders generating initial representation
for table elements. After the preliminary encoding
phase(“Pre-trained tabular model” in Figure 5),
we get a sub-token level or cell level (according to
different pre-trained tabular models) table embed-
ding sequence.

(2) We fuse knowledge of cell entity and tabu-
lar model embedding with “Knowledge fusion”,
and pass it into sub-token (or cell) level Trans-
former(Vaswani et al., 2017) encoder(“Sub-token
level encoder”).

(3) We apply average pooling to get an embed-
ding representation for each column. For each col-
umn, we use “Distribution fusion” to fuse distri-
bution from data features and “Knowledge fusion”
to fuse knowledge of column type and property in
order. Then we pass those column embeddings into
Transformer encoder (“Column level encoder”)
and linear output heads for each metadata task.

D.2 Knowledge Fusion Module
For both entity and property, existing knowledge
representation covers comprehensively and per-
forms well. However, if their embedding is trained
with table corpus, it can only cover limited entity
and property. To increase the extensibility and per-
formance of the model, we directly use knowledge
representation in OpenKE6.

There are three kinds of knowledge information
linked with knowledge graph according to table
interpretation tasks – cell entity, column type, and
property. For a table with knowledge linking (e.g.
TURL dataset, Semtab dataset), we utilize original
knowledge linking. Otherwise, we adopt MTab7

to link the knowledge graph. MTab is a tool to
annotate tables with knowledge graphs, and they
get first place in Semtab2019(Jiménez-Ruiz et al.,
2020) and Semtab2020(Cutrona et al., 2020).

D.3 Distribution Fusion Module
(1) Statistics features:

• Progression features: ChangeRate, Par-
tialOrdered, OrderedConfidence, ArithmeticPro-
gressionConfidence, GeometricProgressionConfi-
dence.

6http://openke.thunlp.org/
7https://github.com/phucty/mtab_tool

• String features: AggrPercentFormatted, me-
dianLen, LengthStdDev, AvgLogLength, Common-
Prefix, CommonSuffix, Cardinality, AbsoluteCar-
dinality.

• Number range features: Aggr01Ranged,
Aggr0100Ranged, AggrInteger, AggrNegative,
SumIn01, SumIn0100.

• Distribution features: Benford, Range, Num-
Rows, KeyEntropy, CharEntropy, Variance, Cov,
Spread, Major, Skewness, Kurtosis, Gini.

(2) Field categories:
Including FieldType (Unknown, String, Year,

DateTime, Decimal), IsPercent, IsCurrency,
HasYear, HasMonth and HasDay.

D.4 Multi-task Learning
We use 19-class Cross Entropy loss for measure
type, and standard binary Cross Entropy loss for
measure/dimension dichotomy, common measures
and dimensions, and measure pair tasks. In com-
mon measures and dimensions task, we use scores
of “true” class as their commonness scores. For
aggregation function and dimension type task, we
respectively use 7- and 255-class Cross Entropy
loss and average loss of each field by the number
of its ground truth, because there may be more than
one ground truth for one field, which will lead to
an unbalanced loss without averaging the fields.

E Experiment Details

E.1 Experiment Setting
All the experiments are run on Linux machines
with 24 CPUs, 448 GB memory, and 4 NVIDIA
Tesla V100 16G-memory GPUs. We use hit rate
(HR@k = #hits@k

#samples ) to evaluate recommendation
tasks on each table and accuracy to evaluate classi-
fication tasks on each field.

It’s worth noting that to avoid label leaking, we
do not use Knowledge fusion for column type and
property in dimension type task. For the measure
type task, we focus on the columns that can not be
directly linked with properties from the knowledge
graph for these columns are hard for existing table
interpretation methods. To imitate those tables, we
mask knowledge graph information for the field to
train and evaluate in measure type task.

E.2 Metadata Model Details
In detail, we have the following model size:

• Sub-token level: transformer encoder: 2 layers,
8 heads, dimension of embedding: dtok = 192,
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Figure 5: Overall metadata model. 1 represents knowledge fusion module in Figure 2, and 2 represents distribu-
tion fusion module in Figure 6.
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Figure 6: Distribution Fusion Module in KDF Frame-
work. The module represents each token.

dent = 100, dh = 64
• Column level: transformer encoder: 2 layers,

8 heads, dimension of embedding: dtok = 128,
dent = 100, dh = 64

We train Metadata on 10 epochs, 64 batch sizes,
AdamW optimizer with 1× 10−4 learning rate and
0.001 weight decay. We choose half visible hyper-
parameter m = 0.5. It’s worth noting that, due to
insufficient supervision, aggregation function tasks
use the result of epoch5.

E.3 Benchmarks

E.3.1 Rule-based
The rule-based model predicts an output for every
field based on the field surface attributes since it
is off-the-shelf ready to use and does not involve
additional training. The specific rules for each
metadata task are as follows:

(1) Measure/dimension dichotomy: The model
predicts Measure when the input field is numerical
(i.e., the field consists purely of numbers); other-
wise; the model predicts Dimension.

(2) Nature key: The model predicts a field to be

Natural Key if and only if the field is the leftmost
field among fields with cardinality of 1 (i.e., the
field contains all unique data values).

(3) Common breakdown: The model predicts a
field to be Common Breakdown if and only if the
field is the leftmost among dimension fields whose
cardinality is less than 0.4.

(4) Common measures: The model predicts a
field to be Common Measure if and only if the field
is the rightmost numerical field.

(5) Dimension type: The model predicts ev-
ery field to be of the type with most samples
(sports.sports_team in our case).

(6) Measure type: The model predicts every field
to be of the type with the most samples (Count in
our case).

(7) Measure pair: The model predicts two fields
to be a Measure Pair if and only if they are contigu-
ous Measure fields.

(8) Default Aggregation Function: The model
predicts the default aggregation function of every
field to be the function with most samples (SUM
in our case).

E.3.2 Traditional Machine Learning
Traditional machine learning is widely used due
to both its effectiveness and efficiency. In data
profiling(Abedjan et al., 2018), there exist several
state-of-art works that apply traditional learning
with specifically extracted features. To compare
with them, we design a traditional machine learning
baseline by adopting a series of manually designed
field data features (elaborated in §4.3). Traditional
machine learning baseline implementation details
of each metadata task are as follows:

(1) In binary classification tasks (i.e., measure/di-
mension dichotomy, measure pair), a single classi-
fication model is trained, and the model hyperpa-
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rameters are determined based on the validation set
metrics.

(2) In ranking tasks(i.e., common measures, com-
mon breakdown, and primary key), we train a bi-
nary classifier to make predictions for each field
and rank the predictions with the raw probabilities
given by the model outputs.

(3) In multi-class classification tasks (i.e. dimen-
sion type, measure type, and default aggregation
function), we directly train a multi-class classifier
using traditional machine learning algorithms.

In the experiment, we choose GBDT, Random
Forest, Adaboost, and Naive Bayes to evaluation
on each task, and display the performance of the
best two baselines (GBDT and Random Forest) to
compare with Metadata model.

E.3.3 Pre-trained Tabular Model
TURL is a structure-aware Transformer encoder to
model the structural information about tables on
table interpretation tasks and achieves Sate-Of-Art
results. They also use Masked Entity Recovery
pre-training objective to learn knowledge informa-
tion about entities in relation tables. Since this
model considers entity information, we select it as
a strong baseline to show the effectiveness of Meta-
data model architecture in fusing the knowledge
graph information.

To evaluate the performance of TURL in meta-
data tasks and have a fair comparison, we take the
following steps:

(1) Map knowledge entity. Because entity link-
ing in Semtab2020 dataset only has Wikidata id
but TURL uses DBPedia id in embedding, we use
WikiMapper8 to map Wikidata id to DBPedia id.
It’s worth noting that dimension type task is one
of TURL’s original tasks, so WikiMapper is not
used in this task. Thus, this task can prove that
Metadata still exceeds TURL without the influence
of WikiMapper (details are shown in §6.2).

(2) Interpret the original table. We use TURL
pre-trained encoder9 to interpret the original table
and get the embedding representation of flat tables.

(3) Train and evaluate metadata tasks. To do
classification on metadata tasks, we use the same
sub-token level encoder, column level encoder and
loss function as our Metadata model while adopting
the same training strategy with TURL.

For TAPAS and TABBIE, we use the same sub-
token level encoder, column level encoder in Ta-

8https://github.com/jcklie/wikimapper
9https://github.com/sunlab-osu/TURL

ble 5 (without fusion modules).

E.3.4 Large Language Model
LLMs have recently gained significant attention
for their success in various downstream tasks. In
this study, we conduct a preliminary exploration of
LLMs performance on metadata tasks.

Hyperparameter Setting We set the decoding
temperature to 0 (i.e., greedy decoding without
sampling) since the question of metadata tasks has
a unique answer. We set the max output length to
200.

Models We select GPT-3 (text-davinci-001) and
GPT-3.5 (text-davinci-002 and text-davinci-003) to
conduct experiments since these models are shown
to be powerful in many downstream tasks.

Zero / Few-shot Learning We apply zero-shot
and few-shot learning to evaluate the performance
of large language models on metadata tasks. For
each setting, we add the definition of metadata
terminology to allow LLMs for in-context learn-
ing. Besides, the few-shot example is uniformly
sampled from the training set for each task. Only
high-quality examples with a non-empty header are
selected.

Prompts We have created specific prompts for
various tasks, which are listed at the end of this sec-
tion. The optional ‘<example></example>‘ block
includes a few-shot example. Additionally, for the
dimension type task with a large number of hier-
archical choices, we employ a hierarchical ques-
tioning approach to avoid truncated input. For
instance, we furnish the first-layer options (e.g.
people, location, organization...) to the LLMs
and the second-layer options (e.g. sports_team,
pro_athlete, sports_league...) to those questions
answered with the correct first-layer choices.

**Task: measure / dimension**
<example>
Given the markdown table:
[linearized markdown table row by row]
Is the [ordinal number] column ("[header
name]" column) a measure or dimension?
The answer is: [answer]
</example> (optional)
Given the markdown table:
[linearized markdown table row by row]
Is the [ordinal number] column ("[header
name]" column) measure or dimension? ([
term definition]) Please answer
concisely a ’measure’ or ’dimension’. (
Do not return any explanation or any
additional information.)
=>
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**Task: natural key, common breakdown,
common measure**
<example>
Given the markdown table:
[linearized markdown table row by row]
Which column is the natural key / common
breakdown / common measure? The answer

is: [answer]
</example> (optional)
Given the markdown table:
[linearized markdown table row by row]
Which column is the natural key / common
breakdown / common measure with the

highest probability? ([term definition])
Please answer a tuple of ’(ordinal

English word, header name)’, where ’
ordinal English word’ starts from ’first
’. (Do not return any explanation or any
additional information.)

=>

**Task: dimension type, measure type,
aggregation**
<example>
Given the markdown table:
[linearized markdown table row by row]
Which dimension type / measure type /
aggregation is the [ordinal number]
column ("[header name]" column)? The
answer is: [answer]
</example> (optional)
Given the markdown table:
[linearized markdown table row by row]
Which of the following dimension types /
measure types / aggregations is the [

ordinal number] column ("[header name]"
column)? (Do not return any explanation
or any additional information.)
[choice 1]
[choice 2]
...
=>

**Task: measure pair**
<example>
Given the markdown table:
[linearized markdown table row by row]
Is the [ordinal number] column ("[header
name]" column) and the [ordinal number]
column ("[header name]" column) a

measure pair? The answer is: [answer]
</example> (optional)
Given the markdown table:
[linearized markdown table row by row]
Is the [ordinal number] column ("[header
name]" column) and the [ordinal number]
column ("[header name]" column) a

measure pair? [term definition] Please
answer concisely a ’yes’ or ’no’. (Do
not return any explanation or any
additional information.)
=>

E.4 Results of Large Language Models
In Table 9, there are more results on large language
models for metadata tasks. We only report the
results without terminology definition since we ob-

serve no significant improvement but degraded per-
formance on measure / dimension dichotomy (-1%
on 0-shot, -5% on 1-shot) and natural key (-4% on
0-shot, -1% on 1-shot) tasks on text-davinci-003.

E.5 Measure Type

As mentioned in §A.2, there are several existing
works focusing on the similar or same task. To
compare dimension type, we apply the State-Of-
Art table interpretation model – TURL as a baseline
as discussed in §E.3.3. To compare measure type,
we apply the most relevant unit detection work (Yi
et al., 2018) (RQN) as a baseline. It proposes a
feature-based method to automatically determine
the quantity names for column values. It uses hand-
designed rules to extract features from raw tables
in both column values and name. The extracted
features are used to train a random forest classifier.
The results are shown in Table 10.

In Table 10, Metadata models outperform RQN
more than 10%. RQN has a limit to identifying
quantities from the existing unit in the column,
while Metadata model learns more.

E.6 Ablation Results

We ablate Distribution Fusion and Knowledge Fu-
sion respectively and together, and the results are
shown in Table 11.

Successful distribution and knowledge fusion
gain the performance of models together. Com-
pared with ablation models, for both TAPAS and
TABBIE, the top-1 scores come most frequently
from the non-ablation Metadata model. Especially,
KG and DF boost 5.40 % (3.13 %) for common
breakdown task with Metadata TAPAS (TABBIE),
1.76% (1.99%) for dimension type, and 2.29%
(1.32%) for measure pair. For example, on the
measure pair task, all measure fields are numerical
fields, so number understanding is the key point
for this task. Data features fuse statistics informa-
tion to help the model understand the full picture
of numbers in one column. knowledge graph pro-
vides existing knowledge to understand each record
and column and helps the model to understand the
entire table, which is important for measure pair
task.

Especially on Common Goup By and Common
Measure tasks, data statistics feature information
is of great help to understand tables. For Com-
mon breakdown tasks, DF improves performance
by 2.36% (2.85%) on Metadata TAPAS (TABBIE).
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Table 9: Large Language Model More Results on Metadata. “text-davinci-001” is GPT-3, and “text-davinci-002”
and “text-davinci-003” are GPT-3.5.

Model
Msr Natural Key Com. Breakdown Com. Msr Dim Type Msr Type Msr Pair Aggregation

Acc. HR@1 HR@1 HR@1 Acc. Acc. Acc. Acc.

text-davinci-001 0-shot 28.28% 73.66% 38.79% 26.03% 4.43% 13.10% 55.71% 19.49%
text-davinci-001 1-shot 52.86% 78.01% 38.48% 22.85% 2.59% 10.92% 54.11% 35.84%
text-davinci-002 0-shot 64.57% 88.10% 44.23% 43.08% 31.85% 18.64% 58.41% 65.26%
text-davinci-002 1-shot 79.41% 74.03% 40.81% 57.36% 35.94% 16.37% 55.63% 55.01%
text-davinci-003 0-shot 87.18% 88.39% 41.51% 50.18% 46.11% 35.10% 51.45% 77.46%
text-davinci-003 1-shot 91.14% 82.47% 44.80% 57.30% 46.38% 29.32% 55.36% 75.66%
text-davinci-003 3-shot 90.53% 78.81% 45.12% 54.14% 41.12% 28.43% 56.81% 80.37%
text-davinci-003 5-shot 90.71% 79.23% 44.82% 56.44% 40.48% 29.18% 56.96% 80.47%

Table 10: Measure Type Additional Results.

Model Measure Type Acc.

RQN 65.55%
RF 70.09%

KDF+TAPAS w/o DF 81.51%
KDF+TABBIE w/o DF 80.29%

Breakdown often appears in long tables (e.g. aver-
age row number in the pivot dataset is 5805), due to
the limitation of sequence length and comprehen-
sion, it’s hard to capture the distribution of values
for the pre-trained tabular model. Statistics feature
is a good choice for understanding distribution. It
is worth noting that DF does not benefit all tasks,
e.g., measure type task.

Especially on dimension type and measure type
tasks, knowledge graph information is of great help
to understand tables. For measure type task, KG
improves performance by 3.02% (2.90%) on Meta-
data TAPAS (TABBIE) (w/o DF - w/o DF KG).
The model could get additional information from
the knowledge graph to enhance the understand-
ing of the table. And it learns the useful pattern
between measure type and cell entity/column type.

The replaceable pre-trained tabular model brings
a good opportunity to get better performance.
KDF(TABBIE) outperforms KDF(TAPAS) on
most tasks. Besides, KDF framework outperforms
TURL on all tasks. In addition to distribution and
knowledge infusing, the replaceable pre-trained
tabular model is another key point. More and more
pre-trained tabular models are emerging with bet-
ter performance, and KDF model can be based
on almost all transformer-based pre-training mod-
els. Thus, it’s convenient to replace them with the
models in Metadata, which can further improve
performance and choose the best one.

E.7 Downstream Interfaces
In our experiments on the Table2Charts model, we
followed the same setup as described in (Zhou et al.,
2021) and reported the results of the pretraining
stage. In the metadata embeddings interface experi-
ments, we used column embeddings from the KDF
framework instead of FastText embeddings in the
Table2Charts model. To ensure fair comparisons,
we used TAPAS column embeddings as the input
for the Table2Charts model, as the only difference
between TAPAS column embeddings and KDF em-
beddings is the use of metadata knowledge. In
the metadata IDs interface experiments, we used
metadata ID tags on TAPAS column embeddings
as the input for a fair comparison with the above
experiments.

For TableQA tasks, we followed the T5-base ex-
periment setup of UnifiedSKG (Xie et al., 2022).
In the metadata sentences interface experiments,
we first used our best KDF model to infer Wik-
iTQ and HybridQA tables. Then, we concatenated
metadata sentences, such as [Measure], [Natural
Key], [Sum], etc., after the column headers. Fi-
nally, we fine-tuned the T5-base model using the
same approach as in UnifiedSKG. In the metadata
pretraining interface, we first continued pretraining
the T5-base model using metadata tasks formulated
as table question-answer tasks. The questions and
answers were the same as the prompts described
in §E.3.4. Then, we fine-tuned the T5-base model
using the same approach as in UnifiedSKG. We ex-
perimented with all combinations of four metadata
tasks and reported the best results.
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Table 11: Ablation Results. Setting of this table is the same as Table 3. “DF” – Distribution fusion, “KG” –
Knowledge fusion. ∆ means non-ablation models (KDF+TAPAS or KDF+TABBIE) metric minus corresponding
evaluation metric.

Model
Msr Natural Key Com. Breakdown Com. Measure Dim Type Msr Type Msr Pair Aggregation

Acc. ∆ HR@1 ∆ HR@1 ∆ HR@1 ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

KDF+TAPAS 98.45 0.00 95.04 0.00 64.03 0.00 71.09 0.00 97.97 0.00 79.32 0.00 77.50 0.00 91.48 0.00
w/o DF 97.40 -1.05 94.01 -1.03 61.66 -2.36 70.87 -0.22 97.93 -0.04 81.51 2.19 75.82 -1.68 89.76 -1.72
w/o KG 98.54 0.09 94.29 -0.75 62.82 -1.20 70.06 -1.03 96.30 -1.67 76.77 -2.56 77.39 -0.10 91.51 0.03
w/o DF KG 97.09 -1.36 93.79 -1.25 58.62 -5.40 70.01 -1.09 96.21 -1.76 78.49 -0.83 75.20 -2.29 89.96 -1.52

KDF+TABBIE 98.93 0.00 94.99 0.00 65.49 0.00 71.74 0.00 97.33 0.00 78.74 0.00 79.01 0.00 90.58 0.00
w/o DF 97.89 -1.04 94.78 -0.21 62.64 -2.85 71.60 -0.14 97.34 0.01 80.29 1.55 78.08 -0.93 88.63 -1.95
w/o KG 98.90 -0.04 94.87 -0.11 63.33 -2.16 71.76 0.02 95.38 -1.96 76.35 -2.39 77.99 -1.02 90.71 0.14
w/o DF KG 97.49 -1.45 94.42 -0.56 62.36 -3.13 71.16 -0.58 95.34 -1.99 77.39 -1.36 77.70 -1.32 88.43 -2.15
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