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Abstract

Lifelogs are descriptions of experiences that
a person had during their life. Lifelogs are
created by fusing data from the multitude of
digital services, such as online photos, maps,
shopping and content streaming services. Ques-
tion answering over lifelogs can offer personal
assistants a critical resource when they try to
provide advice in context. However, obtaining
answers to questions over lifelogs is beyond the
current state of the art of question answering
techniques for a variety of reasons, the most
pronounced of which is that lifelogs combine
free text with some degree of structure such as
temporal and geographical information.

We create and publicly release TimelineQAL, a
benchmark for accelerating progress on query-
ing lifelogs. TimelineQA generates lifelogs of
imaginary people. The episodes in the lifelog
range from major life episodes such as high
school graduation to those that occur on a daily
basis such as going for a run. We describe a
set of experiments on TimelineQA with sev-
eral state-of-the-art QA models. Our experi-
ments reveal that for atomic queries, an extrac-
tive QA system significantly out-performs a
state-of-the-art retrieval-augmented QA system.
For multi-hop queries involving aggregates, we
show that the best result is obtained with a state-
of-the-art table QA technique, assuming the
ground truth set of episodes for deriving the
answer is available.

1 Introduction

The promise of augmented reality (AR) glasses has
renewed interest in building personal assistants that
are capable of being with us at all times of the day.
In order for such assistants to be useful, they need
to have detailed knowledge about the user, includ-
ing their past experiences, preferences, habits and
goals in the spirit of systems such as Memex (Bush,

'Code and data available at https://github.com/
facebookresearch/TimelineQA
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1945) and MyLifeBits (Gemmell et al., 2006). A
lot of that knowledge already is implicitly present
in the digital data that people generate by interact-
ing with a myriad of online services such as photos,
maps, health apps, shopping and content streaming.
A lifelog is a private and secure database that con-
tains a set of episodes from the user’s past that are
gleaned from these data sources and in the future
from smart glasses. The lifelog is completely under
the control of the user, and only they can decide if
and when to share fragments of it as they see ben-
eficial. For example, they may share past dining
experiences with an assistant when trying to choose
an item from a menu, or past movie preferences
with a friend when trying to decide which movie to
watch together.

In addition to issues relating to privacy, lifelogs
raise two main classes of challenges. The first is to
infer meaningful episodes from the raw data. For
example, such an inference module would take as
input a set of photos and output an episode such as
visited Venice for 7 days, or celebrated a birthday
party with friends. The second challenge, which is
the subject of this paper is to answer questions over
the lifelog, such as when did I go to Tokyo, what
did I eat on my second night in Paris, or how many
times did I go to the dentist last year.

Question answering is challenging because the
data contains a combination of text and structure.
The episodes themselves are described as text (and
may also contain images and video), but each
episode is associated with a time and location. For
example, in order to answer a query such as where
did I take my mom when she visited Seattle, the
system first needs to figure out when mom visited
Seattle and then look for episodes within that time
interval. Other questions may require counting or
reasoning over sets of episodes, similar to chal-
lenges raised in (Thorne et al., 2021).

This paper describes TimelineQA, a benchmark
for querying lifelogs. The benchmark includes a
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generator that produces lifelogs for imaginary peo-
ple with different personas (e.g., age, gender, ed-
ucation and family status). Each lifelog includes
episodes drawn from a variety of activities, ranging
from significant activities (e.g., going on a trip or
getting married) to more daily activities (e.g., cook-
ing dinner or going to the doctor). For each lifelog,
the benchmark creates a set of question/answer
pairs, specified in English.

Naturally, real lifelogs are complex and ex-
tremely diverse and are challenging to generate
synthetically. Our main contribution is a bench-
mark for QA systems over lifelog data of different
sizes. The goal of the benchmark is not to represent
people’s lives in their full complexity or diversity,
but to offer a sufficiently rich set of lifelogs that
already exposes the challenges involved in question
answering (QA). We show some snippets of our
generated lifelogs Section 4.1. As our QA tech-
niques improve, the benchmark will be enriched to
include more real life complexities.

We describe a set of experiments demonstrating
that current SOTA QA techniques fall short of ade-
quate performance on lifelogs. We experimented
with extractive (Karpukhin et al., 2020) and RAG
(Lewis et al., 2020b) QA systems on atomic queries.
Somewhat surprisingly, even after fine-tuning, the
generative RAG QA system still lags behind the
extractive system for question-answering. In addi-
tion, we ran a Tapex (Liu et al., 2022), a table QA
model and BART (Lewis et al., 2020a) for complex
queries over TimelineQA. Our experiments reveal
that the best performing system, Tapex, only scores
59.0%, assuming that the subset of episodes needed
to compute the answer is known.

2 Related work

The idea of creating a repository that captures all
the knowledge about a person’s life dates back
to Vannevar Bush’s vision of the Memex Sys-
tem (Bush, 1945). Gemmell et al. (2006) describes
the MyLifeBits System that implemented the vision
with the technology available in the late 1990’s,
and they used simple keyword search with the help
of an SQL database to query its contents. Alam
et al. (2022) describes a more recent project on
creating lifelogs, and the Solid Project (Mansour
et al. (2016)) takes an even more radical approach,
suggesting that all of the user’s data be stored in
a data pod and that applications be redesigned to
access it from the pod. Since the early years, the
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promise of personal agents has increased since data
storage has become cheaper and ubiquitous, we
anyway generate many more digital breadcrumbs
with services we use on a daily basis, and Al tech-
niques have become much better at analyzing text
and image content.

The design of our benchmark was inspired by
the Clevr benchmark for evaluating visual query
answering systems (Johnson et al., 2017). Like
Clevr, we design a space of possible questions that
can be asked and then generate synthetic datasets
where we know the answer to each questions posed.

There is a rich body of work on query an-
swering. The ones closest to our work are on
multi-hop queries (Mavi et al., 2022) and neural
databases (Thorne et al., 2021). In addition to
queries that can be answered from a single episode
in a lifelog, TimelineQA includes more complex
queries that require combining information from
multiple episodes in a lifelog. This is similar to
work on QA over long documents (Khashabi et al.,
2018). However, the length of a lifelog is typically
much greater than any existing benchmark or ex-
perimental dataset to the best of our knowledge. A
typical lifelog can contain between 15M to 78M
entries on average, where each entry contains about
8-9 tokens on average. Furthermore, TimelineQA
queries can also contain aggregates (e.g., max, sum,
average). Neural databases considers the problem
of answering aggregate queries over text data of
arbitrary size, but it does not address the temporal
aspects that are critical to queries over lifelogs.

3 Lifelogs

A lifelog includes any kind of experience that a user
recorded digitally (see Figure 1). We model experi-
ences as episodes in the lifelog, and every episode
is associated with a start/end time and start/end lo-
cation, if those are known. Episodes are captured
via photos or videos, smart watches (e.g., exercise
and sleep tracking), mapping services (e.g., routes
and visits), documents that have been explicitly
stored (e.g., passport), or notes that the user takes
describing their subjective experiences. A lifelog
is completely private and accessible only to the
user. She can share slices of her lifelog if and when
there’s value in doing so (e.g., getting better service
from a sales person).

Episodes are typically activities that the user was
involved in, such as celebrating a holiday, going
on a trip, going for a run or a bike ride, physi-



cal therapy, seeing fireworks or watching a movie.
Episodes in the lifelog can either be done by the
owner of the lifelog or by someone in their fam-
ily or circle of acquaintances, e.g., mom moving
to Seattle, sister getting married, having one’s air-
conditioning fixed, or being told something by a
friend. In addition to time and location, episodes
may have attributes, such as who was involved, the
distance and speed of a run, or the name of a prod-
uct that was purchased. Some of these attributes
may be modeled explicitly in the lifelog if they’re
easy to extract, and others may remain in the raw
text or image and found at query time.

Lifelogs are meant to be built with as little fric-
tion as possible from users. Hence, as shown in
Figure 1, the data is imported from the external
services into the lifelog as raw data. Some raw
data already describes episodes (e.g., purchase or
content consumption episodes). Other episodes
are then inferred by analyzing and fusing multi-
ple pieces of raw data (e.g., a trip, or a meal with
friends). Of course, the inference step is a best-
effort one, which means that some questions may
still be impossible to answer and in some cases
the QA system will point the user back to data
that contains the answer (e.g., what did we eat on
my daughter’s birthday). Questions are answered
based on the text and structured data describing all
the episodes in the lifelog.

Our work concerns question answering after the
inference of episodes has been done. Hence, for-
mally a lifelog is a collection of episodes, each one
associated with their start/end time and location:
time-and-space boxed episodes. Each episode con-
tains some text and possibly pointers to external
raw data. Note that episodes can be nested within
other episodes.

3.1 A classification of questions

To understand the breadth and types of questions
users may want to ask of lifelogs, we crowdsourced
the task of writing down questions over their po-
tential lifelogs to 7 people. We also asked for the
categories of their questions. We obtained a to-
tal of about 600 questions. We analyzed the cat-
egories and organized them into 13 topics (e.g.,
life milestones, travel, daily activities) as described
in Table 8 in the appendix. After this, we asked
(again) each contributor to write a few questions
they would ask on each of the 13 topics.

Based on a qualitative analysis of these ques-
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tions, we observe that the queries can be classfied
as follows. We use the term query and question
interchangeably.

Atomic questions: An atomic query, which is the
most common type, asks for some attribute of an
episode. Examples include:

* When did my mom have a knee operation?

* What’s the name of the company that repaired
my A/C?

* What’s the name of my daughter’s first-grade
teacher?

An atomic query is one that can be answered by
a single episode. The answer to an atomic query
can either be directly explicit in the text of the
episode (e.g., when), or requires inference from
the text (e.g., who fixed the A/C). For example, if
an episode describes “08/01/2022: John was here.
He fixed the AC this morning.”, then the respec-
tive answers to the questions are “08/01/2022” and
“John”. In principle, an answer may also be a link to
a photo that may contain the information asked by
the user, though TimelineQA is currently limited to
questions that can be answered after the inference
of episodes is done. Finally, some answers may
require a bit of derivation. For example, when is
my sister’s 40th birthday could be derived from the
episode describing her birth.

Complex queries — multi-hop: The answer to
a multi-hop query is formed by combining data
from multiple episodes. Hence, oftentimes, multi-
hop queries require identifying a set of episodes
in the timeline. For example, Where did we eat
great Indian food on our way to Vancouver? would
require identifying episodes involving the trek to
Vancouver and eating Indian food. Other examples
of multi-hope queries are:

* What places did I visit when my mom came
to visit Seattle?

* Show me photos of the car damage I had after
the accident

Complex queries — aggregates: These questions
(known as aggregation queries in SQL) consider a
set of episodes and compute an aggregate on them.
For example:

* How many times did I visit the dentist this
year?

* How many miles did I bike this year?
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Figure 1: Lifelogs import meta-data from a set of external services. A set of inference models deduces higher level
episodes from the raw imported data. Episodes have a start and end time, and often a location. Question answering

uses the raw and the deduced data.

In some cases, the aggregation may be combined
with another condition, such as How many calories
did I burn on my last two rides? or When did I last
ride 40 miles or more in a day?

Temporal queries: Because of the nature of per-
sonal timelines, many of the questions that arise
are temporal ones. In addition to atomic and com-
plex queries, we identified temporal queries that
may be atomic or complex. Examples of atomic
queries that are temporal are those whose answer
is the time of an episode, such as “When did I pay
my car insurance?”’ In general, temporal questions
may require more sophisticated reasoning about
time, such as finding the length of a life event or
the time between episodes, e.g., How long was my
break between leaving my last job and starting my
current job? or reasoning about the sequence of
occurrence “Did I go to Spain before Italy?”. In our
crowdsourced query collection, temporal queries
were mostly atomic when queries or implicit sub-
goals of more complex queries, e.g., “when was the
last time I visited the dentist?”

3.2 The goals of the benchmark

The above classification of questions highlights
some of the challenges that will arise in query an-
swering over lifelogs. The first challenge is typical
for query answering—the disparity between the
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terms that are used in the query versus the lan-
guage used in the lifelog itself. For example, a user
might ask when they had a drink with a particular
friend, while the lifelog may say that they went
to a bar before dinner. In the lifelog context the
challenge can also require multi-modal reasoning,
because the only item in the lifelog might be a
photo from a bar. As another example, users may
refer to more aggregate terms than what’s in the
lifelog. For example, the user may ask how much
they spent on utilities last month, while the lifelog
has individual utility bills, but the system may not
be aware of which bills are considered utility bills.
We expect that query answering over lifelogs will
benefit from advances in the broader field of query
answering and therefore this is not a focal point of
our benchmark.

The second set of challenges involves the in-
terplay between the structure that the lifelog sup-
ports and the linguistic reasoning. For example, the
lifelog may store the duration of every exercise you
made, but answering the query on how long did
you exercise every day for the past month is more
challenging. Another complex example is in the
context of multi-hop questions. If a user asks when
was the first time she traveled to Tokyo, the sys-
tem needs to find all instances of the user’s travel
to Tokyo and then return the first one. Reasoning



about such temporal relations is an area of weak-
ness for QA algorithms today. This aspect of query
answering is critical to lifelogs and therefore we
design our benchmark to evaluate these challenges.
Specifically, we would like our benchmark to
push the limits on the interaction between structure
and language in query answering. To that end, our
benchmark is designed to be able to vary a few
variables, including the complexity of the ques-
tions, the size and contents of the lifelogs, and the
types of data that are in the lifelog, including the
complexity of life episodes the user has, how ver-
bose the user is (i.e., do they log only their major
experiences or also many minutiae episodes).

4 Creating lifelogs in TimelineQA

Since we believe that TimelineQA is the first in
a series of lifelog benchmarks, we explain here
in some detail how it is built. A lifelog is a set of
episodes in the life of a person. Our goal is to create
lifelogs that contain a good range of experiences
that a person may have in life and sufficient to begin
benchmarking the performance of QA systems on
lifelogs. To collect a broad set of typical episodes,
we started with a detailed set of episode categories
described in Coelition?, a site that provides tech-
nology and expert advice for data collected about
people on the Internet of Things, and distilled them
into the categories shown in Table 1. The cate-
gories of episodes range from life episodes (e.g.,
being born, going to college), episodes that happen
a few times a year (e.g., trips) to those that happen
on a weekly or daily basis (e.g., meeting friends or
cooking). The timescales and examples in Table 1
coincided broadly with the types and categories of
questions we obtained from our crowdsourced task.
See Table 8 in Appendix A.1.

Creating a persona The process of building a
lifelog begins with creating a persona which in-
cludes the skeletal details of a person’s life, in-
cluding when and where they were born, their gen-
der, their educational and professional history, their
family members and some of their preferences and
hobbies. We first generate a birthdate, which must
be between 18-75 years old at the time of gener-
ation. We randomly select a gender and a name
from a dictionary of names. We then proceed to
create their educational and professional history,
family members, preferences and hobbies. These
are generated via a model that depends on several

“https://coelition.org/business/resources/visualising-life/
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probability distributions of episodes. We note that
while the personas we create are quite varied, we
do not claim that they represent a diversity in any
social sense. The diversity we do build in is limited:
age, gender, locations, professions. Clearly, in or-
der to achieve robust query answering on lifelogs
we need to consider many other kinds of diversity
(culture, non-typical episodes and scenarios), but
we believe that the benchmark as is already poses
many important challenges.

Creating episodes Once a persona is created, we
begin creating episodes starting from the day the
person was 18 years old to the present year. We first
create episodes in the lifelog for life events, such as
birth, educational phases, starting and ending jobs,
marriage(s) and having children. We then proceed
to generate episodes at different levels of granu-
larity based on the timescales (annual, monthly,
weekly, daily) as shown in Table 1. For example,
for annual episode types, we create annual health
checkups episodes and yearly trips. For monthly
episodes, we generate pet grooming episodes and
some examples of weekly and daily episodes are
baking/cooking, grocery shopping, catching up
with friends or news. These episodes are gener-
ated as described in Table 1. These episodes are
generated based on a predefined probability distri-
bution which can be modified.

Some of the episodes we create are super
episodes, which involves sub-episodes that depict
events of finer granularity. For example, a multi-
day travel or trip episode will be broken down to
movements between different destinations, and the
itinerary for every single day and special episodes
that happened in each day. The descriptions of
episodes are generated by instantiating templates
that we specify. Every episode is associated with
a set of alternative templates and a template is ran-
domly picked and instantiated for a given episode
to be created. Since the templates are fixed, the
descriptions generated may not offer the variety in
descriptions we expect from a general population.
We are in the process of incorporating the use of
language models to generate episode descriptions
as yet another alternative. However, it is interesting
to understand what limitations on QA such a bench-
mark already exposes with templated descriptions.

More variations in the episode activities can be
added to the lifelog generator to more closely re-
flect the categories we find in the Coelition and also
what we crowdsourced (Table 8). We leave this for



Time scale Examples
Lifetime birth, educational milestones, marriage, divorce, jobs & relocation
Annual travel, medical and dental checkups
Monthly pet care (e.g., grooming)
Weekly baking, cooking, dating, hobbies, buying groceries
Daily eating meals, talking with friends, exercising, consuming content (books, movies)

Table 1: Types of episodes in TimelineQA. Episodes are divided into several time scales. The generator creates episodes in

successive time scales, starting from lifetime events.

future work.

Consistency through constraints: To ensure
more consistency, we keep track of the attributes
of every single day in one’s life. For example, the
probability of certain episodes can change dras-
tically if a person is on a trip or in the process
of getting married. In TimelineQA, constraints
can be specified to prevent inconsistencies from
occurring. For example, since it is much less
likely that one bakes or has an annual dental
checkup while traveling, we can explicitly state
that these episodes should be mutually exclusive
in TimelineQA. If an episode is to be created on a
certain day, TimelineQA checks that it is mutually
exclusive to any existing episode applicable to that
day before creating the new episode.

Generating questions and answers: Every
lifelog, D, in TimelineQA is associated with a set
of question/answer pairs (Q, A), where () is a nat-
ural language question over D and A is the cor-
rect answer to it. In order to ensure that we can
create a variety of questions that are meaningful
on a particular lifelog D and that we know the
correct answers to them, the process of creating
begins by creating a logical representation of the
episodes in the lifelog and of the questions and the
answers, and then turning them into natural lan-
guage. The natural language of the questions and
answers are created by instantiating a few templates
for every episode type. Because we use templates,
TimelineQA clearly lacks the richness of linguistic
variation, but as noted previously, dealing with lin-
guistic variation is not the focus of this benchmark.

We generate questions and answers for each
lifelog in two steps: atomic questions and com-
plex questions. Since atomic questions are ones
whose answer is contained in a single episode in
the lifelog, we can create them at the same time
the episode is created. For example, if the episode
is I went to a Japanese restaurant with Sarah on
October 7th and ate sushi, then we would generate
questions of the form: when did I have Japanese
food?, when did I meet Sarah?, and where did 1
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eat on October 7th? For each single episode, we
create what, where, when and who questions as
appropriate along with the corresponding answers.

Complex questions are ones that either rely on a
set of facts in the lifelog, such as, how many times
did I go to London? and where did I spend the
first night in Tokyo? or require combining multi-
ple facts as in multi-hop questions such as, which
restaurants did I go to during my trip to New York?
To create such question/answer pairs easily, we cre-
ate a database of the logical representation of all
the episodes in the lifelog. We then consider a set
of query templates and check whether the template
can be instantiated on that database. Examples of
templates we consider are:

* How many times did I X?

* When was the first/last time I X?

* Did I go to X before [ went to Y?

* How many times did I do X when I was at Y?

Since we have all the episodes, we can compute
the answers to these questions correctly.

Size and density: Lifelogs of different sizes can
be created with TimelineQA. The user specifies
a year and duration parameter, and this will de-
termine the length of the lifelog to generate. For
example, if the year is 2023 and the duration is 5,
then 5 years of episodes from 2018 to 2023, in-
cluding lifetime episodes, will be created. Lifetime
episodes such as birth and college education may
occur outside those 5 years.

The user can also specify the density (sparse,
medium, or dense) of episodes to generate in the
lifelog. The variations in density are used to mimic
that different users log their life events at different
frequencies. For example, if the generator is called
with the “sparse” parameter, then the probabilities
of generating daily/weekly/monthly episodes will
be much lower than the case when the generator is
called with the “dense” parameter.

4.1 Example lifelog

An example snippet of our generated lifelog and
sample question and answer pairs are given below.



2010/01/08, I had lunch. I ate Indian food.

2010/01/09, I had cereals for breakfast with Hazel, Rylee,
Piper, Nora, Avery, Eva, Nevaeh, Claire, Lydia, Olivia,
Layla, Kinsley.

2010/01/09, I had lunch. I ate sushi.

2010/01/09, I had chinese food for dinner with Kayden,
Carter.

2010/01/09, I spent 21 minutes on social media today.
2010/01/10, I did some hiking on 2010/01/10.
2010/01/10, I ate pasta for dinner.

2010/01/11, I talked to Nevaeh, Piper, Olivia, Eva for 37
minutes late in the evening.

2010/01/12, I did some swimming on 2010/01/12.
2010/01/12, I talked to Nora for 47 minutes in the morning.

4.1.1 Example question-answer pairs

Atomic QA pairs: These QA pairs are created as
each episode in the timeline is generated. Based on
the episode that is generated, a question is instanti-
ated from a set of templates and the answer to the
question is extracted from the generated episode.
Some examples are shown below.

Q: What did I eat with Kayden and Carter on 2010/01/09?

A: I ate chinese food with Kayden and Carter.

Q: How long did I talk to Nora on 2010/01/12?

A: I talked to Nora for 47 minutes.
Complex QA pairs: Using our query templates,
we created 42 complex questions in our benchmark
for the subset of categories we have implemented in
our timeline generator. The answers are computed
by applying external algorithms (e.g., SQL queries)
over the timeline.

Q: How much time on average did I spend on reading the
news each day?

A: On average, you spent 32 minutes reading the news
each day.

Q: How many times did I take my kids to an optician in
2010?

A: You took your kids 2 times to an optician.

5 Baselines and experimental results

5.1 Datasets

Table 2 summarizes the lifelogs we generate for
TimelineQA. The dataset consists of 128M lifelog
entries in total for all 3 types of densities (sparse,
medium, and dense). Each entry has an average
of 8.4 tokens. TimelineQA covers 25 categories of
events ranging from daily chat to lifetime events
such as college graduation. Different categories
occur at various frequencies and describe events
in heterogeneous formats at various lengths. See
Table 9 in the appendix for the full breakdown.
For our QA experiment, we uniformly sample 40
lifelogs for each density (120 in total) as the hold-
out test set.

For each lifelog, we construct test samples for
both atomic QA and multi-hop QA. Atomic QA

&3

Table 2: Statistics of 1,000 sparse, medium, and dense lifel-
ogs. See Table 9 for the breakdown on the 25 event categories.

Datasets  #Logs #Entries Avg. #Tokens
sparse 1,000 14,941,703 8.51
medium 1,000 34,522,030 8.12
dense 1,000 78,559,743 8.50
all 3,000 128,023,476 8.40

Table 3: Statistics of multi-hop QA tasks.

#Logs #QA’s #Evidence AVG %Truncated

Train 240 8,586 1I0M  1,174.8  20.44%
Valid 120 4,302 M 1,216.6  20.99%
Test 120 4,284 M 1,169.8  20.40%

refers to the what, where, when, yes/no types of
questions where the answer requires reasoning (or
plain extraction) over a valid span of a single input
episode. We construct 5,000 such questions for
each lifelog (600k in total) as the hold-out test
set. Multi-hop QA refers to the complex type of
questions that involve selection and aggregation.

Table 3 shows the statistics of the multi-hop QA
datasets. In addition to the test set, we constructed
a disjoint training and validation set similarly (240
and 120 logs, respectively) for our fine-tuning ex-
periment. Each lifelog contains ~35 multi-hop
queries. Each query also comes with a set of
ground-truth evidence records, which are all the
episodes for deriving the correct answers. Each
question has an average of >1k evidence records,
which together are beyond the typical max length
of 512/1024 tokens of transformer-based LMs. In-
deed, even as we set the max input length to 1024,
~20% of the input episodes are truncated.

5.2 Atomic QA

We consider the following QA implementations for
atomic QA:

RAG (Lewis et al., 2020b). This is a retrieval-
augmented generative QA system, where we first
retrieve some documents based on the query, and
then condition the answer generator based on these
retrieved documents and the query. We replace the
Wikipedia based memory in the original RAG with
episodes. We use the original RAG-Token model
released checkpoints.?

ExtractiveQA (Karpukhin et al., 2020). The
key difference from RAG, is that the answering
system is a span-based extractive model, extracting
the answer from a given context. Specifically, the

3See the implementation in https://haystack.
deepset.ai/tutorials/07_rag_generator
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Table 4: Atomic QA Results comparing extractive and RAG
based QA under 3 conditions for the retriever: Zero-shot (ZS),
fine-tuned (FT), and oracle (OR).

Pipeline Retriever Exact Match F1
Extractive FT 82.6 93.8
Extractive OR 83.3 94.8
Extractive ZS 24.1 47.3
RAG FT 40.3 57.5
RAG OR 73.7 84.4
RAG ZS 8.4 329

Table 5: Zeroshot (ZS) / Finetuned (FT) model performance
on multi-hop QA over 120 TimelineQA lifelogs.

Retriever Oracle | FT-retriever | ZS-retriever
Reader size |ZS FT |ZS FT |ZS FT
Tapex-base 140M |2.8 57.7|2.7 30.8 [2.7 30.7
Tapex-large 400M | 6.5 59.0 6.5 32.7 [6.5 33.0
Bart-base 140M 0.0 54.4|0.0 28.7 [0.0 29.1
Bart-large 400M |0.0 47.0{0.0 219 |0.0 252

reader is a RoBERTa (Liu et al., 2019) model fine-
tuned on SQUAD (Rajpurkar et al., 2018).*

In both cases, we encode all the episodes using
a dense passage retriever, and use FAISS to return
the top-5 episodes. The retrieved documents are
then fed into the answering component, and we get
the top-1 answer. We consider 3 different setups for
the retriever: Zero-shot (ZS) using the pre-trained
checkpoints, fine-tuned on question-episode pairs
from the lifelogs (FT), and oracle retrieval (OR)
where we use the ground-truth episode associated
with the question.

From the results in Table 4, we observe that
extractive QA performs significantly better than
generative QA, which is to be expected, given the
benchmark construction, where the answers are al-
ways a valid span in the input for atomic queries.
Furthermore, by fine-tuning the retrievers on the
episodic data, we get a significant boost in perfor-
mance for both extractive and rag setups, indicat-
ing that the QA systems do not generalize well
to episodic data, and that improving retrieval is
crucial to getting good performance from these
models, particularly for RAG. After fine-tuning,
the generative model performance still lags behind
the extractive setup.

5.3 Multi-hop QA

Given the task’s nature of aggregating struc-
tured data, we consider a baseline based on
TableQA (Badaro et al., 2023). In short, a table
QA model answers questions by taking as input a

“Details available at https://huggingface.co/
deepset/roberta-base-squad?2
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Table 6: Breakdown of Tapex-large (finetuned) with oracle
retriever on question types and sizes of evidence sets.

type accuracy total | #evidence accuracy total
average 11.1 360 [0, 10] 85.1 1,949
count 759 1,776 | (10, 100] 525 1,275
argmax  47.2 1,668 | (100, 1000]  19.2 689
list 62.7 480 >1000 4.3 371

relational table (e.g., records of dental visits) and a
NL query.

We constructed the tables for table QA using an
information extraction pipeline over the episodes
as they are generated. By exploiting the topics (e.g.,
medical care, chat, exercise) which are known to
the generation pipeline, we define a fixed schema
for each topic. For example, we use the schema
(date, place, medical_care_type,
person) for all types of medical care episodes,
and run named-entity recognition to extract the
tuple from each episode. For example, the record
tt (2019/03/23, annual vision checkup, university
hospital, Jack) will be created from the input “/
took Jack for his/her for an annual vision checkup
on 2019/03/23 at the university hospital. We then
form the “annual_medical_care” table using all
quadruples extracted from episodes under the same
topic. This simple pipeline works very well (near
perfect) for by exploiting the generation pipeline.
For real-life lifelog data, additional challenges
such as episode construction, topic/attribute
discovery, and schema reconciliation, are beyond
our current scope.

Due to the large size of the life logs that cannot
fit in the max length of LMs, the TableQA base-
line also leverages a dense retriever for retrieving
relevant records and constructing a concise table
representation of the entries. We then apply the
TableQA model as the reader to produce the final
answer via selection, aggregates, etc.

More precisely, for multi-hop queries, given a
question g over a set of life logs L = {l1,...,1,},
the retriever is a model M, where Liet
Myet(q, L) C L is the retrieved subset. We then
process L.t into table format via NER and pat-
tern matching to convert L, into its table repre-
sentation 7,e¢. Finally, the TableQA model M, aqd
returns the answer Meaq(q, Tret).

We also evaluate variants of the Tapex (Liu et al.,
2022) model as baselines. Tapex achieved the state-
of-the-art performance of TableQA by pre-training
a seq-to-seq LM on table datasets to mimic the
behavior of a SQL engine. We also compare the
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Table 7: Example correct and incorrect model predictions for multi-hop questions.

Questions groundtruth prediction Notes

How long do I spend on average 84.05 83.94 The question requires aggregating a total of 74k records
each day talking to my friends?

In what year did I buy facial wash 2006 2015 This question only needs to deal with 47 records, but
the most? requires complex arithmetic reasoning (count+compare)
How many times did I have tacos for 5 5 The model correctly captures simple counting (5 evi-

dinner in September 2019?

dence records)

Which places in New York, US did [’Central Park’, ...] [Central Park’, ...]

1 visit with Sofia?

The model correctly selects the 7 relevant locations from
the input table

performance of Tapex with BART (Lewis et al.,
2020a), which has the same architecture as Tapex
but without training on tabular data. For both mod-
els, we evaluate using the denotation accuracy as in
standard TableQA tasks (Zhong et al., 2017). We
evaluate each model under both the zero-shot set-
ting and with fine-tuning on the training sets. We
also test InstructGPT as a baseline large LM, but
leave the full result in Table 10 in the appendix due
to limited space.

Similar to atomic QA, we evaluate each model
under 3 settings of retrievers. We first assume an
oracle retriever which has access to the ground
truth set of evidence to construct the input table.
A zero-shot retriever uses a set of user-defined
patterns such as “I talked to X for Y minutes” to
find matching episodes (the same set of rules for
converting episodes to table records). We uni-
formly sample episodes up to the max length of
the LM. A fine-tuned retriever trains a dense re-
triever model (Reimers and Gurevych, 2019) from
the training set and returns episodes closest to the
question’s dense embedding.

Table 5 summarizes the results. Overall, the
400M-parameter Tapex model achieves the best re-
sult with fine-tuning and the oracle retriever. The
59% accuracy is also close to the Tapex’s perfor-
mance on the WikiTableQuestions benchmark (Liu
et al., 2022). However, its performance greatly re-
duces (1) under the zero-shot setting (6.5%) or (2)
with a non-oracle retriever (33%). Tapex generally
outperforms its counterpart BART, which indicates
the importance of understanding structured data
and aggregation for the multi-hop tasks. We also
notice that fine-tuning the retriever generally does
not improve the QA performance. This can be due
to the hard requirement of retrieving the exact evi-
dence set to correctly answer certain questions like
count and average.
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5.4 Error analysis

Table 6 shows the breakdown of Tapex-large’s
fine-tuning performance with a perfect retriever.
Among the 4 types of questions, argmax and aver-
age have the worst performance, likely because
they require arithmetic reasoning. We also ob-
serve that the model accuracy decreases signifi-
cantly (from 85.1% to 4.3%) as the number of evi-
dence records grows, which indicates the hardness
of dealing with large input tables. Table 7 shows
examples of (in)correct predictions of the model.

6 Conclusions

We presented TimelineQA, a benchmark for gen-
erating lifelogs of imaginary people. Our exper-
iments, with state-of-the-art QA models, showed
that there is still significant room for improving
QA over lifelog data. Specifically, while extractive
systems can achieve impressive performance on
TimelineQA for atomic queries, the best perform-
ing QA system for multi-hop queries scores only
59.0% in the perfect setting where the ground truth
set of episodes are available.

We view the current state of TimelineQA as a
first version that will be enhanced in several ways
as the QA technology improves. In future enhance-
ments the episodes can be made more realistic
and varied to also include events such as driving
one’s children to practices, or car breakdowns, to
more unexpected events such as experiencing an
earthquake etc. In addition, episodes can be en-
hanced to include different modalities, such as pho-
tos or videos of the episodes and more complicated
queries can be included such as “How many times
did I swim in the month before I traveled to Machu
Picchu?”. Ideally, with appropriate obfuscations
to preserve privacy, a future version can mirror
precisely the lifelogs of real people.



7 Limitations and Ethical Considerations

There are several perspectives from which we need
to consider the ethical considerations of this work.

Privacy: Lifelogs are personal data and should
only be used and shared given user authorization.
The lifelogs presented here are fictitious and do not
reveal the personal information of any individual.
No personal data is used to create this benchmark.
This work is intended to unlock development in the
creation, maintenance, querying and usage of lifel-
ogs, and additional work will certainly be needed to
ensure that they are secure and being meaningfully
and responsibly used.

Comprehensiveness and diversity: We recognize
that the lifelogs generated in this work are far from
representing the full range of human experiences.
While we strived to make the lifelogs complex
enough to benchmark and compare current state-
of-the-art, these lifelogs would not be considered
diverse in the sense that a social scientist would
note, and are likely biased by the life experiences
of its creators. We encourage future work in cre-
ating lifelogs that are more inclusive and faithful
to all walks of life. This includes further work in
making lifelogs that are more diverse in terms of
life experiences, personas, time scales, and queries
as well as more granular and complex in detail.
The strength of the benchmark is in identifying
patterns of questions on lifelogs rather than the
specific events described in them.

Inferring episodes: TimelineQA is a collection of
time-and-space boxed episodes, and not the raw
data itself from which the episodes are inferred
(e.g., a wedding photo, or video snippet from smart
glasses). Naturally, more research would need to be
devoted to understanding how to extract important
information in natural language and infer episodic
events from this raw data before performing ques-
tion answering. As mentioned previously, this also
involves sometimes grappling with the linguistic
variation amongst the language used in the episode
description and the query itself.

Intended use: We clarify that the benchmark
should not be used to train models for making key
decisions that will impact people’s lives (e.g., job
matching, insurance approvals or building personal
assistants). The intended use of TimelineQA is
as a benchmark to reveal potential limitations of
QA systems over lifelog data. Even if the bench-
mark is determined to be sufficiently comprehen-

sive, a detailed study should be conducted to un-
derstand the potential representational harms of
using TimelineQA before using it for training mod-
els. Conceivably, TimelineQA can also facilitate
research in evaluating the biases of QA systems
by creating counterfactual pairs in the dataset: two
timelines which are exactly the same, but differ
by the demographic group or a specific life event
(e.g., having dropped out of college or committed a
crime). The QA system can then be systematically
probed for differences in performance between the
two timelines.
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A Benchmark Statistics

A.1 Categories of questions

The crowdsourced questions from 7 people led to
the categories of questions shown in Table 8. We
gave 7 people the task of writing down questions
over their potential lifelogs, and also categories
of their questions. We than merge the categories
which resulted in the categories shown in Table 8
below.

A.2 Events

Table 9 summarizes the 25 main lifelog events in
TimelineQA. Chat is the most frequent events with
40M occurrences in all the 3k lifelogs. The grocery
event tends to be longest event type since each
entry not only describes the items purchases but
also people met at shopping. There are also rare
events such as college / grad school moves and
graduations occurring with low probabilities.

B Fine-Tuning Setup
B.1 Atomic QA

For fine-tuning the QA systems on the timeline
episodes, we use haystack® implementation for
RAG and Extractive QA. For the retriever, we use
ground truth training episodes in the training split,
and then fine-tune®using in-batch examples as hard
negatives, with a batch size of 64, learning rate of
1.5e—>5, weight decay 0.75, and number of warmup
steps 200, for 1 epoch. For the reader, we start with
a fine-tuned ROBERTA model’, with a batch size
of 128, warmup proportion of 0.2, learning rate of
le — 5, for 2 epochs.

B.2 Multi-hop QA

Our implementation of multi-hop QA is based
on the Tapex implementation in HuggingFace’s
Transformers library.® We experimented with both
the BART-base and Bart-large architecture with
or without table pre-training. For fine-tuning, we
use a learning rate of 3e-5 with weight decay le-2,
a batch size of 8, and a beam size of 5 for beam

Shttps://github.com/deepset—ai/
haystack

SFor detailed steps, follow the tutorial
https://haystack.deepset.ai/tutorials/
09_dpr_training

"https://huggingface.co/deepset/
roberta-base-squad2

8See https://github.com/huggingface/
transformers/tree/main/examples/
research_projects/tapex

at
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search decoding. We set the max length of the input
sequence (the serialized table) to 1,024 sub-word
tokens and the max length of the decoded response
to 128 sub-word tokens.

Our multi-hop QA dense retriever implementa-
tion is based on the SentenceTransformers library
(https://www.sbert.net/). We used the
all-MiniLM-L6-v2 model checkpoint for the zero-
shot setting. For fine-tuning, we randomly sample
20 true positive examples from the grounth truth
evidence list for every question in the training set
as the positive question-evidence pairs. We cre-
ate the set of negative pairs by randomly sampling
question-evidence pairs where the question and ev-
idence are from different episode category (e.g.,
chat vs. dining), so that they are guaranteed hard
negatives. We fine-tune the model with a batch size
of 16 and a learning rate of 3e-5.

We ran all experiments on an AWS p4d server
with A100 GPU’s (1 GPU is used for each run).
The experiments took a total of 25.4 GPU hours.

C Multi-hop QA with InstructGPT

Since large pre-trained LMs (LLMs) have shown
promising zero-shot performance across QA
tasks, we also test the 175B-parameter Instruct-
GPT (Ouyang et al., 2022) on 100 sampled multi-
hop TimelineQA questions. Similar to to the ex-
periments for TableQA, we leverage 3 settings of
the retrievers: oracle, fine-tuned (FT), or zero-shot
(ZS). Because the model may generate free-form
answers, we compute the accuracy by manually
checking whether the answers are compatible with
the ground truth. As such, the numbers are not
directly comparable to those for TableQA.

As shown in Table 10, InstructGPT signicantly
outperforms TableQA readers in the zeroshot set-
tings (e.g., 33% vs. 6.5% accuracy). However,
the performance still does not outperform that of
fine-tuned TableQA models (59% accuracy). The
result suggests a potential direction of leveraging
fine-tuned LLMs for the TimelineQA tasks.
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Table 8: Categories of questions and some examples

Episode Category

| Explanation

| Example queries

Care for oneself

Taking care of parents

Raising children

Pets

Accidents and recovery

Socializing

Daily life

Entertainment

Life Milestones

Managing Finances

Travel

Housing

Diary Entries / Journaling

Preventive medical appointments, self-care (e.g., mas-
sages, pedicures), medications, health metrics (e.g., heart
rate, blood pressure)

Visiting parents or family gatherings, taking them for
health checkups and self-care, administering medica-
tions

Celebrating milestones, taking them for check-
ups/vaccinations, special moments

First time pet arrived, pet’s birthday, pet care/grooming,
loss of pet

Details of accidents, experiences, and recovery

Spending time with friend, party, memorable conversa-
tions, dating, celebrations of events/holidays

Eating, cooking, drinking, shopping, religious practice,
exercising, walking, meditating

Hobbies, watching sports, participating in sports, watch-
ing media, reading media

Starting and graduating from schools, interviewing for
jobs, starting and quitting jobs, promotions, engagement,
marriage and divorce, anniversaries, work milestones,
enrichment activities

Investment decisions, credit score tracking

Travel preparation, getting there (by air, water, car),
events during travel

Finding a place to live, housework, house maintenance

Anything I may want to remember about my day, the con-
versations I had or other experiences I’ve gone through

When was the last time I visited my dentist?
What was my average heart rate last week?

When was the last time I took my dad for his
annual checkup?When was the last time I had
dinner with my parents?

When was the last time my child had her yearly
checkup? What type of cake did we buy for her
last birthday?

When was the last time my pet was groomed?
How much did I spend on pet care last year?
When did my pet pass away?

How old was I when I fell from my bike? How
many stitches did I receive from my bike acci-
dent?

How often did I chat with Avery last year? When
was the first time I met Avery?

When was the last time I visited restaurant X?
How often did I cook pasta last month? How
long did I meditate last week?

How long did I exercise last week? when did I
first learn to play the piano? where is the med-
itation group to meet this week? who went to
watch the fashion show with me last Friday?
When was my first job interview? Where did we
go for the anniversary last year?

How much did my daughter obtain from the
trust last year? how much did I pay for my first
investment property?

Did I take any photo in front of Big Ben? Are
we going to London from the hotel by car? How
much did the airbnb total for our last London
trip?

When did I move the last time? did I make an
appointment to clean the drains? when did I last
purchase the laundry pods?

I went to a friend’s graduation ceremony. Inter-
esting conversation with a stranger at a grocery
store.

Table 9: Breakdown of TimelineQA by events.

Event #entries (M) #tokens Category #entries (M) #tokens Category #entries  #tokens
chat 40.76 11.19 hobbies 2.39 6.05 birth_info 3,000 8.23
watch tv 17.77 7.25 dining 1.25 15.69 college move 726 10.62
read 11.87 5.00 pet care 0.72 6.00 college graduation 726 11.60
breakfast 9.56 6.89 places visited 0.70 13.64 grad school move 3 11.00
dinner 9.56 6.17 bake 0.41 16.94  grad school graduation 3 8.00
lunch 9.55 6.17 cook 0.41 15.72 Summary
exercise 8.99 3.17 child med. care 0.22 15.91 sparse 14,941,703 8.51
social media 5.93 6.00 travel 0.17 10.79 medium 34,522,030  8.12
grocery 4.78 18.94 personal med. care 0.16 11.40 dense 78,559,743  8.50
dating 2.64 8.00 parent med. care 0.16 15.90 all 128,023,476  8.40

Table 10: InstructGPT performance Results on multi-hop QA
We report the results on a sample of 100 questions.

Retriever  Oracle

FT-retriever ZS-retriever

InstructGPT  33.0

25.0 18.0
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Section 5 and Appendix B

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 5

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 5 and Appendix B

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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