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Abstract

Grammatical error correction (GEC) is a
promising task aimed at correcting errors in
a text. Many methods have been proposed
to facilitate this task with remarkable results.
However, most of them only focus on enhanc-
ing textual feature extraction without explor-
ing the usage of other modalities’ information
(e.g., speech), which can also provide valuable
knowledge to help the model detect grammat-
ical errors. To shore up this deficiency, we
propose a novel framework that integrates both
speech and text features to enhance GEC. In
detail, we create new multimodal GEC datasets
for English and German by generating audio1

from text using the advanced text-to-speech
models. Subsequently, we extract acoustic
and textual representations by a multimodal
encoder that consists of a speech and a text
encoder. A mixture-of-experts (MoE) layer is
employed to selectively align representations
from the two modalities, and then a dot atten-
tion mechanism is used to fuse them as final
multimodal representations. Experimental re-
sults on CoNLL14, BEA19 English, and Falko-
MERLIN German show that our multimodal
GEC models achieve significant improvements
over strong baselines and achieve a new state-
of-the-art result on the Falko-MERLIN test set.

1 Introduction

Grammatical error correction (GEC) is one of the
promising applications in natural language process-
ing (NLP), aiming to correct sentences containing
grammatical errors. GEC has attracted substantial
attention in the past few decades owing to its im-
portance in writing assistance for language learners
(Rothe et al., 2021; Zhao and Wang, 2020; Qorib
et al., 2022; Wan et al., 2020; Chollampatt and Ng,
2018; Tarnavskyi et al., 2022; Kaneko et al., 2020;
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1https://github.com/NLP2CT/MultimodalGEC

General GEC

Multimodal GEC

GEC

Text Input: She see Tom is catched by policeman in park at last night.

Output: She saw Tom caught by a policeman in the park last night.

Multimodal GEC

Output: She saw Tom caught by a policeman in the park last night.

Speech Input: Text Input: She see Tom is …

Figure 1: A comparison between general GEC and mul-
timodal GEC tasks. The top is the general GEC system,
which only relies on text modality, and the bottom is the
proposed multimodal GEC task combining text and its
corresponding speech.

Zhang et al., 2022a; Fang et al., 2023a; Zhang et al.,
2023a; Fang et al., 2023b; Zhang et al., 2023b).

In recent years, pre-trained Transformer-based
models have proven effective in many NLP tasks
(Hu et al., 2022a,b; Clinchant et al., 2019; Liu and
Lapata, 2019; Hu et al., 2023b; Zhong et al., 2022;
Liu et al., 2021; Li et al., 2022), including GEC
(Gong et al., 2022; Li et al., 2023), because these
models consist of multiple-layer multi-head atten-
tion and are trained with massive language data
so that they are more powerful in feature extrac-
tion than other counterpart models. For example,
Kaneko et al. (2020) first proposed to fine-tune
BERT with the GEC corpus and then use the out-
put of BERT as additional features to enhance GEC.
Rothe et al. (2021) used the T5 structure (Raffel
et al., 2020) to refine the GEC corpus (i.e., CLang8)
and obtained promising results in GEC for different
languages. Furthermore, Qorib et al. (2022); Tar-
navskyi et al. (2022) employed binary classification
or majority votes on span-level edits to ensemble
multiple Transformer-based models.

Although these methods have achieved consid-
erable improvements, they may focus on the bet-
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ter use of textual data while failing to take other
modalities into consideration (e.g., speech). Many
studies have shown that other modality data (e.g.,
speech) can effectively enhance feature extraction
and thus promote model performance, such as risk
forecasting (Sawhney et al., 2020), semantic match-
ing (Huzaifah and Kukanov, 2022), etc. For ex-
ample, Huzaifah and Kukanov (2022) studied a
joint speech-text embedding space through a se-
mantic matching objective and achieved better re-
sults in downstream tasks. Kim and Kang (2022)
proposed to learn the cross-modality interaction be-
tween acoustic and textual information for emotion
classification, which outperformed unimodal mod-
els. These works illustrate that audio signals can be
regarded as complementary information and pro-
vide valuable features to promote text processing.
Besides, intuitively, the audio with grammatical
errors can be easily captured by the native speak-
ers according to their spoken language experiences,
which can implicate that speech should be effective
in helping the model to distinguish whether the text
contains ungrammatical elements.

Therefore, in this paper, we propose to integrate
speech and text features to promote GEC, with an
example shown in Figure 1. Firstly, owing to the
lack of multimodal datasets for GEC, we adopt
advanced text-to-speech (TTS) models to automat-
ically generate audio for each instance in GEC
datasets. Afterward, we extract acoustic and textual
representations by a multimodal encoder that con-
sists of pre-trained speech and text encoders. Fur-
thermore, we propose to utilize an MoE layer to se-
lectively align features from speech and text modal-
ities, and then simple dot attention is applied to fuse
them as final multimodal representations, which
are then input to a pre-trained decoder to generate
corrected sentences. Experimental results on En-
glish and German benchmarks illustrate the effec-
tiveness of our proposed model, where our model
achieves significant improvements over strong uni-
modal GEC baselines. Further analysis shows that
our multimodal GEC model demonstrates signifi-
cant improvements in most POS-based fine-grained
error types, as well as in the major Operation-Level
error types such as word substitutions, missing
words, and unnecessary words.

The contributions are concluded as follows:

• To the best of our knowledge, this paper is the
first to utilize a multimodal model to combine
audio and text features to facilitate GEC.

• This paper constructs multimodal GEC datasets
for English and German, where each sample in
the dataset is a triple (ungrammatical text, audio,
grammatical text).

• This paper proposes to use a mixture-of-experts
module to dynamically align text and speech
pairs for multimodal GEC.

• This paper reveals the gains and losses of incorpo-
rating speech modality into GEC on error types,
providing clues for future research.

2 Data Construction

Owing to the lack of speech data in the GEC task,
we need to construct multimodal GEC datasets for
multimodal GEC tasks. Therefore, in this section,
we give the details of dataset construction. Speech
processing has achieved promising improvement
over the past few decades, including converting
sentences in the text into utterances (Ren et al.,
2019; Qi et al., 2023). Therefore, we employ the
advanced speech synthesis system to convert each
piece of source side of GEC data (i.e., the ungram-
matical side) into audio data to construct GEC mul-
timodal data. As a result, each example in the GEC
dataset is expanded into a triplet consisting of the
ungrammatical sentence, the audio generated from
the corresponding ungrammatical sentence, and the
grammatical sentence.

2.1 English GEC Multimodal Data

For constructing the English GEC multimodal
dataset, we adopt the FastSpeech22 text-to-speech
model (Wang et al., 2021) to produce audio data
from the source side of English GEC data. Specifi-
cally, to construct GEC multimodal training data,
we convert the distilled English CLang8 GEC data
(Rothe et al., 2021) into audio data. For construct-
ing development and test sets, we select the widely-
used CoNLL14 (Ng et al., 2014) and BEA19
(Bryant et al., 2019) English GEC benchmarks. For
the CoNLL14 benchmark, the CoNLL13 (Ng et al.,
2013) and the official-2014.combined.m2 version
of CoNLL14 are used for constructing multimodal
development and test sets, respectively. For the
BEA19 benchmark, we use the BEA19 develop-
ment and test sets to construct audio data.

2https://github.com/facebookresearch/fairseq/
tree/main/examples/speech_synthesis
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Figure 2: The overall framework of our proposed multimodal GEC model. The pre-trained text and speech encoders
extract the features of the ungrammatical text and its corresponding acoustic. The red dotted box represents the
MoE layer, which dynamically aligns audio and text. Dot attention fusion module, represented by the purple dotted
box, is used to fuse the aligned textual and acoustic features as the final multimodal representations. The MSE
objective (green dotted box) serves as a constraint during the feature fusion process.

LAN. DATA
TRAIN DEV TEST

(#Triples) (#Triples) (#Triples)

EN

CL8-EN 2.2M - -
BEA19 - 4,384 4,477
CONLL13 - 1,379 -
CONLL14 - - 1,312

DE CL8-DE 110K - -
FALKO-ME. 12.9K 2,503 2,337

Table 1: Statistics of the generated multimodal GEC
datasets for English and German.

2.2 German GEC Multimodal Data

For building German multimodal GEC datasets, we
employ gTTS (Google Text-to-Speech) toolkit3 to
generate audio data from the source side of German
GEC training, development and test data. We build
multimodal training data from German CLang8
and the official Falko-MERLIN (Boyd et al., 2014)
training data. As for the multimodal development
and test sets, we produce the audio data from Falko-
MERLIN German validation and test sets.

3https://gtts.readthedocs.io/en/latest/

2.3 Data Processing

To prepare the text GEC datasets for audio genera-
tion, we first remove duplicate instances from the
English CLang8 dataset, while keeping the other
datasets unaltered. Additionally, we follow Kat-
sumata and Komachi (2020) to use Moses script
(Koehn et al., 2007) to detokenize GEC data for
English and German. The statistics of the final
multimodal datasets are shown in Table 1.

3 Method

3.1 Problem Definition

Existing approaches mainly utilize an encoder-
decoder framework to address the GEC problem.
In detail, the input is a sentence with grammati-
cal errors X = x1, x2, · · · , xN , where N is the
number of tokens, and the goal of this task is to
correct the input sentence and generate a right one
Y = y1, y2, · · · , yL, where L is the length of target
sentence. Motivated by the success of multimodal
in other tasks (Li et al., 2018; Sawhney et al., 2020),
in this paper, we propose a novel multimodal GEC
task and take a text-audio pair (X,S) as input (text
and audio, respectively), aiming to integrate acous-

9330

https://gtts.readthedocs.io/en/latest/


tic and textual features to enhance GEC. Therefore,
the generation process for the multimodal GEC
problem can be formulated as:

p(Y |X,S) =

L∏

t=1

p(yt | y1, . . . , yt−1, X, S). (1)

Moreover, we utilize the negative conditional log-
likelihood of Y given the pair (X,S) to train the
model:

θ∗ = argmax
θ

L∑

t=1

log p (yt | y1, ..., yt−1, X, S; θ) ,

(2)
where θ is the trainable parameters of the model.
An overall structure of our proposed method is
presented in Figure 2.

3.2 Multimodal Encoder
The multimodal encoder in our model consists of
two main feature extractors: speech encoder and
text encoder, respectively.

Speech Encoder We utilize a pre-trained
Transformer-based model (e.g., wav2vec2 (Baevski
et al., 2020)) as our speech encoder, which can
learn powerful representations from speech audio
and achieve promising results in many downstream
tasks.

[c1, c2, · · · , cP ] = fae(S), (3)

where c is the features extracted from speech, fae
refers to speech encoder and P is length of acoustic
features.

Text Encoder We adopt a pre-trained model (e.g.,
T5 encoder (Raffel et al., 2020)) as our text encoder
to capture textual features z from X:

[z1, z2, · · · , zN ] = fte(X), (4)

where zi is high dimensional vector for represent-
ing token xi and fte refers to the text encoder.

3.3 Multimodal Alignment and Fusion
On the one hand, it is intuitive that the speech
should be semantically close to the corresponding
text if they are in one pair since they actually rep-
resent similar meanings through different modali-
ties. On the other hand, audio is used to provide
complementary information instead of completely
consistent information to help the model to bet-
ter recognize and detect grammatical errors. As
a result, we should allow some variance between
features extracted from different modalities during
multimodal alignment.

Therefore, we adopt a mixture-of-experts (MoE)
to dynamically select semantically similar infor-
mation from acoustic features, which is used to
align with textual representation. The MoE layer
in our model consists of M experts, denoted as
E1, E2, · · · , EM , and each expert is a simple MLP
with ReLU. Note that although these experts have
identical structures, they have separate parameters
instead of shared ones. We first obtain the overall
representation of the speech S and text X by mean
pooling, which can be formulated as:

c̄ = Mean([c1, c2, · · · , cP ]), (5)

z̄ = Mean([z1, z2, · · · , zN ]), (6)

We utilize the MoE to further extract the features
from c̄ that should be close to z̄. Specifically, the
output of i-th expert is denoted as Ei(c̄) and we fol-
low Shazeer et al. (2017) to generate a gate Gi(c̄)
for each expert. The output of the MoE module can
be written as:

b =

M∑

i=1

Gi(c̄)Ei(c̄), (7)

where b should be the information that is seman-
tically close to the text. We utilize a simple mean
squared error (MSE) objective to constrain this pro-
cess and align these textual and acoustic features,
which can be formulated as:

Lmse = MSE(b, z̄), (8)

After dynamic alignment between audio and text,
we utilize dot attention to fuse these two features.
In detail, we first compute the attention weight with
the softmax function:

ai = Softmax(zicT). (9)

Herein, ai can be viewed as a probability distribu-
tion and used to produce a weighted sum over the
visual patch representations:

zci =
P∑

k=1

ai,kck. (10)

Finally, we sum the zc and z as final multimodal
representation h.

3.4 Decoder

The multimodal representation h is input to the pre-
trained decoder (e.g., T5) to generate the correct
sequence:

yt = fde(h, y1, · · · , yt−1) (11)
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This process is repeated until the complete sentence
is obtained.

As for training, the final objective is the linear
combination of losses from the sequence genera-
tion and multimodal alignment:

L = Lge + λLmse, (12)

where Lge is the basic sequence-to-sequence loss
and λ is the weight to control the MSE loss.

4 Experimental Settings and Results

4.1 Data and Evaluation

The multimodal GEC data used for training is pre-
sented in Table 1 in section 2. With respect to
English, we follow Rothe et al. (2021) and use only
the English CLang8 multimodal data for training
as they reported that further fine-tuning on high-
quality English datasets, such as FCE v2.1 (Yan-
nakoudakis et al., 2011) and W&I (Yannakoudakis
et al., 2018), led to a drop in performance. For vali-
dation, we use the CoNLL13 multimodal data and
the BEA19 multimodal development data when
testing on the CoNLL14 and BEA19 English test
sets, respectively. In terms of German, we first
train our models on the German CLang8 multi-
modal data as Rothe et al. (2021), and then fine-
tune the models on the official Falko-MERLIN Ger-
man multimodal training data. For the development
and test data, we use the official Falko-MERLIN
German benchmark. Additionally, to establish a
stronger baseline, we follow Katsumata and Ko-
machi (2020) to use the same 10M synthetic data
(Náplava and Straka, 2019)4 to pre-train T5/mT5-
Large model for English and German.

For evaluation, we use the M2 scorer (Dahlmeier
and Ng, 2012) to evaluate the model performance
on the CoNLL14 English test and the official Falko-
MERLIN German benchmark. The BEA19 En-
glish test is evaluated by ERRANT (Bryant et al.,
2017). We employ the T -test method to test the
significance of the results, except for the BEA19
English test, which is a blind test set.

4.2 Implementation Details and Training

In our experiments, we adopt Huggingface5 li-
brary to build our multimodal GEC model. Specif-
ically, for the basic experiments, we utilize T5-
Large (Raffel et al., 2020) and mT5-Large (Xue

4https://github.com/ufal/
low-resource-gec-wnut2019/tree/master/data

5https://github.com/huggingface/transformers

et al., 2020) as our text backbone models (including
both text encoder and decoder), with the former be-
ing used for English and the latter for German. We
follow their default setting, which uses 24 layers of
self-attention with 16 heads. For the experiments
with stronger baselines, we use our T5-Large and
mT5-Large models fine-tuned on 10M synthetic
data as text backbone models for English and Ger-
man, respectively. The details of the training set-
tings can be found in Appendix A.1. For the speech
encoder, we adopt Hubert Large pre-trained model
(Hsu et al., 2021) to extract features for English
audio and wav2vec2-xls-r-300m pre-trained model
(Babu et al., 2021) for German speech. We also
follow the default settings for these speech models.
As for training, we utilize Adafactor (Shazeer and
Stern, 2018) to optimize all trainable parameters
in our model. We set the number of experts to 6.
The weight hyper-parameter λ is set to 0.1 for both
English and German experiments. The other set-
tings for training the multimodal GEC models are
reported in Appendix A.2.

4.3 Baselines

To explore the effect of the proposed multimodal
model for GEC, we compare our model with the
following baselines:
• LRGEC (Náplava and Straka, 2019): it pre-

trains a Transformer seq2seq model on synthetic
data and then fine-tunes on authentic data.

• TAGGEC (Stahlberg and Kumar, 2021): the
model improves GEC performance by data aug-
mentation (e.g., generating synthetic data with
the guidance of error type tags).

• GECTOR (Omelianchuk et al., 2020), TMTC
(Lai et al., 2022), EKDGEC (Tarnavskyi et al.,
2022): these models utilize the sequence tagging
approach to improve GEC performance with mul-
tiple stage training, where they firstly pre-train
on errorful-only sentences and further fine-tune
on a high-quality dataset.

• SADGEC (Sun et al., 2021), gT5 XXL and
T5/MT5 LARGE/XXL (Rothe et al., 2021):
these GEC models borrow knowledge from pre-
trained language models, where SADGEC is
based on the BART (Lewis et al., 2020) pre-
trained model, gT5 XXL is a large teacher
model for distilling Lang8 data, which is first
pre-trained from scratch on a large amount
of synthetic data followed by fine-tuning on
high-quality data. T5/MT5 LARGE/XXL adopt
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SYSTEM
CONLL14 BEA19 (TEST)

Pre. Rec. F0.5 Pre. Rec. F0.5

LRGEC (Náplava and Straka, 2019) - - 63.4 - - 69.0
GECTOR (Omelianchuk et al., 2020) 77.5 40.1 65.3 79.2 53.9 72.4
TAGGEC (Stahlberg and Kumar, 2021) 72.8 49.5 66.6 72.1 64.4 70.4
SADGEC (Sun et al., 2021) 71.0 52.8 66.4 - - 72.9
TMTC (Lai et al., 2022) 77.8 41.8 66.4 81.3 51.6 72.9
EKDGEC (Tarnavskyi et al., 2022) 74.4 41.1 64.0 80.7 53.4 73.2
T5 LARGE (Rothe et al., 2021) - - 66.0 - - 72.1
T5 XXL (Rothe et al., 2021) - - 68.8 - - 75.9
gT5 XXL (Rothe et al., 2021) - - 65.7 - - 69.8

OURS (T5 LARGE) 73.6 52.7 68.2 75.5 67.9 73.9
OURS (PRET5 LARGE) 75.0 53.2 69.3 77.1 66.7 74.8

Table 2: Results on the CoNLL14 and BEA19 English GEC test sets. Our multimodal GEC systems (OURS) are
fine-tuned on the same CLang8 English data as T5 LARGE/XXL (Rothe et al., 2021). PRET5 LARGE means using
the same 10M synthetic data as LRGEC (Náplava and Straka, 2019) to pre-train T5 large model, which can report a
much stronger baseline when fine-tuned on CLang8 data (see Table 4). Notably, all the reported comparison results
are a single model without ensembling. Bold values indicate the best F0.5 scores.

SYSTEM DATA
FALKO-ME.

Pre. Rec. F0.5

LRGEC offic. 78.2 59.9 73.7
MT5 LARGE cl8 - - 70.1
MT5 XXL cl8 - - 74.8
gT5 XXL offic. - - 76.0

OURS (MT5) cl8 76.1 59.8 72.1
+offic. 77.2 65.4 74.5†

OURS (PMT5) cl8 77.6 63.0 74.2
+offic. 78.5 68.4 76.3†

Table 3: Results on Falko-MERLIN GEC test set. MT5
refers to mT5 large model, PMT5 means using the same
10M German synthetic data as LRGEC to pre-train mT5
large model. offic. refers to the official Falko-MERLIN
GEC training data, cl8 is the distilled German CLang8
data. Using the official data to fine-tune the models on
cl8 can significantly improve performance (†p < 0.01).

T5/mT5 as the backbone structure and fine-tune
on the corresponding distilled CLang8 data for
GEC tasks in different languages.

4.4 Experimental Results

Results on English dataset To illustrate the ef-
fectiveness of our proposed model, we compare
our model with existing studies with the results
reported in Table 2. We obtain several observa-
tions from the results. First, the comparison be-
tween OURS and other baselines illustrate the ef-

fectiveness of our design in the GEC task, where
our model achieves much better performance even
though these competitors utilize many ways (e.g.,
data augmentation) to enhance feature extraction
in GEC. The reason might be that compared to
pure textual information, audio can provide com-
plementary information to help the model better
grasp the grammatical error in the sentence, and
our model can selectively align these features from
speech and text by the MoE module. It is easy to
follow that a native speaker can distinguish whether
the audio is grammatically correct. Second, com-
pared to the sequence tagging method (e.g., GEC-
TOR), sequence-to-sequence based models (e.g.,
T5-LARGE) perform better in recall score but are
inept at precision. Especially it is found that the
strength of our proposed model lies in its high re-
call compared to other baselines. Third, continuing
training T5-Large on 10M synthetic data can fur-
ther improve the model performance, illustrating
that synthetic data can alleviate the gap between
GEC data and pre-training corpus. Appendix A.3
shows some examples generated by the unimodal
and multimodal GEC models.

Results on German dataset To further demon-
strate the validity of our model, we also conduct
experiments on the German dataset, with the re-
sults reported in 3. We can obtain similar trends
as in English GEC, where our proposed mode out-
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MODEL
CONLL14 FALKO-ME.

P/ R/ F0.5 P/ R/ F0.5

OURS ((M)T5) 73.6/ 52.7/ 68.2† 76.1/ 59.8/ 72.1†

−MOE 73.0/ 52.9/ 67.9 75.5/ 59.8/ 71.7
−SPEECH ENC. 72.2/ 51.4/ 66.8 75.7/ 56.5/ 70.9

OURS (P(M)T5) 75.0/ 53.2/ 69.3† 77.6/ 63.0/ 74.2†

−MOE 74.8/ 52.6/ 69.0 77.6/ 62.8/ 74.1
−SPEECH ENC. 73.5/ 53.7/ 68.5 77.3/ 62.3/ 73.8

Table 4: Ablation results of our proposed method on
the CoNLL14 English and the Falko-MERLIN German
tests, which were trained on CLang8 data. Statisti-
cally significant improvements over "−SPEECH ENC."
model, as indicated by P_value, †p < 0.01

performs other baselines and achieves a superior
F0.5 score. Especially, by further fine-tuning the
models on the official data, we achieve a new state-
of-the-art result (i.e., 76.3 F0.5). This result further
demonstrates that audio can provide valuable bene-
fits in GEC tasks regardless of language type. Ad-
ditionally, even though the German dataset is much
smaller compared to the English dataset, our model
still achieves significant improvements, which high-
lights its effectiveness in low-resource settings.

5 Analyses

5.1 Ablation Study
To explore the effectiveness of our proposed
method, we conduct the ablation studies with the
following settings: a) removing the MoE layer
(−MOE) and retaining the dot attention module to
fuse acoustic and textual features. b) removing the
speech encoder (−SPEECH ENC.), which degener-
ates our multimodal GEC model into a text-only
unimodal GEC model. As shown in Table 4, when
we remove the MoE layer, the results of the multi-
modal GEC model show a decrease in all settings,
demonstrating the validity of MoE in the multi-
modal feature fusion. Moreover, if we discard the
speech encoder, the results of the reverted text-only
unimodal GEC baseline models are significantly
lower than the multimodal model for both English
and German, which illustrates the effectiveness of
our proposed multimodal GEC models.

5.2 Error Type Performance
To investigate the ability of GEC systems to correct
different error types, we used the ERRANT toolkit
(Bryant et al., 2017) to analyze the evaluation re-
sults on the CoNLL14 test set with respect to both
POS-based fine-grained error types and Operation-
Level error types.

Fine-grained Error Types Figure 3 shows the
performance of the POS-based fine-grained error
types. We can observe that while multimodal
GEC is inferior to text-only unimodal GEC sys-
tems in certain error types (i.e., PUNCT, ADV,
CONJ, and PREP), our model obtains better results
in most types of errors, including ADJ, NOUN,
NOUM: NUM, PRON, VERB, VERB: TENSE,
DET, MORPH, ORTH, and PART, which further
confirms the effectiveness of multimodal feature
integration in the GEC task. In fact, adverb and con-
junction error types account for a relatively small
percentage of all grammatical errors (not more than
1.6%). In other words, multimodal GEC can im-
prove the performance of common errors in GEC
and thus bring considerable improvements overall.

Operation-Level Error Types We evaluate the
performance of Operation-Level error types us-
ing the ERRANT toolkit, which categorizes them
into three categories: Replacement, Missing,
Unnecessary. Considering that word order (WO) is
a sub-type of Replacement, which is different from
other types of errors, we manually separate into a
separate category. As shown in Table 5, compared
to text-only unimodal GEC baseline models, our
multimodal GEC models are better at correcting
the major operation-level error types, such as word
substitutions (64.3%), missing words (17.9%), and
unnecessary words (17.0%), demonstrating that the
corresponding speech information is beneficial to
GEC. However, the multimodal GEC model does
not perform well in correcting word order, even
if it is a minor issue (0.8%). We hypothesize that
correcting word order requires sentence structure
information (Zhang et al., 2022b), but the speech
may not provide such information to GEC models.

6 Related work

Grammatical Error Correction (GEC) is the
task of automatically identifying and correcting
grammatical errors in a text (Ng et al., 2013). Pre-
vious research in this field has primarily focused
on strengthening the representations of text data
through data augmentation techniques, such as us-
ing the back-translation method (Sennrich et al.,
2016) for the GEC task (Kasewa et al., 2018; Xie
et al., 2018; Kiyono et al., 2019), and injecting
noise with specific rules into grammatical sen-
tences (Lichtarge et al., 2019; Zhao et al., 2019;
Xu et al., 2019; Stahlberg and Kumar, 2021). More
recently, pre-trained language models (PLMs) have
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Figure 3: F0.5 scores on a selection of fine-grained error types on the CoNLL14 test set, with the percentages in
parentheses indicating the proportion of each error type. Overall, the results show that integrating speech modality
information into text-only GEC can significantly improve the performance on most fine-grained error types.

METHOD
R (64.3%) M (17.9%) U (17.0%) WO (0.8%)

Pre. Rec. F0.5 Pre. Rec. F0.5 Pre. Rec. F0.5 Pre. Rec. F0.5

T5 (BASE.) 50.9 37.1 47.4 42.5 38.1 41.5 56.0 35.9 50.4 35.7 46.2 37.4
T5 (MULTIM.) 52.5 36.5 48.3 45.7 37.3 43.7 58.9 34.2 51.5 31.4 35.5 32.1

PRET5 (BASE.) 52.3 37.9 48.6 45.3 37.8 43.6 57.8 35.1 51.2 37.1 50.9 39.2
PRET5 (MULTIM.) 53.0 37.0 48.8 47.2 37.2 44.8 59.8 35.7 52.7 37.0 43.2 38.1

Table 5: Performance by Operation-Level error types on the CoNLL14 test set for text-only unimodal and fused
speech and text multimodal GEC models. The percentages in parentheses represent the proportion of operation-level
error types. Results in bold indicate the best F0.5 scores. The multimodal GEC models demonstrate improved
accuracy for the major operation-level error types, such as Substitution, Insertion, and Deletion.

been demonstrated to be effective in improving
the performance of GEC tasks. Studies such as
Choe et al. (2019) have leveraged sequential trans-
fer learning to adapt pre-trained Transformer mod-
els to the GEC domain. Kaneko et al. (2020)
initialized an encoder-decoder GEC model with
pre-trained BERT weights to enhance GEC perfor-
mance. Katsumata and Komachi (2020) utilized the
pre-trained BART model as a generic pre-trained
encoder-decoder model for GEC, and Rothe et al.
(2021) adopted a pre-trained T5 model to distill
GEC corpus and used the pre-trained structure
as part of the network for distilled GEC training,
achieving promising results. However, to date, no
previous work has attempted to incorporate multi-
modal information (e.g., speech modality) into the
GEC task. Our work is the first to explore the use
of multimodal information for GEC.

Multimodal Many studies have demonstrated
the potential of incorporating multimodal informa-
tion in improving the performance of single-modal
tasks in the NLP domain. For example, Schifanella
et al. (2014) and Cai et al. (2019) integrated image
modality into the Twitter sarcasm detection task
and found that incorporating image information
can enhance the performance of this text-only task.
Hu et al. (2023a) proposed to integrate radiology

images and textual findings to improve impression
generation. Additionally, Zheng et al. (2021) fused
acoustic and text encoding to jointly learn a unified
representation, thereby improving speech-to-text
translation tasks. Li et al. (2017) demonstrated
that fusing speech modality can enhance the read-
ability of text summarization tasks. Huzaifah and
Kukanov (2022) studied a joint speech-text embed-
ding space through a semantic matching objective,
achieving improved results in downstream tasks.
Kim and Kang (2022) proposed a method for learn-
ing the cross-modality interaction between acoustic
and textual information, which outperformed the
unimodal models in emotion classification. In this
work, we are the first to attempt to fuse acoustic
and text to improve the GEC task.

7 Conclusion

This paper presents a novel approach to the task of
multimodal GEC that integrates speech and text fea-
tures to improve grammatical error correction. Due
to the scarcity of speech data in GEC, we expand
the original GEC data to create new multimodal
GEC datasets for English and German, where each
sample in our datasets is a triple (grammatically
incorrect text, audio, and corrected text). Our ap-
proach utilizes a speech and text encoder to extract

9335



acoustic and textual features from the speech and
input text, respectively. Then, we employ an MoE
approach to selectively extract audio features that
align with the textual features and use a dot at-
tention layer to fuse the features from different
modalities as the final representation. This fused
representation is input to the decoder to generate
the corrected sentence. Our experimental results on
widely-used benchmarks demonstrate the effective-
ness of our proposed model, achieving significant
improvements compared to existing studies.

Limitations

Our proposed multimodal Grammatical Error Cor-
rection (GEC) model is based on a Seq2Seq genera-
tive framework, which utilizes different encoders to
extract information from each modality, and then
fuses them to provide input to an autoregressive
decoder. However, in this work, we did not ex-
plore the use of a sequence tagging framework,
which may be a consideration for future research,
as it has the advantage of faster decoding speed.
Additionally, this study focuses on the use of au-
dio representations of the source-side of GEC data,
rather than the target-side, to construct multimodal
GEC data. Our further analysis concludes that our
proposed multimodal GEC model has limitations
in correcting certain minor error types (e.g., ADV,
CONJ, PUNCT, and word order) when compared
to text-only GEC models.

Acknowledgments

This work was supported in part by the
Science and Technology Development Fund,
Macau SAR (Grant Nos. FDCT/060/2022/AFJ,
FDCT/0070/2022/AMJ), and the Multi-year Re-
search Grant from the University of Macau
(Grant No. MYRG2020-00054-FST), and the
Shenzhen Science and Technology Program
(JCYJ20220818103001002), and the Guangdong
Provincial Key Laboratory of Big Data Computing,
the Chinese University of Hong Kong, Shenzhen.
This work was performed in part at SICC which is
supported by SKL-IOTSC, and HPCC supported
by ICTO of the University of Macau.

References
Arun Babu, Changhan Wang, Andros Tjandra, Kushal

Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, et al.
2021. Xls-r: Self-supervised cross-lingual speech

representation learning at scale. arXiv preprint
arXiv:2111.09296.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 12449–12460. Curran Asso-
ciates, Inc.

Adriane Boyd, Jirka Hana, Lionel Nicolas, Detmar
Meurers, Katrin Wisniewski, Andrea Abel, Karin
Schöne, Barbora Štindlová, and Chiara Vettori. 2014.
The MERLIN corpus: Learner language and the
CEFR. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1281–1288, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Yitao Cai, Huiyu Cai, and Xiaojun Wan. 2019. Multi-
modal sarcasm detection in Twitter with hierarchical
fusion model. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2506–2515, Florence, Italy. Associa-
tion for Computational Linguistics.

Yo Joong Choe, Jiyeon Ham, Kyubyong Park, and Yeoil
Yoon. 2019. A neural grammatical error correction
system built on better pre-training and sequential
transfer learning. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 213–227, Florence,
Italy. Association for Computational Linguistics.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 32.

Stephane Clinchant, Kweon Woo Jung, and Vassilina
Nikoulina. 2019. On the use of BERT for neural
machine translation. In Proceedings of the 3rd Work-
shop on Neural Generation and Translation, pages
108–117, Hong Kong. Association for Computational
Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational

9336

https://arxiv.org/abs/2111.09296
https://arxiv.org/abs/2111.09296
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P19-1239
https://doi.org/10.18653/v1/P19-1239
https://doi.org/10.18653/v1/P19-1239
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://arxiv.org/pdf/1801.08831.pdf
https://arxiv.org/pdf/1801.08831.pdf
https://arxiv.org/pdf/1801.08831.pdf
https://doi.org/10.18653/v1/D19-5611
https://doi.org/10.18653/v1/D19-5611
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067


Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

Tao Fang, Xuebo Liu, Derek F. Wong, Runzhe Zhan,
Liang Ding, Lidia S. Chao, Dacheng Tao, and Min
Zhang. 2023a. Transgec: Improving grammatical
error correction with translationese. In Findings of
the Association for Computational Linguistics: ACL
2023, Toronto, Canada. Association for Computa-
tional Linguistics.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023b. Is
chatgpt a highly fluent grammatical error correction
system? a comprehensive evaluation. arXiv preprint
arXiv:2304.01746.

Peiyuan Gong, Xuebo Liu, Heyan Huang, and Min
Zhang. 2022. Revisiting grammatical error correc-
tion evaluation and beyond. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6891–6902, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3451–3460.

Jinpeng Hu, Zhihong Chen, Yang Liu, Xiang Wan, and
Tsung-Hui Chang. 2023a. Improving radiology sum-
marization with radiograph and anatomy prompts. In
Findings of the Association for Computational Lin-
guistics: ACL 2023. Association for Computational
Linguistics.

Jinpeng Hu, DanDan Guo, Yang Liu, Zhuo Li, Zhihong
Chen, Xiang Wan, and Tsung-Hui Chang. 2023b.
A Simple Yet Effective Subsequence-Enhanced Ap-
proach for Cross-Domain NER. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Jinpeng Hu, Zhuo Li, Zhihong Chen, Zhen Li, Xiang
Wan, and Tsung-Hui Chang. 2022a. Graph enhanced
contrastive learning for radiology findings summa-
rization. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 4677–4688.

Jinpeng Hu, Yaling Shen, Yang Liu, Xiang Wan, and
Tsung-Hui Chang. 2022b. Hero-gang neural model
for named entity recognition. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1924–1936.

Muhammad Huzaifah and Ivan Kukanov. 2022. Anal-
ysis of joint speech-text embeddings for semantic
matching. arXiv preprint arXiv:2204.01235.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4248–4254, On-
line. Association for Computational Linguistics.

Sudhanshu Kasewa, Pontus Stenetorp, and Sebastian
Riedel. 2018. Wronging a right: Generating bet-
ter errors to improve grammatical error detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4977–4983, Brussels, Belgium. Association for Com-
putational Linguistics.

Satoru Katsumata and Mamoru Komachi. 2020.
Stronger baselines for grammatical error correction
using a pretrained encoder-decoder model. In Pro-
ceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing, pages 827–832,
Suzhou, China. Association for Computational Lin-
guistics.

Donghwa Kim and Pilsung Kang. 2022. Cross-modal
distillation with audio–text fusion for fine-grained
emotion classification using bert and wav2vec 2.0.
Neurocomputing, 506:168–183.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error cor-
rection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1236–1242, Hong Kong, China. Association for Com-
putational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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A Appendix

A.1 Pre-training Settings for T5/mT5-Large
Model

The settings of hyper-parameters for pre-training
T5/mT5-Large models for English and German are
listed in Table 6.

CONFIG. ENGLISH MODEL GERMAN MODEL

Model Arch. T5-Large mT5-Large
Optimizer Adafactor Adafactor
Learning Rate 0.0008 0.0007
Batch Size 24 16
Update Freq. 128 64
GPUs 2 (A100) 2 (A100)

Table 6: Hyper-parameters for pre-training T5/mT5-
Large models on 10M synthetic GEC data for English
and German. Model Arch. refers to model architecture,
Update Freq. means gradient accumulation steps.

A.2 Settings of Training Multimodal GEC
Models

Table 7 presents the settings of hyper-parameters
for training English and German multimodal GEC
models.

CONFIG. ENGLISH MULTIM. GERMAN MULTIM.

Stage-I

Text backbone T5-Large mT5-Large
Speech Encoder Hubert-Large wav2vec2-xls-r-300m
Optimizer Adafactor Adafactor
Learning Rate 0.0001 0.0002
Batch Size 16 8
Update Freq. 16 16
Num. of Experts 6 6
K 2 2
λ 0.1 0.1

Stage-II

Optimizer - Adafactor
Learning Rate - 0.0001
Batch Size - 8
Update Freq. - 2
Num. of Experts - 6
K - 2
λ - 0.1

Generation

Beam size 5 5
Max input length 128 128

Table 7: Hyper-parameters for training English and
German multimodal GEC models.

A.3 Case Study
Table 8 shows some examples generated by the text-
only unimodal GEC model and multimodal GEC
model. Our multimodal GEC model is better at
correcting common error types (e.g. VERB) while
exhibiting inferior performance in correcting word
order errors.
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SRC
A couple did not have a child after their marriage for a long time, their parents were
anxious about that and asked them to go to hospital to check what was the problem.

REF. A couple did not have a child after their marriage for a long time. Their parents were
anxious about that and asked them to go to hospital to check what the problem was.

T5 (BASE.) A couple did not have a child after their marriage for a long time. Their parents were
anxious about that and asked them to go to hospital to check what the problem was.

T5 (MOE) A couple did not have a child after their marriage for a long time. Their parents were
anxious about that and asked them to go to hospital to check what was the problem.

SRC
Spouses usually have very close relationships, if person A tell his family that he has
this gene, his uncle C knows and tells his wife D that he needed to run a test because
his cousine has this disease.

REF.
Spouses usually have very close relationships. If person A tells his family that he has
this gene, his uncle C knows and tells his wife D that he needs to run a test because
his cousin has this disease .

T5 (BASE.)
Spouses usually have very close relationships. If person A tells his family that he has
this gene, his uncle C knows and tells his wife D that he needed to run a test because
his cousin has this disease.

T5 (MOE)
Spouses usually have very close relationships. If person A tells his family that he has
this gene, his uncle C knows and tells his wife D that he needs to run a test because
his cousin has this disease.

Table 8: Examples of the outputs generated by the unimodal/multimodal GEC model. SRC refers to the ungram-
matical sentence, and REF. is the grammatical sentence. T5 (BASE.) refers to the outputs of the unimodal GEC
model. T5 (MOE) refers to the outputs of our multimodal GEC baseline model. The words with the color red are
the ungrammatical parts and the blue indicates the corrected version.
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