
Findings of the Association for Computational Linguistics: ACL 2023, pages 9240–9253
July 9-14, 2023 ©2023 Association for Computational Linguistics

 

 

Abstract 

Natural logic reasoning has received 

increasing attention lately, with several 

datasets and neural models proposed, 

though with limited success. More recently, 

a new class of works have emerged 

adopting a Neuro-Symbolic approach, 

called transformer guided chaining, 

whereby the idea is to iteratively perform 1-

step neural inferences and chain together 

the results to generate a multi-step 

reasoning trace.  Several works have 

adapted variants of this central idea and 

reported significantly high accuracies 

compared to vanilla LLM’s.  In this paper, 

we perform a critical empirical 

investigation of the chaining approach on a 

multi-hop First-Order Logic (FOL) 

reasoning benchmark. In particular, we 

develop a reference implementation, called 

Chainformer, and conduct several 

experiments to analyze the accuracy, 

generalization, interpretability, and 

performance over FOLs. Our findings 

highlight key strengths and possible current 

limitations and suggest potential areas for 

future research in logic reasoning.    

1 Introduction 

We consider deductive reasoning over Natural 

Logic (MacCartney and Manning, 2014; Moss, 

2010), i.e., reasoning over statements expressed in 

language. Natural logic reasoning has received 

increasing attention lately, with several datasets 

(Yu et al., 2020; Liu et al., 2020; Clark et al., 2020; 

Dalvi et.al. 2021) and neural models proposed 

(Huang et.al. 2021, Jiao et.al. 2022, Clark et al., 

2020; Saha et.al. 2020; Wang et.al. 2021; Xu et.al. 

2022; Pi et.al. 2022).  

Most of the traditional neural approaches tackled 

multi-step reasoning as a single pass ‘all-at-once’ 

inference. For reasoning problems that are 

inherently multi-step, it is more natural to consider 

a symbolic machinery in tandem with the neural 

model. Taking inspiration from this philosophy, a 

new class of works have emerged recently by 

combining neural models (popularly using 

transformers (Vaswani et.al. 2017)) with symbolic 

chaining. The central idea is to iteratively perform 

1-step neural inferences and chain together the 

results to generate a multi-step reasoning trace.  

ProofWriter (Tafjord et.al. 2021) was one of the 

first to explore this idea, and demonstrate >95% 

multi-hop reasoning accuracy on several synthetic 

datasets. (Picco et.al. 2021) and (Bostrom 2022) 

reported similar results. Recently, several works 

(Qu et.al. 2022; Yang et.al. 2022; Tafjord et.al. 

2022; Ghosal et.al. 2022; Ribeiro et.al. 2022; Hong 

et.al. 2022) applied variants of this approach on 

EntailmentBank (Dalvi et.al. 2021) and showed 

superior performance. The iterative approach is 

attractive because i) it is faithful in that it naturally 

reflects the internal reasoning process, and is 

inherently interpretable, ii) it has been shown to be 

easily adapted for multiple choice Q&A (Shi et.al. 

2021) and open-ended Q&A (Tafjord 2022), 

besides Natural Language Inference (NLI), iii)  it 

enables teachable reasoning (Dalvi et.al. 2022). 

 While the above results are promising, we argue 

that an unbiased third-party investigation is 

important to facilitate a better understanding of the 

strengths and weaknesses. This is the main goal of 

this paper. Towards this, we develop a reference 

implementation, called Chainformer that captures 
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the core idea behind the chaining approach, and 

benchmark on a multi-hop FOL reasoning task 

using a recently proposed diagnostic dataset, called 

LogicNLI (Tian et.al. 2021).  The dataset is 

composed of a rich class of FOLs that go beyond 

conjunctive implications and is non-trivial with a 

reported human reasoning accuracy of 77.5% (Tian 

et.al. 2021). 

We conduct several experiments to analyze the 

performance in terms of accuracy, generalization, 

interpretability, and expressiveness over FOLs. 

Our key findings are: 1) human level multi-step 

reasoning performance is achieved (84.5% 

machine vs 77.5% human), with a minimalist 

transformer guided chaining implementation, and 

even with a base model (80.4% base vs 84.5% 

large). However, this requires the 1-step inferences 

be carefully trained for high accuracy; 2) the 

inferred reasoning chains are correct 78% of the 

time but could be more than twice longer than the 

optimal chains; 3) FOLs with simple conjunctions 

and existential quantifiers are easier to handle, 

whereas FOLs with equivalence are harder 

especially with universal quantifiers and 

disjunctions. Our results highlight the key strengths 

of the transformer-guided chaining approach and 

faithful reasoning in general, and suggest possible 

weaknesses that could motivate future research in 

multi-hop reasoning.    

In related work, (Yu et al., 2020; Liu et al., 2020; 

Dalvi et.al. 2021; Tian et.al. 2021) have performed 

diagnostic studies on popular language models and 

pointed out limitations in logic reasoning 

capabilities. (Li et.al. 2022) investigated NLU 

datasets to measure correlation with logic 

reasoning as a key skill. Our focus is different, and 

we aim to specifically analyze the iterative 

reasoning strategy for multi-hop logic reasoning, 

and hence is novel. 

2 Problem Definition  

We consider the NLI setting (Bowman 2015; 

Storks et.al. 2019). Let F = {f1,f2,··· ,fn}, be n simple 

sentences, called Facts; R = {r1,r2,··· ,rm}, a set of 

m compound sentences, called Rules. Then, given 

the tuple P = (F, R), called the Premise, and a 

statement h, called the Hypothesis; the inference 

problem is to determine i) the inference relation of 

h, and ii) a reasoning chain X, where 𝑋 =
{𝑋1, 𝑋2, … , 𝑋𝑖, … , 𝑋𝑘} is a sequence such that 𝑋𝑖 =
(𝑟𝑖, 𝐹𝑖) , where 𝑟𝑖 ∈ 𝑅  and 𝐹𝑖  is a set of 

intermediate facts, with members not necessarily 

from F. 

The inference relations can be entailment, 

contradiction, neutral, or paradox, as defined in 

Table 1, where ⊢ is the entailment operator. 

It is easy to see that the complexity of the 

problem varies based on the constraints imposed on 

F, R, X and the target inference labels of h. For 

example, RuleTaker (Clark et.al. 2020.) considers 

h to be ‘true or ‘false’. Additionally, R is restricted 

to be implication rules with conjunctions and 

negations. ProofWriter (Tafjord et.al. 2021) adopts 

a similar setting but allows h also to be un-

determined (‘neutral’), 

In this paper we consider a more general NLI 

problem following (Tian et.al 2021), where i) R is 

expressed using a rich class of FOLs with universal 

∀ and existential ∃ quantifiers, logic connectives 

such as disjunctions ∨, implications →, 

equivalence ≡ and negations ¬..ii) h can take any of 

the 4 inference labels (Table 1). Figure A-1 in the 

Appendix presents a sample problem instance.  

3 Logic Reasoning Method  

Logic reasoning using chaining strategy can be 

implemented in several ways, e.g. with fact 

selection (Bostrom et.al. 2022), rule selection 

(Sanyal et.al. 2022), inference verification (Tafjord 

et.al. 2022), etc. We aim to adopt a minimalist 

implementation, as we believe it facilitates better 

examination of the strengths and weaknesses of the 

central methodology,.  

We consider the Forward Chaining algorithm 

from Sec 9.3.2 of (Russell et.al. 2010), which is 

known to be sound and complete for a rich class of 

FOLs. Basically, the algorithm starts with the 

known facts and applies rules whose preconditions 

are satisfied, to infer new facts repeatedly until the 

hypothesis can be verified. To extend to natural 

language, our idea is to employ a transformer 

Entailment  𝑃 ⊢ h ˄ 𝑃 ⊬ ¬h 

Contradiction  𝑃 ⊬ h ˄ 𝑃 ⊢ ¬h 

Neutral  𝑃 ⊬ h ˄ 𝑃 ⊬ ¬h 

Paradox  𝑃 ⊢ h ˄ 𝑃 ⊢ ¬h 

 Table 1. Inference Relations between P and h. 
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model to do fact unification and rule inference, and 

a second transformer to verify the given hypothesis 

against the currently known facts.  

 

Rule Inference: In this step, given the current 

known facts and a rule, the rule preconditions are 

matched through unification to check for a rule 

match. If the latter succeeds, new facts are inferred 

(intermediate facts); otherwise, no facts are 

generated and the control moves to the next rule. 

We model this as an abstractive Q&A task, with the 

current facts as the ‘context’, the chosen rule as the 

‘question’ and the inferred facts as the desired 

‘answer’. A T5 transformer model (Raffel et.al. 

2020) is employed for this purpose. In particular, 

the processed input to the model is ’question: 

<rule> context: <known facts>’ and the output is 

‘inferred facts’ if the rule can be triggered and 

‘none’ otherwise.   

 

Facts Checking: This step verifies the given 

hypothesis against the currently known facts based 

on Table 1. In our implementation, we accomplish 

this by formulating a 2-class NLI task, for inferring 

𝐹′ ⊢  h and 𝐹′ ⊢  ¬h, where F’ is the currently 

known facts. 

 

Assemble Chain Additionally, for interpretability, 

we store the rule and the intermediate facts, every 

time a rule is satisfied. If the hypothesis is 

successfully verified, then the stored rules and facts 

are assembled to form a reasoning chain and 

returned. 

An outline of the complete algorithm (Figure 

A-2), and an illustration (Figure A-4) are presented 

in in the Appendix, along with the training details. 

4 Experiments and Results 

We perform several experiments using the multi-

hop FOL reasoning dataset LogicNLI, (Tian et.al 

2021). The dataset includes 16K/2K/2K 

train/dev/test instances, with each instance 

consisting of over 12 facts and 12 rules, along with 

labeled statements and reasoning chains (called 

proof paths). A sample instance is in Figure A-4.  

The results are presented in the following 

subsections. In all the tabulated results, the 

performance metrics are averaged over 10 runs and 

quoted in % for easier interpretation, unless stated 

otherwise. Details about the implementation, 

hyper-parameter settings and machine 

configuration are provided in Appendix A.  

4.1 Comparison with Baselines (Table 2) 

Firstly, we compare the performance in terms of 

accuracy against the baseline language models 

BERT (Delvin et.al. 2019),  RoBERTa (Liu et.al. 

2019), and XLNet (Yang et.al. 2019). Additionally, 

we considered a naïve algorithm, called  

NaiveFactsChecker, that does facts checking as in 

Sec 3 but without rule inference.  

 

 

Models Accuracy (%) 

Dev  Test 

Random 25.0 

Human 77.5 

BERT-base 30.1 29.5 

RoBERTa-base 59.5 58.0 

BERT-large+MLP 57.0 55.9 

RoBERTa-large+MLP  65.0 68.3 

XLNet + MLP layer 64.0 65.4 

NaiveFactsChecker 50.1 51.2 

Chainformer  + t5-base 78.1 80.4 

Chainformer  + t5-large 80.2 84.5 
 

We observe that NaiveFactsChecker achieved 

~50% (2x more than Random), suggesting that 

about 50% of the hypotheses in LogicNLI may be 

verifiable from the given facts alone.  All LM 

baselines, barring BERT-base, performed better, 

with RoBERTa-large+MLP the best model. In 

comparison, Chainformer significantly 

outperformed all baselines and even exceeded 

human performance. This is surprising given that 

our implementation was minimalist without other 

functionalities often used in the published 

approaches. We argue that the results highlight the 

strength of iterative LM-guided reasoning over 

‘all-at-once’ approach. Furthermore, the t5-base 

model version was comparable in performance to 

the t5-large version, which gives promise for low-

compute possibilities in implementing logic 

reasoning.  

4.2 Detailed Performance Analysis  

Here we investigate Chainformer approach in more 

detail to derive further insights. 

Table 2:  Comparison of Accuracy against Baseline 

models on Dev/Test 
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4.2.1 Generalization (Figure 1)  

To analyze the generalization ability of our 

approach, we varied training instances from 2400 

(25%), 4800 (50%), 7200 (75%) and 9600 (100%) 

and measured performance of i) 1-step inference, 

and ii) final reasoning (Figure 1).  

 

 
Figure 1 :  Performance over various 1-step 

inference training set sizes, where 1-step accuracy is 

plotted in Blue and the final reasoning performance 

in Orange. 

 

We observe an almost linear improvement, 

indicating good generalization. 

4.2.2 Performance over FOLs (Table 3, 4 & 5) 

For our next, experiment, we studied the ability in 

reasoning over various FOL classes. LogicNLI 

contains 23 FOL classes in total, and we first 

analyzed Chainformer to determine the respective 

inference accuracies. A summary of the results is 

presented in Table 3, 4 and 5. Details about the 

individual classes and the respective accuracies are 

provided in the Appendix. 

We notice that FOLs with logical equivalence 

are harder than implication, rather unsurprisingly, 

and the easiest with neither of them (Table 4). 

Similarly, disjunctions are harder than conjunctions 

(Table 5). Universal quantifiers are harder than no 

quantifiers, but existential quantifiers are easier in 

comparison (Table 3). A possible explanation is 

that neural unification is easier when matching any 

one relevant fact is sufficient rather than requiring 

the same for all relevant facts. However, this 

depends on the modeling and implementation 

specifics. It might be possible to alter the behavior 

with approaches, e.g. using different angle than 

‘Abstractive Q&A’ (Section 3), but this needs more 

research.   

 

 

 

 

 
Analysis of Quantifiers 

∃ ∀ None 

# of FOL Classes 8 9 6 

Accuracy 91.4 65.3 88.4 
 

  
Analysis of Connectives I 

→ ≡ None 

# of FOL lasses 15 6 2 

Accuracy 81.2 74.5 92.3 

  
Analysis of Connectives II 

∧ ∨ None 

# of FOL Classes 15 5 5 

Accuracy 77.2 70.3 85.7 
 

 

4.2.3 Interpretability (Table 6 & 7) 

We next analyzed interpretability of the predicted 

reasoning chains, by asking two questions i) Is the 

chain correct? and ii) Is the chain optimal 

compared to the ground truth.  

Towards this, we define two metrics viz. 

correctness and minimality. A chain is deemed 

correct if and only if every chain fragment 

corresponds to a valid entailment. Minimality is 

defined as the ratio of the length of the target chain 

over the length of the predicted chain. Note that a 

chain may be incorrect even if one step corresponds 

to an invalid entailment. Thus, we may have 

situations where the hypothesis is successfully 

inferred but the chain is incorrect. Such chains are 

called partially correct.  

As an exhaustive analysis of all chains is 

arduous, we sampled 200 ‘entailment’ and 200 

’contradiction’ instances from the predicted chains, 

as a preliminary evaluation, and tasked a student 

(not part of the project) to manually label the 

validity of every chain fragment. The labels were 

later verified via a random check by two project 

members to remove incorrect entries. The results 

are presented in Table 6.   

On average, we observed that 78.8% of the 

chains were fully correct (Table 6), providing 

Table 5 Analysis of Accuracy over FOLs w.r.to 

Conjunctions ∧ and Disjunctions ∨ 

Table 3 Accuracy over FOLs w.r.to Quantifiers 

Table 4 Analysis of Accuracy over FOLs w.r.to 

Implication → and Equivalence ≡ 
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support for chaining as a faithful reasoning 

approach. In fact, about 10% of the chains were 

partially correct and only 11.2% were incorrect. 

To analyze minimality, we extracted the correct 

chains and computed the minimality score against 

the gold standard chains. An overall average score 

of 0.42 was observed (Table 7), implying that the 

correctly predicted chains could be 2.3 times longer 

than the optimal ones.  

 

Label   Correctness 

Entailment 

Correct 73.5 

Incorrect 12.8 

Partially correct 13.7 

Contradiction 

Correct 84.1 

Incorrect 9.8 

Partially correct 6.1 
 

 

Label Minimality Score 
Entailment 0.44 

Contradiction 0.40 
 

 

5 Discussion and Conclusions  

We considered the recently emerging neuro-

symbolic approach for addressing multi-step 

natural logic reasoning, called the transformer 

guided chaining. The approach adopts an iterative 

reasoning strategy in contrast to the traditional 

neural approaches that tackle multi-step reasoning 

as a single pass ‘all-at-once’ inference. The 

iterative approach is attractive as it offers several 

advantages such as i) it is faithful in that it naturally 

reflects the internal reasoning process, ii) it is 

inherently interpretable, iii) it can be  applied to 

multiple choice Q&A and open-ended Q&A, 

besides Natural Language Inference.  

We performed a detailed empirical investigation 

of this approach, using a challenging FOL 

reasoning dataset. Our key findings are: 1) human 

level performance is achieved on multi-hop FOL 

reasoning task with a minimalist implementation 

(80.4% machine vs 77.5% human), and even with 

a base model (80.4% base vs 84.5% large). This 

provides support for the potential of chaining 

strategy and encourages possible applications on 

real life texts; 2) FOLs with simple conjunctions 

and existential quantifiers are easier to handle, 

whereas FOLs with equivalence are harder 

especially with universal quantifiers and 

disjunctions, suggesting scope for further research; 

3) the predicted reasoning chains are correct 78% 

of the time, but could be more than twice longer 

than the optimal chains. The latter implies that two 

or more correct reasoning chains are possible, and 

iterative reasoning strategy might return one of 

them (though sub-optimal). This underscores the 

importance of human validation in interpretability 

evaluation, as automating it, say by scoring exact 

match, is likely to underestimate the true 

performance,  

A key observation is that the approach hinges on 

how accurately the 1-step inferences can be 

performed, as small errors can propagate over 

multiple iterations and get magnified. For example, 

if the rule inference step results in false 

positives/negatives, it is unclear how the chaining 

performance will be impacted. In addition, if facts 

are incomplete or even inconsistent, how effective 

will the reasoning be? These are interesting 

research questions for further investigation. 

(Ghosal et.al. 2022; Dalvi et.al. 2022) are steps 

along this direction.  

On another direction, most of the chaining-based 

works have considered mainly ‘entailment’ as the 

inference relation. To handle real-life texts, it is 

important to go beyond simple entailment 

relations, and consider more sophisticated ones, 

e.g.  necessity, possibility and rebuttal 

(MacCartney and Manning, 2014; Huang et.al. 

2022). To, cover such relations, new models and 

approaches are required, and they could facilitate 

enhancing the scope of current faithful reasoning 

approaches towards addressing advanced multi-

hop reasoning scenarios.  

5.1 Limitations  

Our work is one of the first to perform a detailed 

empirical investigation of transformer guided 

chaining but is clearly preliminary. The following 

are some key limitations: 

- Evaluation of Interpretability: A fair evaluation 

of interpretability is not straightforward. In this 

paper, we reported results from a preliminary 

study with limited human labor.  

- Analysis of negations: LogicNLI dataset uses 

negations in the facts, rules and statements but 

it is difficult to disentangle them for a fair 

investigation. Hence, we were unable to 

rigorously analyze the ability in handling 

negations.  

Table 6:  Correctness of Predicted Chains 

 

  Table 7 Minimality of Verified Chains 
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- Evaluation on Real-life data: Our reported 

work focused on a synthetic dataset. For a 

more rigorous evaluation, it is imperative to 

consider more datasets including real-life ones.  
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A Model Training and Parameters  

Baseline Models 

Initially, we performed evaluation on LogicNLI 

dataset (Tian, J. 2021). LogicNLI dataset contains 

different section: facts, rules statements and labels. 

We have used train/dev/test 16000/2000/2000 

examples for our models. For baseline 

experiments, we have re-implemented the fine-

tuned BERT (Devlin et al., 2019) and RoBERTa 

(Liu et al., 2019)  base version and used [CLS] facts 

rules [SEP] statement [SEP] as input to the 

transformers to predict the logical relation. BERT 

uses 12-layer, 768-hidden, 12-heads, 110M 

parameters for base version and RoBERTa uses 

123M parameters.  

Our models are trained end-to-end using 

AdamW optimizer with the decay rate of 0.9. In 

addition, we have experimented with different 

learning rates to understand if there is any change 

in performance. However, learning rate of 5e-6 

shows a steady linear increase with the specified 

decay rate for RoBERTa model.  Hence, we have 

retained the similar hyper-parameters as mentioned 

in the LogicNLI dataset (Tian, J. 2021), for our 

BERT and RoBERTa base version. RoBERTa 

performs better than BERT base and shows 59% on 

the validation set and 57% on the test set.  

The hyper-parameters are listed in the Table A-

1.  

Parameter

s 

BERT RoBERTa XLNET 

batch size 16 16 16 

lr 5e−6 5e−6 5e−6 

decay rate 0.9 0.9 0.9 

l2 coeff. 1e−5 1e−5 1e−5 

early stop 5 5 5 

epochs 20 20 20 

optimizer AdamW AdamW AdamW 
 

 

Logic Reasoning Model 

Rule Inference We apply T5 (Raffel et al., 2020) 

as the encoder-decoder model to generate new facts 

given the input facts and rule. Given labeled 

reasoning chains in the LogicNLI dataset (Tian et 

al., 2021), it is not straight forward to train the 

model as they provide only ‘positive’ examples. We 

build our training set as follows. Given a training 

instance, we use the logic representation of the 

facts and rules and apply every rule expression on 

the fact expressions to generate 1-step inference 

with an off-the-shelf logic reasoner. The inferred 

facts are converted to natural language using a 

simple rule-based technique. The natural language 

versions of the source rules and facts are extracted 

from the dataset, and a training set is prepared using 

the processed input as ‘question: <rule> context: 

<known facts>’ and the output ‘inferred facts’, if 

the rule can be triggered and ‘None’ otherwise.   

During training, we set number of beams as 50 

and number of returned sequences as 5. We 

randomly split the 9600 instances into 80% training 

and 20% test for 5 times and report the average 

performance. We measure accuracy using the exact 

matching ratio.   

As the input size depends on the facts, which 

may grow over multiple iterations, there is an 

impact on the token size limitations. We analyze 

the instances and find that the average size of each 

instance 191.758 tokens (Min: 171; Max: 240). Our 

current T5 model can handle sequences with up to 

512 tokens. Assuming the worst case (Max size 

240; 4 tokens/fact), the chaining process can go up 

to depth=68, before the limit is reached. We argue 

that this is sufficiently large for LogicNLI.dataset.  

For inference/real world examples, working with 

documents greater than 512 size, we can chunk the 

document (facts/rules) and use Roberta to encode 

each chunk accordingly. 

 

Facts Checking We adopt RoBERTa (Liu et al., 

2019) base version and used [CLS] facts [SEP] 

hypothesis [SEP] as input to the transformers to 

predict the inference relation. The hyper-

parameters are as in the Table A-1. 

 

Table A-1 Hyperparemeters for Experiments 
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Machine Configuration  

For baseline models, initially we have used 

NVIDIA-GeForce RTX 2080 series with eight 

cores of GPU machines for all our experiments.  

Later, in order to train t5 large models, we have 

used NVIDIA-GeForce Tesla V100 series SXM2-

32GB with 5 cores of GPU machines. Models were 

trained for 3-5 hours for training and reasoning. 

B Supplementary Material 

Sample Instance for Illustration  

Figure A-1 presents a sample instance for 

illustration.  

 

Algorithm pseudocode 

Figure A-2 provides the full pseudocode of our 

algorithm outlined in Section 3. 

 

Illustration of Output  

Figure A-3 presents an illustration of the output by 

algorithm Chainformer.  

Additional Experiments 

Analysis of Inference Relations (Table A-2) 

Here, we present the detailed reasoning 

performance for the four labels. ‘Entailment’ and 

’Contradiction’ performance were similar. 

‘Paradox’ was the toughest (F1=74.4) among all. It 

had a high precision but low recall, as two 

reasoning chains are required for its classification. 

In contrast, ’neutral’ had a lower precision but 

higher recall since most of the missed hypotheses 

will be labeled thus. 

Algorithm Chainformer 
 

Input: F, Facts; R, Rules; h, Hypothesis 

Output: Inference ∈ {E,C,N,P}; X, the reasoning 

chain. 

F’  ← F 

C  ← φ, the empty set 

Repeat  

  R’ ← Shuffle(R) 

  For r ∈ R’ 

    InferredFacts ← RuleInference(r,F’) 

    NewFacts ← InferredFacts – F’ 

    If NewFacts is not φ 

     F’  ← F’ ∪ NewFacts 

     C ← C ∪ (r, NewFacts) 

    End 

  End 

Until no new facts added to F’   

Inference ← FactsChecking(h,F’) 

Reasoning Chain X ← 

AssembleChain(h,Inference,C) 

 

 
 

Figure A-2 Algorithm Chainformer Pesudocode 

 
 

Labels Test 

P R F1 

Contradiction 82.7 81.6 82.1 

Entailment 81.3 82.0 81.6 

Neutral 75.0 92.6 82.9 

Paradox 86.0 65.6 74.4 

 

Table A-2:  Analysis of Inference Relations 

Performance over FOLs 

LogicNLI dataset tags over 23 classes of FOLs. 

Each class is named using an abbreviation of the 

rule members as below. Given a rule, we denote the 

FOL connectives viz. conjunction ∧ (C), 

disjunction ∨ (D), implication → (I), equation ≡ 

(Q), universal quantifier ∀ (A), and existential 

quantifier ∃ (E), with a letter (bracketed), and 

concatenate their respective letters in the order they 

appear in the rule. For example, Rule 4 in Figure 4 

would belong to the class ‘ACQ’. The accuracy 

results of all classes are presented in Table A-3. 

Facts: 

(1) Tim is fast. 

(2) John is tall. 

(3) John is not lean. 

 

Rules: 

(1) If someone is fast or tall, then he is 

athletic. 

(2) Someone is fast if he is tall and he is 

lean. 

(3) All those who are athletic will be 

not slow. 

(4) If someone is lean and tall, then he 

is fast, and vice versa. 

 
Hypothesis: John is not slow. 

Label: Entailment  

Figure A-1: Sample Instance for Illustration 

Sample Instance for Illustration, dataset 

showing facts, rules, a statement, proofs, the 

path and the label. 
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FOL Class Accuracy 

CIC 100.0% 

CQC 100.0% 

EDI 97.3% 

EIC 97.1% 

EI 92.9% 

CE 92.9% 

EC 91.7% 

ADI 91.4% 

ECI 90.9% 

CQ 90.0% 

ACI 90.0% 

AQ 89.3% 

EDIC 88.9% 

I 85.2% 

Q 81.5% 

ECIC 80.0% 

AI 80.0% 

AIC 75.6% 

ACIC 75.0% 

DI 73.9% 

ACQ 44.8% 

ACQC 41.7% 

ADIC 0.0% 

 

 

Analysis of FOLs with Conjunction (Table A-4) 

We also analyzed the accuracy over FOLs with 

conjunctions in implication rule (before and after 

→) and similarly in rules with equivalence. Results 

imply that conjunctions in the consequent are 

harder for implications. In case of equivalence, it is 

even harder possibly the implication works both 

ways. 

 

Sample Instance from LogicNLI 

Figure A-4 presents a sample instance from 

LogicNLI as an illustration. 

 

Table A-3 Performance over FOLs 

 

Inference : Entailment 

Reasoning Chain: 

Tim is not slow. 

Tim is fast. 

Tim is athletic. 

John is tall. 

John is not slow. 

 

Figure A-3: Sample Output of Chainformer with for instance in Figure A-1.  
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Analysis of Conjunctions 

bef → aft → bef ≡ aft ≡ 

# of FOLs  5 7 4 2 

Accuracy 87.8 73.8 69.1 70.8 
 

Table A-4. Analysis of Conjunctions 
 

 

 

Facts: (F1) Pierce is not crazy.(F2) Norman is breakable.(F3) Travis is not terrible.(F4) Alfred is 

terrible.(F5) Norman is crazy.(F6) Norman is difficult.(F7) Pierce is difficult.(F8) Kerry is 

cautious.(F9) Pierce is not cautious.(F10) Alfred is not breakable.(F11) Travis is not 

breakable.(F12) Kerry is careful. 

Rules: ((R1) Norris being not cautious implies that Norman is not crazy. (R2) If someone is not 

difficult or he is terrible, then he is cautious. (R3) Pierce being breakable implies that Norman is 

difficult. (R4) If Travis is crazy, then Alfred is cautious and Pierce is not difficult. (R5) As long 

as someone is either not difficult or breakable, he is terrible and not careful. (R6) As long as 

someone is difficult, he is not crazy and breakable. (R7) If there is at least one people who is not 

breakable, then Kerry is careful. (R8) If Kerry is not careful and Alfred is cautious, then Pierce is 

not difficult. (R9) If there is someone who is both crazy and terrible, then Alfred is careful. (R10) 

If someone is not cautious, then he is crazy. (R11) If someone is terrible or not cautious, then he 

is difficult. (R12) If there is at least one people who is both not breakable and crazy, then Kerry is 

careful. 

Statement: Pierce is not careful.  

Label: entailment   

Reasoning Path: [[FACT(7)--> RULE (6)]--> RULE(5)] 

Statement: Norman is careful.  

Label: contradiction       

Reasoning Path: FACT(2) --> RULE (5) 

 

 
Figure A-4: An instance from LogicNLI,dataset showing facts, rules, Statements, reasoning paths and 

labels. 
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