
Findings of the Association for Computational Linguistics: ACL 2023, pages 8982–8994
July 9-14, 2023 ©2023 Association for Computational Linguistics

Dual-Gated Fusion with Prefix-Tuning for Multi-Modal Relation Extraction
Qian Li1,2, Shu Guo3, Cheng Ji1,2, Xutan Peng4, Shiyao Cui5, Jianxin Li1,2∗, Lihong Wang3

1School of Computer Science and Engineering, Beihang University, Beijing, China
2Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing, China

3NationalComputerNetworkEmergencyResponseTechnicalTeam/CoordinationCenterofChina
4The University of Sheffield, South Yorkshire, UK

5Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{liqian, jicheng, lijx}@act.buaa.edu.cn, guoshu@cert.org.cn,

x.peng@shef.ac.uk, cuishiyao@iie.ac.cn, wlh@isc.org.cn

Abstract
Multi-Modal Relation Extraction (MMRE)
aims at identifying the relation between two
entities in texts that contain visual clues. Rich
visual content is valuable for the MMRE task,
but existing works cannot well model finer asso-
ciations among different modalities, failing to
capture the truly helpful visual information and
thus limiting relation extraction performance.
In this paper, we propose a novel MMRE frame-
work to better capture the deeper correlations
of text, entity pair, and image/objects, so as
to mine more helpful information for the task,
termed as DGF-PT. We first propose a prompt-
based autoregressive encoder, which builds the
associations of intra-modal and inter-modal fea-
tures related to the task, respectively by entity-
oriented and object-oriented prefixes. To better
integrate helpful visual information, we design
a dual-gated fusion module to distinguish the
importance of image/objects and further enrich
text representations. In addition, a generative
decoder is introduced with entity type restric-
tion on relations, better filtering out candidates.
Extensive experiments conducted on the bench-
mark dataset show that our approach achieves
excellent performance compared to strong com-
petitors, even in the few-shot situation.

1 Introduction

As a fundamental subtask of information extraction,
relation extraction (RE) aims to identify the rela-
tion between two entities (Cong et al., 2022; Xue
et al., 2022). Recently, there is a growing trend in
multi-modal relation extraction (MMRE), aiming
to classify textual relations of two entities as well as
introduce the visual contents. It provides additional
visual knowledge that incorporates multi-media
information to support various cross-modal tasks
such as the multi-modal knowledge graph construc-
tion (Zhu et al., 2022; Wang et al., 2019) and visual
question answering systems (Wang et al., 2022;
Shih et al., 2016).

∗Corresponding author.

Relation: Member_of

Entity Pair Text Image

LeBron 
James

Lakers

LeBron James joined the Los 
Angeles Lakers as a free agent.

LeBron James has returned to 
the Los Angeles Lakers.

LeBron James talks to Davis of 
the Lakers during a full timeout.

(a) Helpful

(b) Unhelpful
?

Figure 1: An example of the MMRE task. The task is to
predict the relation of given entity pairs for the specific
text and image which contains multiple objects.

Existing methods achieved considerable success
by leveraging visual information (Zheng et al.,
2021a; He et al., 2022; Chen et al., 2022) since
the visual contents provide valuable pieces of ev-
idence to supplement the missing semantics for
MMRE. Previous work (Zheng et al., 2021a) intro-
duced the visual relations of objects in the image
to enrich text embedding via an attention-based
mechanism. Next, HVPNet (Chen et al., 2022)
used an object-level prefix and a multi-scale visual
fusion mechanism to guide the text representation
learning. Nevertheless, these methods primarily
focus on the relations between objects and text
and ignore the finer associations (entity pair, text,
and image/objects). Furthermore, they usually suf-
fered from the failure of identifying truly helpful
parts/objects of the image to the corresponding en-
tity pair on account of introducing all the objects.
This may cause severe performance degradation of
downstream tasks.

For multi-modal relation extraction, not all im-
ages or their objects are helpful for prediction. As
illustrated in Figure 1, given three different inputs
with the same relation Member_of and entity pair,
each of the inputs contains a text, an image, and an
entity pair. There are two situations: (a) The image
is helpful for relation extraction. For entity pair Le-
Bron James and Lakers, in the image LeBron James
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wears the Lakers jersey revealing the implied rela-
tionship between the two entities. Therefore, we
can improve relation extraction by considering the
entity-pair relationships in visual information. (b)
The image is unhelpful for the entity pair LeBron
James and Lakers since it only contains Lakers
object, rather than the association information for
entity pairs. Furthermore, the image can provide an
incorrect extraction signal, for example, the third
image in Figure 1 shows that the relation between
LeBron James and Lakers is more likely to be mis-
judged as Coach_of or Owner_of. Unhelpful visual
content is prone to providing misleading informa-
tion when predicting the relation. In general, it is
necessary to identify the truly helpful visual infor-
mation to filter the useless and misleading ones,
but it is still under-explored.

To overcome the above challenges, we propose
a novel MMRE framework DGF-PT to better in-
corporate finer granularity in the relations and
avoiding unhelpful images misleading the model1.
Specifically, we propose a prompt-based autore-
gressive encoder containing two types of prefix-
tuning to integrate deeper associations. It makes
the model focus on associations of intra-modal (be-
tween entity pair and text) by entity-oriented prefix
and inter-modal (between objects and text) by the
object-oriented prefix. In order to distinguish the
importance of image/objects, we design a dual-
gated fusion module to address the unhelpful vi-
sual data by utilizing interaction information via
local and global visual gates. Later, we design a
generative decoder to leverage the implicit associa-
tions and restrict candidate relations by introducing
entity type. We further design joint objective to al-
low the distribution of representations pre and post-
fusion to be consistent while enhancing the model
to identify each sample in the latent space. Exper-
imental results show that our approach achieves
excellent performance in the benchmark dataset.
Our contributions can be summarized as follows.

• We technically design a novel MMRE Frame-
work to build deeper correlations among entity
pair, text, and image/objects and distinguish help-
ful visual information.

• We propose a prompt-based autoregressive en-
coder with two types of prefixes to enforce the
intra-modal and inter-modal association. We

1The source code is available at https://github.com/
xiaoqian19940510/DGF-PT.

design dual-gated fusion with a local object-
importance gate and a global image-relevance
gate to integrate helpful visual information.

• Experimental results indicate that the framework
achieves state-of-the-art performance on the pub-
lic multi-modal relation extraction dataset, even
in the few-shot situation.

2 Related Work

Multi-modal relation extraction (MMRE) task, a
subtask of multi-modal information extraction in
NLP (Sun et al., 2021; Cong et al., 2020; Sui et al.,
2021; Lu et al., 2022), aims to identify textual re-
lations between two entities in a sentence by intro-
ducing visual content (Zheng et al., 2021a,b; Chen
et al., 2022), which compensates for insufficient
semantics and helps to extract the relations.

Recently, there are several works (Zheng et al.,
2021a,b; Chen et al., 2022) beginning to focus
on the multi-modal relation extraction technology.
As the first work, MNRE (Zheng et al., 2021b)
developed a multi-modal relation extraction base-
line model. It demonstrates that introducing multi-
modal information supplements the missing seman-
tics and improves relation extraction performance
in social media texts. Later, Zheng et al. (2021a)
proposed a multi-modal neural network contain-
ing a scene graph modeling the visual relations of
objects and aligning the relations between objects
and text via similarity and attention mechanism.
HVPNet (Chen et al., 2022) designs a visual prefix-
guided fusion for introducing object-level visual
information and further utilizes hierarchical multi-
scaled visual features. Moreover, they introduce
the information of all objects and thus cannot distin-
guish the truly helpful visual information, making
it impractical to personalize the use of the image
and further damaging their performance.

In the multi-modal relation extraction task, we
note that images are naturally helpful information
in the problem of multi-modal relation extraction.
However, the potential for a differentiated use of
image information in this task is under-explored.
In this paper, we focus on the finer (intra-modal
and inter-modal) association and manage to inte-
grate truly useful visual information, promoting
the exploitation of limited images. This enables
bridging the gap through the transfer multi-modal
relation extraction task into MLM pre-train mecha-
nism (Devlin et al., 2019; Liu et al., 2021).
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Figure 2: The DGF-PT framework for multi-modal relation extraction.

3 Problem Formulation

We provide the definition of MMRE. For a given
sentence text T = {w1, w2, . . . , wL} with L words
as well as the image I related to the sentence,
and an entity pair (e1, e2), an MMRE model takes
(e1, e2, T, I) as input and calculates a confidence
score p(ri|e1, e2, T, I) for each relation ri ∈ R to
estimate whether T and I can reflect the relation ri
between e1 and e2. R = {r1, . . . , rC ,None} is a
pre-defined relation set, where “None” means that
no relation is maintained for the mentions.

4 Framework

This section introduces our proposed DGF-PT
framework, as shown in Figure 2. We first design
the prompt-based autoregressive encoder to acquire
the fine-grained representations (entity pair, object,
and text), which contains two types of prefixes for
integrating helpful information and characterizing
intra-modal and inter-modal interactions. To avoid
unhelpful visual information misleading the model,
we design the dual-gated fusion module to distin-
guish the importance of image/objects via local
and global gates. It also integrates the semantics of
image transferred by Oscar (Li et al., 2020). The
Fusion module outputs an enhanced representation.
Later, the generative decoder is proposed for rela-
tion prediction, leveraging the implicit associations
and restricting candidate relations by introducing
entity types. Finally, we design the joint objec-
tive including distribution-consistency constraint,
self-identification enhancement, and relation clas-
sification for model optimization.

4.1 Prompt-based Autoregressive Encoder
In order to acquire the finer granularity in the as-
sociations (entity pair, objects, and text), we pro-
pose a prompt-based autoregressive encoder. After
initialization, two specific prefix-tuning strategies
are implemented to guide the encoder to attend to
task-relevant inter-/intra-modal associations. Sub-
sequently, prefixes, objects, image, and text are pro-
gressively fed into an autoregressive encoder stage
by stage to obtain fine-grained representations for
use in subsequent fusion module (Section 4.2).

4.1.1 Initialization
Given text T , the word embeddings w ∈ R1×N are
obtained through the GPT-2 model (Radford et al.,
2019) and then fed into a fully-connection layer,
where N is the word dimension. The initial text
representation is T = [w1;w2; . . . ;wL] ∈ RL×N .

Given an image I , the global image feature I ∈
RM×N is obtained by VGG16 (Simonyan and Zis-
serman, 2015) with a fully-connection layer, trans-
ferring the feature into M -block N -dimensional
vectors. We then extract object features using
Faster R-CNN (Ren et al., 2015) and select top-
K objects using the ROI classification score. Each
object feature is obtained by the average grouping
of ROI regions. The initial object representation is
O = [o1;o2; . . . ;oK ] ∈ RK×N .

4.1.2 Object & Entity Oriented Prefixes
Utilizing the advantages of prefix-tuning, the pre-
trained encoder (e.g., GPT-2 as our encoder) can be
guided to learn task-specific features for fast adapta-
tion to the MMRE task (Liu et al., 2021). However,
the design of appropriate prefixes for finer associa-
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tions learning in the MMRE task remains an open
research question, and the direct use of prefixes
from other tasks is not reasonable. Therefore, we
construct two types of prefixes, an object-oriented
prefix for inter-modal relevance (objects & text)
and an entity-oriented prefix for intra-modal corre-
lations (entity pair & text), encouraging the encoder
to leverage text as a medium to strengthen multi-
granular associations to acquire enhanced semantic
representations.

Object-Oriented Prefix. Given that objects re-
lated to entities are indeed useful information for
the MMRE task, we propose an object-oriented
prefix, termed as Po(·), which provides guidance
information of inter-modal relevance to the encoder.
For the input text T , we define the following pat-
tern “Consider ⟨objects⟩, predict relation.”, where
⟨objects⟩ means the objects relevant to the entity
pair of T which is different for each input. It em-
phasizes specific key textual contents and intro-
duces the visual features of relevant objects.

Entity-Oriented Prefix. Due to the visual infor-
mation may be incomplete or misleading, we argue
that only an object-oriented prefix is insufficient to
capture classification information. Thus, we pro-
pose an entity-oriented prefix, termed as Pe(·), to
capture intra-modal association to adapt the task.
We define the following pattern “Consider ⟨e1, e2⟩,
predict relation.”, where ⟨e1, e2⟩ is the entity pair
to predict the relation.

4.1.3 Multi-Stage Autoregressive Encoder
Prompt-based learning keeps the parameters of the
whole PLM frozen and prepends the prefixes before
the task inputs (Liu et al., 2021). The bidirectional
encoder (e.g., BERT) cannot effectively integrate
the proposed dual-gated fusion module (Section
4.2) in model testing. Therefore, we deploy a unidi-
rectional encoder (e.g., GPT and GPT-2) and design
multiple stages to integrate multi-granular textual
and visual knowledge, where the prefixes, objects,
image, and text are fed stage by stage.

First stage (S1). The input of the first stage S1 con-
tains the prefixes and objects to learn the relevance
from local granularity and obtain the representa-
tions of objects. To introduce task-related prefix
knowledge, the two types of trainable prefixes Po(·)
and Pe(·) are prepended before the input sequence
as the prefix tokens, obtained through the GPT-2
vocabulary. In S1, the encoder learns the represen-
tations of objects and updates the prefix tokens of

each model layer:

P∗
o (oe1 ,oe2),P∗

e (T[e1],T[e2]),ho = S1(·)
=Encoder(Po(oe1 ,oe2),Pe(T[e1],T[e2]),O) ,

(1)
where P∗

o (·) and P∗
e (·) are updated prefixes after

S1, ho is the representations of objects, and oe1
and oe1 are the initial embeddings of entities e1
and e2. After the S1 stage, the object information
is introduced into the prefix embedding.

Second stage (S2). The inputs of the second stage
S2 are the outputs of the first stage S1 (including
the updated prefixes and the representations of ob-
jects) and the image feature I to get the representa-
tions of images hi. We hope the model can learn
to capture the inter-modal relevance from global
granularity, which is useful information for relation
extraction that may improve performance. Thus,
we introduce the image information in S2. The S2

embedding is therefore updated as:

hi = S2(·) = Encoder (S1(·), I) . (2)

Third stage (S3). To learn text representation ht,
the third stage inputs S2 and text T using interac-
tive objects and images.

ht = S3(·) = Encoder (S2(·),T) . (3)

4.2 Dual-Gated Fusion
Unhelpful/Task-irrelevant information in image is
often ignored by simply utilizing all objects for ag-
gregation. To solve this, we propose dual-gated
fusion to effectively integrate helpful visual in-
formation while filtering out misleading informa-
tion. This module utilizes local and global gates
to distinguish the importance and relevance of im-
age/objects, and filters out task-irrelevant parts. By
integrating semantic information of the image, a
final fused representation containing associations
among image, object, and text is obtained.

Specifically, the local object-importance gate
vector β by the local object features and the global
image-relevance gate vector γ by the global image
features are calculated as:

αk =
cos (ht,ho[k])∑K
j=1 cos (ht,ho[j])

, (4)

β = FCβ(ho) = FCβ

(
K∑

k=1

αkho[k]

)
, (5)

γ = tanh (FCγ (hi)) , (6)
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where FC is fully-connected layer and ho[k] is
the k-th object in the object set O. ho calculates
attention between the selected top-K objects of di-
vergent modalities. Subsequently, the textual char-
acteristic of fusion h̃t is calculated by

h̃t = MLP (ht ⊙ γ + β) + ht, (7)

where MLP is multilayer perceptron and ⊙ means
hadamard product.

In order to further integrate the semantics of vi-
sual information, we use Oscar (Li et al., 2020)
to transfer hi into a text description h̃i2t for each
image, using objects as anchor points to align vi-
sual and textual features in a common space. It
learns multi-modal alignment information of en-
tities from a semantic perspective. The detail is
given in Appendix A.

While local representations can capture valuable
clues, global features provide condensed contex-
tual and high-level semantic information. Given
this insight, we leverage the global information
from one modality to regulate the local fragment
of another modality, enabling the entity to contain
semantic information and filter out irrelevant visual
information. The final fused representation is:

h̃t = h̃t + h̃i2t ⊙ δ, (8)

where δ is trade-off factor between text embedding
h̃t and the inter-modal text representation h̃i2t.

4.3 Generative Decoder

To leverage the implicit associations and restrict
candidate relations by introducing entity type, we
design a generative decoder.

The type of entity pair is helpful for relation
classification. For example, the relation of entity
type Person and Organization must not be born
and friend, but maybe CEO and staff. Thus, we
introduce head type Tt

e1 and tail type Tt
e2 one by

one to leverage the implicit associations and restrict
candidate relations.

To maintain the consistency of the relation ex-
traction task with the MLM pre-trained model, we
use the generative decoder to predict the relation.
The prediction of the generative decoder is:

ht
e1 ,h

t
e2 , r = Decoder

(
S3(·),Tt

e1 ,T
t
e2

)
, (9)

where ht
e1 ,h

t
e2 are the representation of types, and

r is the representation of relation.

4.4 Joint Objective

In order to address distribution consistency within
the dual-gated fusion module, we introduce the
distribution-consistency constraint loss, which is
applied on a single-sample basis. Additionally, to
meet the need for inter-sample identification, we
propose self-identification enhancement loss. The
overall joint objective is then formed by combining
the relation classification loss with the aforemen-
tioned constraints.

Distribution-Consistency Constraint. In order
to ensure the dual-gated fusion module effectively
integrates helpful visual features while avoiding the
introduction of task-irrelevant information, we in-
troduce distribution-consistency constraint to mea-
sure and optimize the change in representation dis-
tribution pre and post-fusion. Thus, we propose to
use KL divergence to measure the distance between
the probability distribution of h̃t and ht, which is
equal to calculating the cross-entropy loss over the
two distributions:

Ld(θ) = KL
(
pθ(r|h̃t)∥pθ(r|ht)

)
(10)

=
∑

r∈R
pθ(r|h̃t) log pθ(r|ht). (11)

Self-Identification Enhancement. The MMRE
task requires the model to have the ability to cor-
rectly classify relations from individual samples.
However, relation labels are unevenly distributed
or lacking in the real world. Therefore, further
enhancement is needed. We design a negative-
sampling-based self-supervised loss function to
enhance the model. Moreover, the dual-gated fu-
sion module is treated as the augmentation function
leveraging the modality information. Specifically,
textual representation ht and fused representation
h̃t are the mutually positive samples:

Ls=[s(x, x̃)−s(xn, x̃)]++[s(x, x̃)−s(x, x̃n)]+ ,
(12)

where {x, x̃} are {ht, h̃t}, [a]+ = max(a, 0), and
s(·, ·) is the cosine similarity. xn and x̃n are the
hardest negatives of ht and h̃t in a mini-batch
based on a similarity-based measurement.

Relation Classification. The loss for relation
classification by the negative log-likelihood func-
tion is as follows:

Lc = − log p(r|ht,hi,ht[e1],ht[e2]), (13)
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Model Type Model Name Acc. (%) Prec. (%) Recall (%) F1 (%)

Glove+CNN (Zeng et al., 2014) 70.32 57.81 46.25 51.39
Text-based RE Models PCNN (Zeng et al., 2015) 72.67 62.85 49.69 55.49

MTB (Soares et al., 2019) 72.73 64.46 57.81 60.96

BERT+SG (Devlin et al., 2019) 74.09 62.95 62.65 62.80
BERT+SG+Att. (Devlin et al., 2019) 74.59 60.97 66.56 63.64

MMRE Models VisualBERT (Li et al., 2019) - 57.15 59.45 58.30
MEGA (Zheng et al., 2021a) 76.15 64.51 68.44 66.41
HVPNet (Chen et al., 2022) - 83.64 80.78 81.85

DGF-PT (BERT Encoder) 79.82 ( ↑ 3.67 ) 79.72 ( ↑ -3.92 ) 78.63 ( ↑ -2.15 ) 79.24 ( ↑ -2.61 )
Ours DGF-PT (GPT Encoder) 82.03 ( ↑ 5.88 ) 81.23 ( ↑ -2.41 ) 82.48 ( ↑ 1.70 ) 82.09 ( ↑ 0.24 )

DGF-PT (GPT-2 Encoder) 84.25 ( ↑ 8.10 ) 84.35 ( ↑ 0.71 ) 83.83 ( ↑ 3.05 ) 84.47 ( ↑ 2.62 )

Table 1: Main experiments. The best results are highlighted in bold, “–” means results are not available, and the
underlined values are the second-best result. “↑” means the increase compared to the underlined values.

where r is the relation between the head entity e1
and the tail entity e2 for hx, and ht[e1],ht[e2] are
the representations of the two entities. Finally, the
overall loss function of our model is as follows.

L = λdLd + λsLs + λcLc, (14)

where λd, λs, and λc are trade-off parameters. We
optimize all training inputs in a mini-batch strategy.

5 Experiment

5.1 Dataset and Evaluation Metric
We conduct experiments in a multi-modal relation
extraction dataset MNRE (Zheng et al., 2021b),
crawling data from Twitter2. The MNRE includes
15, 484 samples and 9, 201 images. It contains 23
relation categories. As previous work (Zheng et al.,
2021a) recommended, the MNRE dataset is divided
into 12, 247 training samples, 1, 624 development
samples, and 1, 614 testing samples. We report the
official Accuracy (Acc.), Precision (Prec.), Recall,
and F1 metrics for relation evaluation.

5.2 Comparision Methods
We compare our method with three text-based RE
models and five MMRE models.

Text-based RE Models. We first consider a group
of representative text-based RE models, which
do not introduce image information, for model-
ing the connection of words in the sentence: (1)
Glove+CNN (Zeng et al., 2014) is a CNN-based
model with additional position embeddings to uti-
lize the position association. (2) PCNN (Zeng et al.,
2015) is a RE method utilizing external knowledge
graph with a distant supervision manner to build

2https://archive.org/details/twitterstream

connection by the graph. (3) Matching the Blanks
(MTB) (Soares et al., 2019) is a BERT-based RE
model to learn context correlation.

MMRE Models. We further consider another
group of previous approaches for MMRE to in-
tegrate visual information: (4) BERT+SG (De-
vlin et al., 2019) concatenates BERT representa-
tions with visual content, which is obtained by the
pre-trained scene graph tool (Tang et al., 2020)
to learn the connection between text and the ob-
ject of the image. (5) BERT+SG+Att adopts an
attention mechanism to compute the relevance be-
tween the textual and visual features. (6) Visual-
BERT (Li et al., 2019) is a single-stream encoder,
learning cross-modal correlation in a model. (7)
MEGA (Zheng et al., 2021a) considers the rele-
vance from the structure of objects in the image
and semantics of text perspectives with graph align-
ment. (8) HVPNet (Chen et al., 2022) introduces
an object-level prefix with a dynamic gated aggre-
gation strategy to enhance the correlation between
all objects and text.

In contrast to these methods, our approach incor-
porates the correlation between entity pairs, text,
and visual information, and effectively identifies
useful visual information.

5.3 Implementation Details

For all baselines, we adopt the best hyper-
parameters and copy results reported in the litera-
ture (Zheng et al., 2021a,b; Chen et al., 2022).

We used PyTorch3 as a deep learning framework
to develop the MMRE. The BERT and GPT-24 are
for text initialization and the dimension is set at

3https://pytorch.org/
4https://github.com/huggingface
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768. The VGG version is VGG165. We use Faster
R-CNN (Ren et al., 2015) for image initialization
and set the dimension of visual objects features at
4096. For hyper-parameters, the best coefficients
λd, λs, λc are 2, 2 and 3. The best δ is 0.4. See
Appendix B for more details on model training.

5.4 Main Results

To verify the effectiveness of our model, we report
the overall average results in Table 1.

From the table, we can observe that: 1) Our
model outperforms text-based RE models in terms
of four evaluation metrics, indicating the beneficial
impact of visual information on relation extraction
and the necessity of its integration. 2) Compared
to MMRE baselines, our model achieves the best
results. Specifically, our model improves at least
2.62% in F1 and 8.10% in Acc., respectively. These
results indicate that our method for incorporating
and utilizing visual information is superior and ef-
fective. 3) Compared to different encoders (e.g.,
BERT and GPT), the GPT and GPT-2 achieve bet-
ter results. It demonstrates that the generative en-
coder can integrate effective visual features more
effectively, which is more suitable for the task. For
the generative model, the performance is sensitive
to the order of input. Thus, we discuss the effect of
the order of text, image, and objects in Appendix C.

5.5 Discussion for Model Variants

For a further detailed evaluation of the components
of our framework, we performed ablation exper-
iments and reported the results in Table 2. E-P
means entity-oriented prefix and O-P means object-
oriented prefix. “↓” means the average decrease of
all four metrics compared to our model.

Discussions for core module. To investigate the
effectiveness of each module, we performed vari-
ant experiments, showcasing the results in Table 2.
From the table, we can observe that: 1) the im-
pact of the prefixes tends to be more significant.
We believe the reason is that the multiple prompts
characterize modality interactions, helping for pro-
viding more visual clues. 2) By removing each
module, respectively, the performance basically
decreased. Compared to joint objective modules,
the dual-gated fusion is significantly affected. It
demonstrates the effectiveness of knowledge fusion
introducing useful visual content and addressing

5https://github.com/machrisaa/tensorflow-vgg

Variants Acc. Prec. Recall F1 △ Avg

DGF-PT (Ours) 85.25 84.35 83.83 84.47 -

w/o All Prefixes 83.32 82.93 83.42 82.35 ↓ 1.47

w/o E-P 84.62 83.31 82.83 82.63 ↓ 1.13

w/o O-P 84.05 83.20 83.29 83.39 ↓ 0.99

w/o dual-gated fusion 84.24 83.56 82.74 83.26 ↓ 1.03

w/o joint objective 84.49 83.90 83.26 84.05 ↓ 0.55

repl. All Prefixes in S2 83.29 82.40 83.17 82.24 ↓ 1.70

repl. All Prefixes in S3 84.10 83.24 82.02 82.29 ↓ 1.56

repl. E-P in S2 84.28 83.20 82.41 83.93 ↓ 1.02

repl. E-P in S3 84.37 83.82 83.03 83.41 ↓ 0.82

repl. O-P in S2 84.12 83.71 83.15 83.84 ↓ 0.77

repl. O-P in S3 84.03 83.65 82.20 83.73 ↓ 1.07

repl. E-P in S2 & O-P in S3 84.09 83.43 82.81 84.15 ↓ 0.86

repl. E-P in S3 & O-P in S2 84.76 84.24 83.38 84.20 ↓ 0.33

Table 2: Variant experiments on different orders to in-
troduce the two prefixes. “w/o” means removing the
corresponding module from the complete model. “repl.”
means replacing the stage of introducing prefix.

noise visual data. All observations demonstrate the
effectiveness of each component in our model.

Discussions for the stage of prefix. We explore
the effects by introducing the prefixes at a different
stage in the encoder, as shown in Table 2. From the
table, we can observe that: 1) Compared to feed all
Prefixes in the S2, S3 stage, the S1 stage is more
effective. It demonstrates that early introducing
prefixes may integrate more helpful visual classifi-
cation information. 2) When the O-P is fixed, and
the E-P is fed into the S3 stage, the performance of
our model is the best compared to that introduced
in S2 stages. It demonstrates that the E-P is set
nearly to the text features helpful to introduce intra-
modal association. 3) When we fix the E-P, and
the O-P is introduced in the S2 stage, which is fed
nearly to objects, the performance achieves better
than S3. It demonstrates that the O-P is nearly to
object features, which can capture more useful lo-
cal information for relation classification. 4) When
we change the stage of the two prefixes, the perfor-
mance achieves better as the E-P in S3 and the O-P
in S2. All observations demonstrate that “E-P in
S1 & O-P in S1” is the best schema to introduce
intra-modal association and inter-modal relevance.

5.6 Discussions for Image Information

To further investigate the impact of images on all
the compared methods, we report the results by
deleting different proportions of images, as shown
in Figure 3. From the figure we can observe that:
1) On all metrics, the more proportion of images
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Figure 3: Different proportions of images.

were introduced, the better the model performed.
It demonstrates that more images provide more
meaningful information for relation classification
and utilize visual information more effectively. 2)
Compared to other methods, our model performs
best (except for HVPNet in introducing only 0%-
20% percentage image data). It demonstrates that
without visual information, our model is still more
capable to capture intra-modal associations for re-
lation classification. 3) Compared to the HVPNet
with an object-level prefix, our model performs
poorly with fewer visual data. The main reason is
that the prefix is outstanding in the few-shot situ-
ation and incorporating deeper correlations of our
model needs enough visual information compared
to the prefix-based method. Our model performs
better than HVPNet with the visual data increase.
Observations indicate that our model incorporates
visual features more effectively.

5.7 Discussions for Sample Number

We investigate the impact of the sample number of
different relations. To do so, we divide the dataset
into multiple blocks based on the sample number
of each relation and evaluate the performance by
varying the sample number of relations in [0, 1000]
compared with the outstanding baselines, as shown
in Figure 4. From the figure, we can observe that:
1) The increasing of sample number performance
improvements to all methods. The main reason is
that the smaller the sample number, the more diffi-
cult it is to distinguish the relation. 2) Our model
could also advance the baseline methods with the
decrease in sample number, demonstrating the su-
periority of our method in tackling the relation with
fewer samples. This phenomenon confirms the pre-
fixes are suitable for few-shot situations. All the
observations demonstrate that our method reduces
the impact of the sample number.
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Figure 4: Impact of differences in sample number.
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Figure 5: Case study of the same image and text with
different entity pairs. ✓/×: correct/wrong prediction.

5.8 Case Study

To illustrate our model can effectively identify use-
ful visual information, we provide an example in-
volving various entity pairs. As shown in Fig. 5,
the helpful information varies depending on the
entity pair. From the figure, we can observe that: 1)
Our model achieves superior performance across
different entity pairs, demonstrating its ability to
effectively extract useful visual information while
avoiding the negative influence of unhelpful infor-
mation on prediction. 2) When presented with the
entity pair of Vera and P.Wilson that contains lim-
ited useful visual information, our model remains
the best, while other baselines make incorrect pre-
dictions. These observations further demonstrate
the effectiveness of our model in leveraging visual
information while avoiding the negative influence
of unhelpful information on predictions.

6 Conclusion

We propose DGF-PT, a novel multi-modal relation
extraction framework, to capture deeper correla-
tions among entity pair, text, and image/objects
and integrate more helpful information for relation
extraction. Our framework effectively integrates
intra-modal and inter-modal features, distinguishes
helpful visual information, and restricts candidate
relations. Extensive experiments conducted on the
benchmark dataset show that our approach achieves
excellent performance.
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Limitations

Our work overcomes visual noise data that limit
extraction performance, incorporating multi-modal
knowledge of different levels. Empirical experi-
ments demonstrate that our method avoids noise
data misleading the MMRE model. However, there
are still some limitations of our approach can be
summarized as follows:

• Due to the limitation of the existing MMRE
datasets, we only experiment on two modalities
to explore the influence of image features. We
will study more modalities in future work.

• Our method neglects the multiple relations for an
input, which may not consider the multiple se-
mantics of entities. We leave the multiple relation
extraction method for future work.

Ethics Statement

In this work, we propose a new MMRE framework
that captures deeper correlations and fuses helpful
visual information to benchmark our architecture
with baseline architectures on the MNRE dataset.

Data Bias. Our framework is designed for multi-
modal relation extraction for Twitter data. How-
ever, when applied to data with vastly different
distributions or in new domains, the model’s per-
formance may be biased. The results reported in
the experiment section are based on specific bench-
mark datasets, which may be affected by these bi-
ases. Therefore, caution should be taken when
evaluating the generalizability and fairness.

Computing Cost/Emission. Our research, which
entails the utilization of large language models, ne-
cessitates a significant computational burden. We
recognize that this computational burden results in
a negative environmental impact in terms of carbon
emissions. Specifically, our work required a cu-
mulative 425 GPU hours of computation utilizing
Tesla V100 GPUs. The total emissions generated
by this computational process are estimated to be
47.18 kg of CO2 per run, with a total of two runs
being performed.
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A Oscar for Image Caption Generation

To generate the text description of the image for
multi-modal knowledge alignment without addi-
tional pre-training on multi-modal relation ex-
traction, we directly utilize the image captioning
method, generating a natural language description
of the content of an image. In this paper, we use
Oscar (Object-Semantics Aligned Pre-training) (Li
et al., 2020) to transfer the image into a text descrip-
tion for each image, which integrates multi-modal
alignment information of entities from a semantic
perspective.

Oscar uses object tags detected in images as
anchor points to significantly facilitate alignment
learning. Input samples are processed into triples
involving image region features, captions, and ob-
ject tags similar to the pre-training. It randomly
masks 15% of caption tokens and uses the corre-
sponding output representations to perform a classi-
fication to predict tokens. Similarly to VLP (Zhou
et al., 2020), the self-attention mask is constrained
so that a caption token can only attend to the tokens
before its position to simulate a uni-directional gen-
eration process. It eases the learning of semantic
alignments between images and texts on the public
corpus of 6.5 million text-image pairs, creating new
state-of-the-art on the image caption task. Thus, we
use Oscar to integrate useful images by transferring
them into textual descriptions.

B Hyper-parameter Settings

Our implementation is based on PyTorch6. All
experiments were carried out on a server with one
GPU (Tesla V100). For re-implementation, we
report our hyper-parameter settings on the dataset
in Table 3. Note that the hyper-parameter settings
are tuned in the validation data by grid search with
5 trials. The learning rate is 2e − 4, the batch
size is 100, and the dropout rate is 0.6. We use
AdamW (Loshchilov and Hutter, 2019) to optimize
the parameters. The maximum length of the text is
128 and the objects of each image are 10. For the
learning rate, we adopt the method of grid search
with a step size of 0.0001.

C Discussions for Input Order

Due to utilizing a generative encoder, where the
prefix, object, image, and text are input stage by
stage, thus the order affects the performance of

6https://pytorch.org/

Hyper-parameter MNRE dataset

word embedding dimension 768
image embedding dimension 4,096
dropout rate 0.6
batch size 100
training epoch 20
maximum length of text 128
learning rate 2e− 4
threshold λd 2
threshold λs 2
threshold λc 3
threshold δ 0.4

Table 3: Hyper-parameter settings of DGF-PT.

Variants Acc. (%) Prec. (%) Recall (%) F1 (%)

DGF-PT (Io → Ii → It) 85.25 84.35 83.83 84.47

Io → It → Ii 84.64 83.32 82.09 83.53

Ii → Io → It 84.92 83.17 82.24 84.85

Ii → It → Io 84.85 83.38 83.70 84.26

It → Io → Ii 83.01 82.96 82.61 82.73

It → Ii → Io 82.27 82.04 81.75 82.29

Table 4: Impact of the input order of the image Ii, ob-
jects Io, and text It.

the model. As shown in Table 4, we exploit the
best input order for multi-modal relation extraction.
From the figure, we can observe that: 1) Our model
is affected by the input order of text, image, and
objects. The reason we think that prompt-based
autoregressive encoder is a more efficient way to
integrate multi-grained information. 2) The best
input order is Io → Ii → It. Furthermore, when the
text It is input before others, the performance of
our model dramatically decreases. It demonstrates
that visual information is fed before textual infor-
mation usually integrating more helpful extraction
knowledge.
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