Fourier Transformer: Fast Long Range Modeling
by Removing Sequence Redundancy with FFT Operator

Ziwei He®, Meng Yang', Minwei Feng', Jingcheng Yin',
Xinbing Wang?®, Jingwen Leng® and Zhouhan Lin®*

¢Shanghai Jiao Tong University
{ziwei.he, xwang8, leng-jw } @sjtu.edu.cn

Abstract

The transformer model is known to be compu-
tationally demanding, and prohibitively costly
for long sequences, as the self-attention mod-
ule uses a quadratic time and space complex-
ity with respect to sequence length. Many
researchers have focused on designing new
forms of self-attention or introducing new pa-
rameters to overcome this limitation, however
a large portion of them prohibits the model
to inherit weights from large pretrained mod-
els. In this work, the transformer’s inefficiency
has been taken care of from another perspec-
tive. We propose Fourier Transformer, a sim-
ple yet effective approach by progressively re-
moving redundancies in hidden sequence us-
ing the ready-made Fast Fourier Transform
(FFT) operator to perform Discrete Cosine
Transformation (DCT). Fourier Transformer is
able to significantly reduce computational costs
while retain the ability to inherit from various
large pretrained models. Experiments show
that our model achieves state-of-the-art perfor-
mances among all transformer-based models
on the long-range modeling benchmark LRA
with significant improvement in both speed and
space. For generative seq-to-seq tasks includ-
ing CNN/DailyMail and ELIS5, by inheriting
the BART weights our model outperforms the
standard BART and other efficient models. !

1 Introduction

Transformers (Vaswani et al., 2017), especially
when equipped with large-scale pre-training (De-
vlin et al., 2018; Lewis et al., 2019; Raffel et al.,
2020) have become the core architecture in most
tasks in natural language processing (NLP), includ-
ing both encoder-only tasks such as sentence clas-
sification, sequence tagging (Liu et al., 2019), and
encoder-decoder tasks such as text summarization

*Zhouhan Lin is the corresponding author.
'Our code is publicly available at https://github.com/
LUMIA-Group/FourierTransformer

T Netease BizEase
*lin.zhouhan @ gmail.com

and question answering (Lewis et al., 2019). How-
ever, due to the quadratic complexity of its self-
attention module (Lin et al., 2017), applying these
models on long sequences can be prohibitively
costly. As a result, great efforts have been put into
developing various efficient Transformer variants
(Tay et al., 2020b), as well as establishing standard-
ized test-beds for long sequences such as the Long
Range Arena (LRA) (Tay et al., 2020a).

Most efficient Transformers devise special atten-
tion variants to lower its complexity (Tay et al.,
2020b). Some of them achieve this by project-
ing components in self-attention into its lower-
rank approximations (Wang et al., 2020; Zhu et al.,
2021; Winata et al., 2020, inter alia), or rely on
kernelization to implicitly compute the attention
matrix (Katharopoulos et al., 2020; Choromanski
et al., 2020b; Peng et al., 2021; Choromanski et al.,
2020a, inter alia).

Due to the introduction of projection matrices
or extra parameters, these models are not able to
inherit pre-trained model parameters. However,
since pre-trained large language models (LLMs)
have fundamentally influenced the NLP commu-
nity, deviating model architecture from LLMs re-
quires pre-training from scratch on the designed
model, which is prohibitively resource-demanding
for most practitioners.

Other approaches target at computing part of
the attention matrix, by following some predefined
patterns (Child et al., 2019; Qiu et al., 2020; Ho
etal., 2019, inter alia). Some of them allow the pat-
tern to be learnable (Sukhbaatar et al., 2019; Roy
et al., 2021, inter alia). Most of the patterns require
customized CUDA kernels or special operators
to achieve the claimed speedup (Wu et al., 2019;
Child et al., 2019; Beltagy et al., 2020), which
casts extra challenge in deploying these models on
edge devices or special hardware such as TPUs.
Moreover, some of the approaches involve con-
siderable additional computation steps, which in

8954

Findings of the Association for Computational Linguistics: ACL 2023, pages 8954—-8966
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/LUMIA-Group/FourierTransformer
https://github.com/LUMIA-Group/FourierTransformer

practice could counterweight the time and memory
complexity they reduce, especially for short and
medium-length sequences (Kitaev et al., 2020; Roy
etal., 2021).

One core factor behind various approaches is
the existence of redundancy in attention matrices
and hidden states. For example, Wang et al. (2020)
provides spectrum analysis on the self-attention ma-
trix, indicating that the attention matrix learns to be
low-rank, which allows them to learn a low-rank
approximation of the attention matrix. Inspired by
this line of research, in this work, we analyze the
power spectrum of the hidden states in the time di-
mension through different layers in Fig 1, and show
that the power spectrum increasingly concentrates
on lower frequency bins as the layer gets deeper.

In this work, we propose Fourier Transformer,
which doesn’t even require to learn the projection
matrix in order to approximate the self-attention.
Fourier Transformer leverages our observation on
power spectra of hidden states, it progressively re-
moves sequence redundancies through different
layers by downsampling hidden states with the Dis-
crete Cosine Transform (DCT), a variant of Fourier
transform that generates real values.

The DCT in our proposed Fourier Transformer
can be implemented with the Fast Fourier Trans-
form (FFT) operator. Thanks to its profound ap-
plication in image compression and signal process-
ing, it is one of the most widely available and
highly optimized operators in a wide variety of
frameworks and even on edge devices, providing
O(nlogn) complexity and up to O(logn) in par-
allel implementations with negligible overhead. As
a result, Fourier Transformer is easily deployable
on a wide range of devices, not necessary to de-
vise special CUDA kernels. In addition, experi-
mental results on LRA tasks show that it performs
significantly faster than many other efficient Trans-
formers, while achieving the state-of-the-art perfor-
mance among Transformer-based efficient models.

On the other hand, since DCT is a linear, re-
versible transformation, and the self-attention is not
interfered in our model, the proposed Fourier Trans-
former can inherit pretrained weights from large
language models without hurting performance. Ex-
perimental results on CNN-DailyMail (Hermann
et al., 2015) and ELI5 (Fan et al., 2019¢) show that
our model could outperform BART (Lewis et al.,
2019) and other efficient Transformers by inherit-
ing and fine-tuning on BART. Moreover, with tiny

amount of further pretraining before fine-tuning,
its performance could be further improved.

2 Related Work

Downsampling hidden states There are not
many work that downsample sequence length for
natural language. The closest work is Funnel Trans-
former (Dai et al., 2020), which progressively re-
duces the query sequence length through strided
mean pooling, while keeping key and value se-
quence lengths intact. Fourier Transformer com-
presses the three sequences altogether and delivers
more computational speedup compared with Fun-
nel Transformer. Note that Funnel Transformer
needs to re-invest the saved computations to build a
larger model to achieve better performance, which
disables its ability to inherit pretrained weights.
For other work, Charformer (Tay et al., 2021b)
devises a differentiable tokenization module that
also relies on strided mean pooling to downsample
its byte sequence. Nystromformer (Xiong et al.,
2021) approximates the attention matrix through
the Nystrom method, which effectively downsam-
ples query and key sequences. Due to the extra
depth-wise convolution, it is again not able to lever-
age pretrained models.

In a border view, downsampling has been more
favorable in computer vision. (Chen et al., 2020)
aggressively downsamples the raw input to a 1D
vector. Perceiver (Jaegle et al., 2021) adopts an
asymmetric attention mechanism to distill inputs
into a tight latent bottleneck. Almost all of these
vision models are designed for encoder-only vision
tasks rather than encoder-decoder-style NLP tasks.

Fourier transform for Transformer There are
multiple recent works that incorporate Fourier
transform into Transformer. FNet (Lee-Thorp et al.,
2021) takes a more radical approach by replacing
the entire self-attention with 2D FFT, discarding
the entire imaginary part to avoid complex numbers.
Performer (Choromanski et al., 2020a) introduced
orthogonal random Fourier features to approximate
the softmax attention. FSAT (Zhuang et al., 2022)
uses 1D FFT along the sequence dimension to
learn the sparse structure of attention matrix. DCT-
Former (Scribano et al., 2022) translates sequences
into frequency domain and conducts self-attention
there before projecting them back, due to the non-
linearity in the network, self-attention trained in the
frequency domain significantly deviates from that
in the time domain. Therefore, all the models dis-

8955

layer 0 (word embedding) layer 4 layer 5

0.8 0.8
0.6 06 0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4 0.4 0.4
0.2 02 0.2 0.2 0.2 0.2

0.0
50 100 150 200 250 0

layer 1 layer 2 layer 3

0.0 0.0 0.0
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

layer 10 layer 11

08
0.6
0.4

0.0
50 100 150 200 250 0

layer 8 layer 9

0.8
0.6
0.4

0
50 100 150 200 250 0

layer 6 layer 7

0.0 0 0.0
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Figure 1: The power spectrum of input hidden states from different layers in the pretrained RoBERTa (Liu et al.,
2019) model. The horizontal axes stand for frequency bins, starting from low frequency components on the left.
The vertical axes are the corresponding amplitudes. Amplitudes are averaged over all hidden dimensions and over
the entire validation set of Wiki-103 (Merity et al., 2016). Since the inputs are real numbers, the positive and
negative frequency components are pairwise conjugate. Thus we only plot the amplitude of the positive half of the

frequencies.

cussed above lose the ability to inherit pretrained
weights as well.

3 Preliminaries

3.1 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) expresses
a sequence of real numbers in terms of a sum of
cosine functions with different frequencies. Since
DCT only yields real values, it is a substitution
for Fourier transform in the field of real numbers.
It has been the core transform behind the JPEG 2
lossy image compression format.

Formally, for a sequence of N real numbers
{zn} = {x0o, z1,...xn—1}, DCT transforms it into
frequency domain through?:

mk(2n + 1)
yk—akancos< N) (1)

where k € {0,..., N
related to k:

— 1} and o, is an coefficient

%+ if k=0,

/2

N

The original sequence {z,} can be recovered
with the inverse DCT (IDCT):

N—1

7k(2n +1

Ty = Q Z YR COS ((2]\[)) 3)
k=0

2

o =
otherwise

which we’ll note as {x,,} = IDCT ({yx})-

*https://jpeg.org/jpeg/
3There are several slightly different variants of DCT. Here
we use the most common type-II variant in this paper.

Practically, DCT can be computed by using the
FFT operator. First, let {u,,} be the shuffled {x,, }
by interleaving its values on even and odd positions.
Formally, when NV is an odd integer, {u,, } is given
by

{L'l}

)
When N is even, a similar shuffling applies. We
then transform {u,} into its frequency domain
through FFT:

{un} = {xo, 2, .., N1, TN=2, TN—4; ...,

{ve} = FFT({un}) (5)
where k € {0,..., N — 1} and {v.} is a sequence
of length N. The DCT of the original sequence
{xy} can thus be computed from {vy }:

Y = COS (;r]]ff) Re (vg) — sin <;r]]\€[> Jm (vg)
(6)

where Qe (-) and Jm (-) stand for the real and imag-
inary part, respectively.

3.2 The Power Spectrum of Transformer
Hidden States

The power spectrum of a discrete sequence de-
scribes the distribution of signal power w.r.t. fre-
quency components, which is the amplitudes of
frequency components yielded by the Fourier trans-
form. For a certain layer in Transformer, its hid-
den states can be considered as a sequence of hid-
den vectors, along the time dimension. To analyze
the power spectrum of the layer, we conduct 1D
Fourier transform independently along the time

8956

hy
[TTT]
Block 3

IDCT =

P." Spectral Filter

Truncate

R

Block 2

Block 1

Class
SR Probabilities]

Figure 2: Overall Model Architecture

dimension for the hidden vectors, calculate the cor-
responding amplitudes, and avreage over all di-
mensions in that layer. In addition, we calculate
the mean spectrum over many text sequences to
eliminate example-wise noise.

Figure 1 shows the power spectra for different
layers in the pre-trained RoBERTa-base (Liu et al.,
2019) model. The up-left subfigure shows that the
power spectrum of word embeddings is relatively
flat, distributing its energy almost uniformly on all
frequency components with several spikes in low
frequencies. As the layer gets deeper, the energy
starts to concentrate toward low frequencies and
the spikes start to smooth out, leaving a long tail
on the high-frequency side. This trend indicates
that the hidden states in deeper layers are more
locally correlated, which leaves space for Fourier
transform to squeeze out the redundancies.

4 Fourier Transformer

4.1 Model Architecture

The overall architecture of the Fourier Transformer
is depicted in Figure 2. In general, we insert spec-
tral filters between layers in Transformer, inside
which we use DCT and IDCT to downsample se-
quence lengths. Multiple spectral filters can work
together to split Transformer layers into different
blocks, thus progressively reduce sequence lengths.
We leave the self-attention intact in order to retain
its ability to inherit pretrained weights.

As for the spectral filter, it consists of three steps,
i.e., transform, truncate, and reverse. Formally, for
an incoming hidden sequence {h,},0 <n < N —
1 that contains N hidden vectors h,, € RP where
D is the hidden size of the model, the spectral filter

first transforms it into frequency domain through
1D-DCT:

{yi} = DCT({hn}),

Note that the DCT is independently applied on all
dimension in {h,}, therefore only transforming
along the time dimension.

Next, {y,} is truncated by chopping off the
trailing dimensions on the high frequency side.
For sequences of different lengths, we fix a ratio
r € (0,1), which is a hyperparameter, to deter-
mine the number of frequency components to re-
tain. Thus the length of {y, } is truncated from N
into [rN7.

Finally, the resulting shorter sequence {y},0 <
k < [rN] — 1 can be transformed back to time
domain through IDCT, yielding a shorter sequence
of {h,}:

{hu} = IDCT({y,}),

O<k<N-1 ()

0<n<[rN]—-1
)

Again, IDCT is also conducted in the time dimen-
sion only. The resulting shorter hidden states are
passed towards upper layers.

Depending on the type of tasks, the subsequent
parts differs. We’ll elaborate them in encoder-only
and encoder-decoder settings.

Encoder-Only Setting For encoder-only tasks
such as text classification, the final output of the

*we’ve played with various ways of truncation here, such
as cutting off the low-frequency components, cutting off the
ones with lower mean amplitudes, removing the DC compo-
nents and re-normalize the sequence, subtracting a common
value on all components and re-normalize, or retaining the
components corresponding to the spikes. Interestingly, the
rather classical way of simply chopping off high frequency
ones turns out to work the best.

8957

encoder is expected to be a fixed-size vector, which
is then fed into logistic regression for class proba-
bility predictions. In this work, while the model is
trained from scratch, we simply use a mean pooling
over the whole output sequence to yield this vector;
otherwise when the model inherits a [CLS] token
from pretrained models, we use the embedding at
that token instead.

Encoder-Decoder Setting For language gener-
ation tasks that involve both an encoder and a de-
coder, there is an encoder-decoder attention that
attends to the encoder states at each decoder step.
However, the encoder-decoder attention requires
fine-grained positional resolution in order to work
well. As a result we follow Dai et al. (2020) to up-
sample the shorter sequences back to their original
length, and add the upsampled hidden sequences
at all blocks together before feeding them to the
decoder. More specifically, we use the parameter-
free nearest neighbor interpolation for upsampling,
and we re-normalize the sequence after adding the
upsampled sequences.

4.2 Further Pretraining

Since the DCT is reversible through IDCT, the pro-
posed model seamlessly approximates the vanilla
Transformer as r goes up. Figure 3 shows that
while fine-tuning directly on BART (Lewis et al.,
2019) weights, the model performs comparatively
well when up to 70% frequency components are
truncated. Nevertheless, since the upsampling and
addition of upsampled sequences still differs from
the original Transformer, we can still squeeze the
last drop out by applying a tiny amount of further
pretraining before fine-tuning, and further improve
the model performance. This type of further pre-
training is much more favourable than a customized
pretraining from scratch, which could take massive
amount of computation resources.

As a concrete example, further pretraining our
model on BART-Large consumes around 10GB
of data and takes around 4 days on 2 NVidia
A100 GPUs, while pretraining BART from scratch
needs to consume 160GB data, taking roughly
1000 days with the same devices. Compared to
a customized pre-training from scratch, leverag-
ing BART weights and further pretraining takes 2
magnitudes less computation resources, while still
able to bring the model to similar or even better
performance.

4.3 Complexity Analysis

For a standard Transformer layer with model di-
mension D, which consists of self-attention and
2 feed-forward layers, the time and memory com-
plexity of processing an input sequence with length
N is O(N?D + ND?) and O(N? + ND), re-
spectively. With FFT operator our model could
compress the sequence length from N to [rN]
within O(N log N) time complexity. Hence the
Fourier Transformer enjoys time and memory com-
plexity of O(r*N2D + rND? + Nlog N) and
O(r?N? + rN D) every time the sequence length
is reduced. Actually, given the parallel implementa-
tion of FFT, the additional O(N log N) time com-
plexity term is negligible compared to the other two
terms. The speedup could get even more impres-
sive when the sequence length is relatively long.
We refer the readers to Section 5.1 for more details.

S Experiments

In this section, we experiment with our model in
both of the two encoder-only and encoder-decoder
settings in various datasets that involves long se-
quences.

5.1 Encoder-only Tasks

To test our model’s ability on encoder-only tasks,
we choose the 5 tasks in the widely-used Long
Range Arena (LRA) benchmark (Tay et al., 2020a).
LRA is designed for evaluating efficient transform-
ers under long-context scenario, with the input
sequence lengths ranging from 1K to 8K. The
datasets in LRA come from rich sources, including
natural languages, image pixels, math expressions
etc. More specifically, they are:

ListOps A dataset of math expressions that asks
the model to calculate the output value of a math
expression with sequence lengths up to 2K.

Text A byte-level text classification task, with a
fixed sequence length 4K which requires the model
to deal with compositionality.

Retrieval A byte-level document retrieval task
with a maximum length of 8K which test the
model’s ability to compress long sequences.

Image An image classification task of which re-
quires the model to learn the 2D spatial relations
between input pixels by sequentially reading the
pixels. The sequence length is fixed to 1K.

8958

Models ListOps Text Retrieval Image Pathfinder | Avg.
Transformer (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 54.39
Longformer (Beltagy et al., 2020) 3563 62.85 56.89 42.22 69.71 53.46
Linformer (Wang et al., 2020) 35770 53.94 52.27 38.56 76.34 51.36
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 50.67
Synthesizer (Tay et al., 2021a) 36.99 61.68 54.67 41.61 69.45 52.88
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 55.01
Performer (Choromanski et al., 2020a) 18.01 65.40 53.82 42.77 77.50 51.41
FNet (Lee-Thorp et al., 2021) 3555 65.11 59.61 38.67 77.80 55.30
Nystrom (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 58.95
Luna-256 (Ma et al., 2021) 37.25 64.57 79.29 47.38 77.32 61.24
FSAT (Zhuang et al., 2022) 46.85 65.95 81.11 49.97 77.32 64.24
Fourier Transformer (ours) 40.73 75.02 85.35 53.17 83.43 67.54

Table 1: The results on LRA benchmark. We report classification accuracy for each task and average accuracy
across all tasks. Results from Longformer to Performer are from Tay et al. (2020a), the rest are fetched from their
respective papers. For FSAT model on Text task, we only consider the result without convolutions.

‘ Steps per second ‘ Peak Memory Usage |

Model | IK 2K 3K 4K | IK 2K 3K 4K

Transformer 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x
Reformer 0.5x 04x 0.7x 0.8x | 0.56x 0.37x 0.28x 0.24x
BigBird 09x 0.8x 12x 1I.Ix | 091x 056x 04x 0.3x
Synthesizer I.Ix 12x 29x 14x | 0.76x 0.75x 0.74x 0.74x
FSAT 1.1Ix 1.5x 2X 2.5x | 0.53x 0.27x 0.21x 0.16x
Linformer 1.2x 19x 3.7x 5.5x | 044x 0.21x 0.18x 0.1x
Performer 1.2x 19x 38x 5.7x | 044x 0.22x 0.15x 0.11x
Fourier Transformer (ours) ‘ 69x 12.2x 16.8x 17.7x ‘ 0.23x 0.19x 0.18x 0.18x

Table 2: The speed and memory consumption on LRA benchmark over Text task with input lengths of 1K, 2K, 3K
and 4K. The results from Reformer to Performer are from Zhuang et al. (2022). The speed and memory consumption

are listed as the rate w.r.t. the vanilla Transformer.

Pathfinder An synthetic image classification
task with a fixed input length of 1K which requires
the model to capture long-range spatial dependen-
cies.

5.1.1 Implementation Details

We run experiments on the LRA benchmark closely
following the configurations in (Tay et al., 2020a),
including data pre-processing, data split, model
architecture, hyperparameters (number of layers,
hidden dimensions, etc.). We evaluate in terms
of classification accuracy. Our implementation is
based on (Xiong et al., 2021). For the sake of
simplicity, we report the results of our model over
the five tasks with the same compression budget.
We aggressively reduce 80% of the input sequence

length at the first layer.

5.1.2 Performance & Efficiency

The results on the aforementioned 5 tasks are
summarized in Table 1. We compare Fourier
Transformer with a bunch of previously published
Transformer-based models, and it achieves new
state-of-the-art results on four out of the five tasks.
Our proposed model improves over the previous
SOTA model (Zhuang et al., 2022) on Text, Re-
trieval, Image and Pathfinder by 9.07%, 4.24%,
3.20%, 6.11% absolute value respectively, which
is a big margin. Notably, our model doesn’t beat
FSAT (Zhuang et al., 2022) on the ListOps task
and ranks the 2nd in the list. We conjecture that it’s
because math expression values are more sensitive

8959

to individual tokens in the sequence, thus is more
sensitive to downsampling.

Next, taking the byte-level text classification task
(the Text dataset) as a testbed, we quantitatively
evaluate the time and memory efficiency of our
model and the other competing models on various
input lengths. The results are summarized in Table
2. Note that, due to the limitation of GPU memory
for the vanilla Transformer, results on 1K, 2K and
3K lengths are run with a batch size of 32, and
4K are with a batch size of 16. We calculate the
corresponding rates of our model w.r.t. vanilla
Transformer on identical batch settings, and timed
on an NVidia A100-80G GPU. Compared with
other efficient transformers, Fourier Transformer
significantly reduces time consumption on both
short and long sequences, leaving the other model
behind by a large margin, while keeping a steady
memory savings as the sequence length grows.

5.2 Encoder-Decoder Tasks

The model for encoder-decoder tasks are equipped
with a decoder to perform text generation. For
this setting, we choose two long-text datasets in
summarization and question answering tasks, i.e.,
CNN/DailyMail (Hermann et al., 2015) and ELI5
(Fan et al., 2019c¢), with average sequence lengths
at 0.8K and 5K, respectively.

CNN/DailyMail A summarization dataset con-
taining over 280K news articles (766 token counts
on average) from news stories in CNN and Daily
Mail websites paired with human-generated sum-
maries (53 token counts on average). We follow
the conversion and evaluate the performance in
terms of Rouge scores (Rouge-1, Rouge-2, Rouge-
L) (Lin, 2004).

ELIS A question answering dataset containing
over 270K complex, diverse and paragraph-length
question-answer pairs gathered from subreddits,
the average number of tokens for input and target
are 5140 and 693 respectively. Following the con-
version, we evaluate it in both Rouge-L and F1
scores.

5.2.1 Implementation Details

Since on both the two datasets pretrained mod-
els leave a large gap over non-pretrained ones, it
makes less sense to report results without pretrain-
ing. Thus, we report results of our model inheriting
BART-large (Lewis et al., 2019) weights. We gener-
ally test two settings, which is: 1) directly fine-tune

our model on the dataset, and 2) conduct further
pretraining before fine-tuning. For convenience,
we call them Fourier-BART and Fourier-BART-FP
respectively in the rest of the paper.

Fourier-BART has the same architecture as
BART-large. It simply adopts a 2-block design,
the first block contains the first 2 consecutive trans-
former layers, the rest 10 layers belong to the sec-
ond block. For CNN/DailyMail, 50% of the fre-
quency components are truncated, while for ELIS
70% are truncated since it has much longer se-
quence lengths.

Fourier-BART-FP has the same setting as
Fourier-BART, except that before fine-tuning on
downstream tasks it is further pretrained for 1
epoch on 10GB of text with the original BART
pretraining objectives. The text is randomly sliced
from the Pile (Gao et al., 2020) corpus.

5.2.2 Performance & Efficiency

CNN/DailyMail On summarization task, inside
the scope of efficient models, we compare our
model with BigBird (Zaheer et al., 2020), ST-MoE
(Zoph et al., 2022) and Switch Transformer (Fedus
etal., 2021), which are strong baselines from recent
literature. Both ST-MoE and Switch Transformer
targeted at activating only part of the parameters
to improve the efficiency. Bigbird approximates
full attention matrix with a sparse one to improve
on FLOPs. In addition, we put the standard BART
(Lewis et al., 2019) performance as baseline.

The results are listed in Table 3. Our proposed
Fourier-BART successively leverages the advan-
tage of BART, achieving a performance at the level
of pretrained model. With the tiny amount of fur-
ther pretraining, it achieves the best performance
among all competitors. Note that Fourier-BART
is built upon BART and sharing the same model
size with BART-400M with much less computa-
tion, however it is able to outperform the standard
BART-400M with a sensible margin.

As for efficiency, it is almost impossible to repro-
duce all the models listed in Table 3 and investigate
their efficiency, so we choose to only evaluate the
standard BART-400M and proposed Fourier-BART-
400M in terms of FLOPs. As elaborated in Section
5.2.1, we remove 50% from the hidden sequence
on the third transformer layer, although the two
models have the exact same size, the FLOPs in-
vested in the standard BART-400M is 1.6 times of
Fourier-BART-400M. Due to the upsampling and
the auto-regressive decoding, the overall reduction

8960

Model R-1 R-2 R-L
BART-400M 44.16 21.28 40.90
ST-MOE-L-770M - 20.7 -
Switch Trans.-223M - 19.6 -
BigBird-Large 43.84 21.11 40.74
Fourier-BART-400M 44,65 21.48 41.30
Fourier-BART-FP-400M 44.76 21.55 41.34

Table 3: Rouge scores on CNN/DailyMail. The results
are all fetched from their respective papers. The R-1
and R-L of ST-MOE and Switch Transformer are not
reported in their paper. The number after model name
denotes the model size. The model size for BigBird is
not mentioned in their paper unfortunately.

Model RL F1
LayerDrop-240M 234 -
E-MCA-240M 24.0 -
c-REALM*-596M 232 229
EMAT*-446M 2091 19.03
KID*-406M 26.3 -
BART-large-400M 26.8 26.6
Fourier-BART-400M 26.2 25098
Fourier-BART-FP-400M 26.9 26.73

Table 4: Model performance on ELIS. The results from
E-MCA to KID are fetched from their respective papers.
* denotes results using the Kilt benchmark (Petroni et al.,
2020), which has smaller dev and test sets.

in computation is not as significant as those on
LRA.

ELIS On question answering task, we compare
our model with the LayerDrop (Fan et al., 2019b),
E-MCA (Fan et al., 2019a), c-REALMS (Krishna
et al., 2021), EMAT (Wu et al., 2022) and KID
(Liu et al., 2022). To provide a fair comparison, the
result of BART-large is our reproduced one on the
bleeding-edge version of fairseq (Ott et al., 2019),
which is much higher than the results reported in
the original BART paper. Note that here we are
even comparing with performance-sensitive mod-
els, as in the list only EMAT and LayerDrop are
focusing on reducing complexity. As shown in Ta-
ble 4, our Fourier-BART-FP has surpassed all the
competing models on both Rouge-L and F1 scores.

As for efficiency, when removing 70% of the fre-
quency components (elaborated in Section 5.2.1),
the FLOPs invested in the standard BART is 1.9
times of Fourier-BART.

— RL
26.5 =

10% 30% 50% 70% 90%
Retaining Ratio

100%

Figure 3: R1, R2, RL and F1 on ELIS. x-axis stands for
the retraning ratio r.

5.3 Analysis on Retaining Ratio r

An important question that arises is how sensitive
the model is w.r.t. the ratio of retaining frequency
components. To investigate this, we experiment
our model in ELIS dataset. by sweeping r from 0.1
to 1. We didn’t conduct further pretraining on each
setting due to computation limit. Results are shown
in Fig 3. The performance remains pretty good up
until less than 30% of frequency components are
retained. When we try to truncate more compo-
nents passing that ratio, the performance starts to
drop significantly. This is a fairly satisfying result
that shows the model performs reliably stable in a
wide range of reasonable r’s.

6 Conclusion

In this work, we introduce the discrete cosine trans-
formation to progressively downsample the hidden
states in the Transformer model by leveraging the
local correlations between hidden states in upper
layers. Our approach is able to significantly re-
duce the computation required by the vanilla Trans-
former, while being able to achieve even better
performance in various tasks. Moreover, it is able
to inherit the pretrained model weights, which is an
notable advantage over most efficient Transform-
ers.

7 Limitations

Although our approach exhibits great speedups in
encoder-only settings, it doesn’t yield as impressive
speedups in encoder-decoder setting. This is due
to the autoregresive decoding steps in the decoder,
that has to be conducted sequentially. Accelerat-
ing that with DCT requires to incrementally update
DCT outputs step by step based on outputs of pre-

8961

vious timesteps, which is theoretically possible but
not easy to optimize its efficiency. We plan to fur-
ther accelerate it in this direction in future work.

Acknowledgement

This work was sponsored by the National Natural
Science Foundation of China (NSFC) grant (No.
62106143), and Shanghai Pujiang Program (No.
21PJ1405700).

References

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever. 2020.
Generative pretraining from pixels. In International
conference on machine learning, pages 1691-1703.
PMLR.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, David Belanger, Lucy
Colwell, et al. 2020a. Masked language modeling
for proteins via linearly scalable long-context trans-
formers. arXiv preprint arXiv:2006.03555.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020b. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. Ad-
vances in neural information processing systems,
33:4271-4282.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2019a. Using local knowledge graph con-
struction to scale seq2seq models to multi-document
inputs. arXiv preprint arXiv:1910.08435.

Angela Fan, Edouard Grave, and Armand Joulin. 2019b.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019¢. ELIS5:
long form question answering. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
3558-3567. Association for Computational Linguis-
tics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn,
and Tim Salimans. 2019. Axial attention in
multidimensional transformers. arXiv preprint
arXiv:1912.12180.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira. 2021.
Perceiver: General perception with iterative atten-
tion. In International conference on machine learn-
ing, pages 4651-4664. PMLR.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International Conference on Machine
Learning, pages 5156-5165. PMLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
Hurdles to progress in long-form question answering.
arXiv preprint arXiv:2103.06332.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

8962

https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/p19-1346

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Ruibo Liu, Guoging Zheng, Shashank Gupta, Rad-
hika Gaonkar, Chongyang Gao, Soroush Vosoughi,
Milad Shokouhi, and Ahmed Hassan Awadallah.
2022. Knowledge infused decoding. arXiv preprint
arXiv:2204.03084.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.
Luna: Linear unified nested attention. Advances
in Neural Information Processing Systems, 34:2441—
2453.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A Smith, and Lingpeng Kong.
2021. Random feature attention. arXiv preprint
arXiv:2103.02143.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Mail-
lard, et al. 2020. Kilt: a benchmark for knowl-
edge intensive language tasks. arXiv preprint
arXiv:2009.02252.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2555-2565.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1-67.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of

the Association for Computational Linguistics, 9:53—
68.

Carmelo Scribano, Giorgia Franchini, Marco Prato,
and Marko Bertogna. 2022. Dct-former: Efficient
self-attention withdiscrete cosine transform. arXiv
preprint arXiv:2203.01178.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 331-335.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2021a. Synthesizer: Re-
thinking self-attention for transformer models. In

International conference on machine learning, pages
10183-10192. PMLR.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2020a. Long
range arena: A benchmark for efficient transformers.
arXiv preprint arXiv:2011.04006.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient transformers: A survey.
ACM Computing Surveys (CSUR).

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2021b. Charformer: Fast character transformers via
gradient-based subword tokenization. arXiv preprint
arXiv:2106.12672.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang
Lin, Zihan Liu, and Pascale Fung. 2020. Lightweight
and efficient end-to-end speech recognition us-
ing low-rank transformer. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6144-6148.
IEEE.

Felix Wu, Angela Fan, Alexei Baevski, Yann N
Dauphin, and Michael Auli. 2019. Pay less attention
with lightweight and dynamic convolutions. arXiv
preprint arXiv:1901.10430.

Yuxiang Wu, Yu Zhao, Baotian Hu, Pasquale Min-
ervini, Pontus Stenetorp, and Sebastian Riedel.
2022. An efficient memory-augmented transformer
for knowledge-intensive nlp tasks. arXiv preprint
arXiv:2210.16773.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
2021. Nystromformer: A nystrom-based algorithm
for approximating self-attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14138-14148.

8963

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283—-17297.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad
Shoeybi, Tom Goldstein, Anima Anandkumar, and
Bryan Catanzaro. 2021. Long-short transformer: Ef-
ficient transformers for language and vision. Ad-
vances in Neural Information Processing Systems,

34:17723-17736.

Yimeng Zhuang, Jing Zhang, and Mei Tu. 2022. Long-
range sequence modeling with predictable sparse at-
tention. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 234-243.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022. Designing effective sparse expert mod-
els. arXiv preprint arXiv:2202.08906.

8964

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
7

[0 A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B Did you use or create scientific artifacts?
Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

0J B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C ¥ Dpid you run computational experiments?
5

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

8965

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found

hyperparameter values?
5

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

5

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

5

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

8966

