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Abstract

Speech or text representation generated by
pre-trained models contains modal-specific in-
formation that could be combined for bene-
fiting spoken language understanding (SLU)
tasks. In this work, we propose a novel pre-
training paradigm termed Continuous Integrate-
and-Fire Pre-Training (CIF-PT). It relies on a
simple but effective frame-to-token alignment:
continuous integrate-and-fire (CIF) to bridge
the representations between speech and text. It
jointly performs speech-to-text training and lan-
guage model distillation through CIF as the pre-
training (PT). Evaluated on SLU benchmark
SLURP dataset, CIF-PT outperforms the state-
of-the-art model by 1.94% of accuracy and
2.71% of SLU-F1 on the tasks of intent classifi-
cation and slot filling, respectively. We also ob-
serve the cross-modal representation extracted
by CIF-PT obtains better performance than
other neural interfaces for the tasks of SLU,
including the dominant speech representation
learned from self-supervised pre-training.

1 Introduction

Spoken language understanding (SLU) plays a key
role in speech interaction systems such as spoken
dialogue systems, voice assistants, automated call-
ing robots, etc. It focuses on extracting key infor-
mation and making predictions from audio signals
of human speech (Wang et al., 2005; Tur and Mori,
2011). Traditional methods decompose SLU into
two cascading tasks: automated speech recognition
(ASR) and natural language understanding (NLU),
where audio signals are first transcribed into texts,
and then processed by a text-based language un-
derstanding model. In the cascading scheme, the
errors of ASR module will be accumulated in the
NLU module and degrade the final performance.
Moreover, predicted text of ASR module may not
be the ideal interface for the language understand-
ing task. For example, acoustic information such

∗Equal contribution.

as intonation and pitch that may be helpful for
understanding tasks are lost after ASR. To tackle
the problems above, resent researches employ end-
to-end approaches for SLU (Serdyuk et al., 2018;
Haghani et al., 2018; Chung et al., 2021; Arora
et al., 2022), where the language understanding
is directly performed from audio signals without
explicitly utilizing predicted text of ASR.

For text-based language understanding tasks,
pre-trained language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019b) and
GPT (Radford et al., 2019) have achieved remark-
able success. These models utilize self-supervised
pre-training on large-scale unlabeled corpora to
learn contextual representations in token or sen-
tence level with rich syntactic and semantic knowl-
edge (Liu et al., 2019a), which significantly benefit
downstream tasks such as NLU during fine-tuning.
This self-supervised pre-training fashion has been
extended into the representative learning on speech.
Researches such as wav2vec (Baevski et al., 2020),
HuBERT (Hsu et al., 2021) and data2vec (Baevski
et al., 2022a) focus on learning better frame-level
contextual representations using unlabeled speech
data, to improve the performance of ASR as well
as other speech processing tasks. For end-to-end
SLU, these self-supervised speech models have
been proven to be powerful backbones on learning
semantic representations (Wang et al., 2021; Arora
et al., 2022).

The self-supervised pre-training methods for
speech mainly focus on leveraging speech data to
model acoustic information (Chung et al., 2021) on
the frame level, while pre-trained language models
work on higher token or sentence levels to encode
linguistic knowledge (Liu et al., 2019a). These
two kinds of representation could be combined for
better benefiting downstream tasks such as SLU.
The combination of speech and text representa-
tions can be performed by jointly pre-training on
data of the two modalites (Chuang et al., 2020),
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or distillating one pre-trained representations into
another (Kim et al., 2021). In either way the frame-
level speech representation needs to be aligned with
the token-level textual representation. Frame-to-
token alignment methods such as forced alignment
has been applied to speech-text joint pre-training
(Chuang et al., 2020). However, these alignment
methods mainly rely on external models or rules,
and can only generate hard alignment mapping that
can not be updated in end-to-end training. On the
other hand, aligning frames and tokens through
cross-attention (Arora et al., 2022; Zhu et al., 2022)
suffers from high complexity and lack of token
timestamps that synchronized to frames.

The frame-to-token alignment also plays a crit-
ical role in ASR systems. Various works, such
as Connectionist Temporal Classification (CTC)
(Graves et al., 2006), Listen, Attend and Spell
(LAS) (Chan et al., 2016), RNN Transducer (RNN-
T) (Graves, 2012) and Continuous Integrate-and-
Fire (CIF) (Dong and Xu, 2020), focus on bring-
ing effective alignment methods for better speech
recognition performance. Among these works, the
CIF alignment, which explicitly aggregates frame-
level speech representations into token-level, is
adopted in our work to combine with text repre-
sentation. Specifically, we propose a novel pre-
training paradigm: Continuous Integrate-and-Fire
Pre-Training (CIF-PT) for end-to-end SLU. Two
pre-training tasks are included in CIF-PT: the first
task is speech-to-text modeling (Wang et al., 2020)
with CIF alignment. In this work, ASR task that
transcribes speech to text is applied. The sec-
ond task is language model distillation (LMD).
Since the integrated speech representation by CIF
is at token-level, token-level distillation from a pre-
trained language model can be performed to inject
text-based linguistic knowledge into the representa-
tion. Through the joint pre-training of the two tasks,
CIF-PT is able to generate representations with in-
formation from both speech and text modalites.

We examine our CIF-PT methods in downstream
SLU tasks including intent classification and slot
filling. On SLU benchmark SLURP (Bastianelli
et al., 2020) dataset, the end-to-end SLU model
with CIF-PT outperforms the state-of-the-art model
by 1.94% of accuracy and 2.71% of SLU-F1 on the
tasks of intent classification and slot filling, respec-
tively. The cross-modal representation extracted
by CIF-PT also shows its competitiveness in com-
parison of other neural interfaces (Rao et al., 2020;

Raju et al., 2022) utilized in SLU. The obtained re-
sults and a series of experiments including ablation
study and the pre-training on out-of-domain data
demonstrate the effectiveness and generalization of
CIF-PT.

2 Related Works

End-to-End SLU Various works extend models
originally designed for ASR into the field of SLU.
Peng et al. (2022) propose Branchformer as an
alternative to Conformer (Gulati et al., 2020), and
show performance gains in SLU as well as ASR.
Huang et al. (2022) jointly train ASR and SLU
as multitasks to exploit shared knowledge from
different tasks. Seo et al. (2022) use the probability
distribution output of ASR model as continuous
token interface (CTI) for downstream NLU. Self-
supervised representative learning on speech data
provides powerful backbones such as wav2vec 2.0
(Baevski et al., 2020), HuBERT (Hsu et al., 2021)
for SLU. Arora et al. (2022) propose ESPnet-SLU
and analyze the performance of HuBERT encoder
pre-trained with ASR as feature extractor for SLU.
Wang et al. (2021) perform partial fine-tuning and
entire fine-tuning on pre-trained wav2vec 2.0 and
HuBERT on SLU tasks.

Cross-Modal Pre-training for SLU In order to
exploit information from speech and text for SLU,
jointly pre-training on both of speech and text
data has been proposed. SpeechBERT (Chuang
et al., 2020) extends the masked language model
(MLM) pre-training from BERT into the mixture
of audio and text data. In SPLAT (Chung et al.,
2021), a speech module and a language module are
jointly pre-trained with token-level and sentence-
level alignment. Another branch of researches
focus on knowledge distillation from pre-trained
language model into pre-trained speech encoder.
Kim et al. (2021) utilize BERT as a teacher to per-
form sentence-level knowledge distillation at the
pre-training stage and target-specific distillation
during fine-tuning. Zhu et al. (2022) introduce
cross-attention between text and speech and per-
form distillation on the attention heads for knowl-
edge transfering.

Frame-to-Token Alignment in SLU In Speech-
BERT (Chuang et al., 2020), forced alignment
based on external ASR engine is used to train the
initial phonetic-semantic joint embedding. Chung
et al. (2021) adopt a heuristic alignment approach

8895



in SPLAT, where alignment scores is computed
by the cosine similarity between the output em-
beddings of the pre-trained speech and text models.
The cross-attention alignment is introduced in (Zhu
et al., 2022) to capture the interactions between text
tokens and speech frames. For SpeechT5, since the
pre-training does not strictly rely on audio-text pair
data, (Ao et al., 2022) adopt shared codebook for
speech and text representation and a diversity loss
to encourage the alignment in latent space.

3 Method

In this section, we present the architecture of our
proposed continuous integrate-and-fire pre-training
(CIF-PT) method for SLU. As shown in Figure 1,
our end-to-end SLU models go through two stages:
CIF-PT and SLU training.

During CIF-PT, we employ two pre-training
tasks: ASR training with CIF alignment and token-
level language model distillation (LMD). These
two tasks help the model learn contextual represen-
tation of the speech features aligned to the tokens
with high level linguistic knowledge. After CIF-PT,
the pre-trained parameters including the speech en-
coder and CIF part are used for downstream SLU
tasks such as intent classification and slot filling.

3.1 ASR training with CIF Alignment

As shown in Figure 1(a), the structure of CIF-based
ASR model includes three parts: speech encoder,
CIF part, and the corresponding decoder. For an
input speech utterance, it is first processed into a
sequence of frames x = [x1, x2, · · · , xT ′ ] with
length T

′
via speech feature extractor (e.g. mel-

filter bank, convolutional front-end (Baevski et al.,
2020)), where xt is the feature vector of the t th
frame. The speech encoder converts the frame-level
input vector into frame-level hidden states:

h = [h1, h2, · · · , hT ] = enc([x1, x2, · · · , xT ′ ])

CIF part follows the speech encoder to con-
vert the frame-level hidden states h into token-
level speech representations c. We follow the
CIF setup from Dong and Xu (2020), which is
briefed as follows. At first, the encoded hidden
states h = [h1, h2, · · · , hT ] are fed into a weight
estimator module to calculate a series of weights
α = [α1, α2, · · · , αT ]. The weights α and the
frame-level hidden states h are input to CIF to ob-
tain c = [c1, c2, · · · , ci, · · · , cN ], where N is the

number of total tokens. Each token-level represen-
tation ci is a linear combination of frame-level rep-
resentations {ht}. At each frame step t, the weight
αt added to an accumulated weight αa

i ← αa
i +αt,

and the frame-level hidden state ht is integrated
into token-level representation ci ← ci + αtht, un-
til the accumulated weight αa

i exceeds a thresh-
old β. When αa

i exceeds β, the weight of the
boundary hidden state is divided into two parts
αt = αt1 + αt2, to ensure the accumulated weight
for each token is exactly β, and the second part
αt2 is accumulated to the next token representa-
tion. In such way, the frame-level hidden states are
integrated into token-level representation, which
not only reduces the redundancy of speech infor-
mation but also reduces computation complexity
when used for the subsequent ASR decoder and
downstream understanding tasks.

We use the autoregressive ASR decoder in (Dong
and Xu, 2020). It accepts previous token yi−1 and
the integrated ci from CIF part as inputs, and au-
toregressively predicts the token output distribu-
tion for each ci. The CIF-based encoder-decoder
model is trained with a cross entropy (CE) loss in
a teacher-forcing manner:

LCE =
N∑

i=1

log p(yi|y<i, ci).

Optionally, LCTC can be applied on the frame-level
hidden states h to be jointly trained. The quantity
loss LQUA is to supervise the CIF part to predict
the quantity of tokens closer the number of target
tokens:

LQUA =

∣∣∣∣
T∑

i=1

αi −N

∣∣∣∣.

The final CIF loss is the weighted sum of three:

LCIF = LCE + λ1LCTC + λ2LQUA. (1)

3.2 Language Model Distillation
Since the speech representation ci integrates speech
information into the token-level, we use a pre-
trained BERT model as a knowledge distillation
teacher to inject textual knowledge into speech
representation. Let x = {xi}Ti=1 be the speech
frame sequence and y = {yi}Ni=1 be the corre-
sponding transcript token sequence. As shown in
Figure 1, x is encoded into speech feature {ci}Ni=1

by the speech encoder and the CIF part. y is en-
coded by BERT into contextual representation vec-
tors {hti}Ni=1. Since {ci} are aligned to tokens, di-
rectly token-level knowledge distillation can be
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Figure 1: Architecture of our end-to-end SLU model with CIF-PT: (a) shows the procedure of CIF-PT including the
ASR task with CIF alignment and token-level language model distillation; (b) shows the model structure of SLU
decoder used for SLU training, including intent decoder and slot decoder for IC and SF, respectively.

performed to make the speech representation close
to the contextual representation brought by BERT,
thus forming a cross-modal representation.

We consider three types of language model
distillation (LMD) loss in our paper, MSE loss,
smoothed L1 loss and contrastive loss. Using
BERT hidden output hti as target, the MSE loss of
ci is LMSE

LMD(h
t
i, ci) = ∥hti − ci∥2. The smoothed L1

loss is proposed in (Baevski et al., 2022a), where
a γ is used to control the transition from a squared
loss to an L1 loss, i.e.

LSL1
LMD(h

t
i, ci) =

{
1
2(h

t
i − ci)

2/γ |hti − ci| ≤ γ

(|hti − ci| − 1
2γ) otherwise.

The contrastive loss encourage ci to be closer to hti
than other c′ sampled from an in-batch negative set
Nc.

Lcont
LMD(h

t
i, ci) =

exp[sim(hti, ci)/τ ]∑
c′∈Nc

exp[sim(hti, c
′)/τ ]

,

where sim(·, ·) is the cosine similarity function and
τ is the temperature scalar.

The LMD task is trained simultaneously with
CIF-based ASR training as multitasks, which forms
the training loss L of CIF-PT as follows:

L = LCIF + λLMLD. (2)

3.3 Spoken Language Understanding
After CIF-PT, the pre-trained speech encoder and
CIF part convert speech input into the sequence of
cross-modal representation {ci}, which is used for
downstream SLU training. We evaluate our pre-
trained model on SLU tasks of intent classification
and slot filling. The corresponding intent decoder
and slot decider are shown in Figure 1(b).

For intent classification, {ci}Ni=0 is fed into addi-
tional Transformer layers to generate task specific
decoder states. We use the average of decoder state
on all position as the utterance representation for
intent prediction through a linear projection.

The slot filling task is performed in a sequence
generation style. The slot types and slot values are
concatenated as targets {ysi } to train a sequence-to-
sequence model, i.e. “[SEP] slot_type1 slot_value1
[SEP] slot_type2 slot_value2”. The slot decoder
consists of Transformer decoder layers where the
sequence of ci is used as the key and value of
the cross-attention layer. We train the encoder-
decoder to generate slot target sequence {ysi }Ki=0

with teacher-forcing.

4 Experimental Setup

4.1 Dataset and Preprocessing
We conduct experiments on the dataset of SLURP
(Bastianelli et al., 2020), which is currently the
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largest SLU benchmark and is also linguistically
more diverse than other datasets. It is collected
for developing an in-home personal robot assis-
tant. The train, development and test sets split
in the SLURP paper are used for the training and
evaluation of our methods. In addition to use the
in-domain SLURP data for pre-training, we also
introduce the Librispeech (Panayotov et al., 2015)
dataset that contains 960 hours of speech derived
from audiobooks as the out-domain pre-training
dataset, which is only used in Section 5.4. All
speech data is re-sampled or kept at 16 kHz, and all
text data is converted into a sequence of subword
units by the subword-nmt (Sennrich et al., 2016)
toolkit 1. Specifically, we generate 10706 subword
units by performing 36000 merge operations on
the training set of Librispeech datasets, and use the
learned BPE as the only tokenizer for text of all
datasets.

4.2 Model Configuration

In this part, we detail the model structure and con-
figuration utilized in our experiments. All the mod-
els are implemented using (Paszke et al., 2019):

Encoder we use two types of speech encoder
which are denoted as conformer and data2vec in
subsequent experiments. For the encoder of con-
former, it consists of a two-layer convolutional
front-end and 15-layer conformer blocks (Li et al.,
2021). It applies a 8-time temporal down-sampling
similar to (Dong et al., 2019). The hidden size
in the conformer block uses 400. For the encoder
of data2vec, it follows the official data2vec-large
configuration (Baevski et al., 2022b) and uses the
released model 2 from (Wolf et al., 2020). For
the text encoder that provides text representation
in CIF-PT, we follow the BASE configuration of
BERT (Devlin et al., 2019) and use our learned
BPE tokenizer to perform pre-training on the En-
glish Wikipedia corpus.

CIF part we follow the implementation of
weight estimator and CIF calculator in (Dong and
Xu, 2020). The channel number in convolutional
layer keeps the same as the hidden size in decoder.
The threshold β during CIF calculation is set to
1.0. The corresponding scaling strategy and tail
handling methods are also used.

1https://github.com/rsennrich/subword-nmt
2https://huggingface.co/facebook/data2vec-audio-large

IC SF
(Acc.) (SLU-F1)

MTL-SLT (Huang et al., 2022) 83.10% 74.49%
Speech-Brain (Ravanelli et al., 2021) 85.34% 74.26%
ESPNET-SLU (Arora et al., 2022) 86.30% 71.90%
CTI (Seo et al., 2022) 86.92% 74.66%
Branchformer (Peng et al., 2022) 88.10% 77.70%
Hubert SLU (Wang et al., 2021) 89.38% 78.92%
CIF-PT (Conformer encoder) 89.60% 78.67%
CIF-PT (Data2vec encoder) 91.32% 81.63%

Table 1: Comparison with the published results on SLU
benchmark (SLURP), including two tasks: intent classi-
fication (IC) and slot filling (SF). Our CIF-PT method
uses the result of M0, M1 in Table 2, respectively. Both
are pre-trained and fine-tuned only on the SLURP.

Decoder we use three types of decoder in our ex-
periments, including the ASR decoder for speech-
to-text training in CIF-PT, the down-streaming in-
tent decoder for IC and slot decoder for SF. For
ASR decoder, it uses the original autoregressive
decoder (Dong and Xu, 2020) with 2-layer self-
attention networks (SANs, also known as trans-
former encoder layers (Vaswani et al., 2017)). The
hidden size is 400 when the encoder uses con-
former and 512 for data2vec. For intent decoder, it
uses 2-layer SANs and a following average pool-
ing layer . For slot decoder, it uses 4-layer SANs
for the tag-based slot decoder and uses 4-layer
transformer decoder layers (with additional cross-
attention layer) for the generation-based slot de-
coder. Without specific statement, the generation-
based slot decoder is used by default. The hidden
size keeps the same as ASR decoder for the two
types of SLU decoder.

4.3 Training and Evaluation
We use an AdamW (Loshchilov and Hutter, 2018)
optimizer with β1 = 0.9, β2 = 0.98 and weight
decay of 1e-5. During CIF pre-training, we warm
up the learning rate for the first 4% of updates to a
peak of 1e-3 and keep it constant in the later 64% of
updates, then linearly decay it to 1e-4. The number
of total training steps is 80k. We set the weight of
CTC loss λ1 = 0.5, and the weight of quantity loss
λ2 = 1.0. The hyper-parameter of LMD loss is
explored in section 5.2. During SLU training, we
follow the Noam scheduler (Vaswani et al., 2017)
with 1600 warm-up steps and peak learning rate of
5e-4. The number of total training steps is 32k.

After training, we first perform model average
on the last 10 checkpoints for all models and then
use the averaged model for evaluation. We follow
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(Model Id.) Method Speech Encoder Intent Classification Slot Filling
(Acc.) (SLU-F1)

M0 CIF-PT Conformer 89.60% 78.67%
M1 CIF-PT Data2vec 91.32% 81.63%

On the importance of CIF-PT
M2 M0 w/o any PT Conformer 86.43% (-3.17%) 72.51% (-6.16%)
M3 + triple steps Conformer 87.28% (-2.32%) 74.92% (-3.75%)
M4 + CTC-PT Conformer 86.41% (-3.19%) 75.87% (-2.80%)

On the importance of language model distillation (LMD)
M5 M0 w/o LMD Conformer 88.31% (-1.29%) 77.84% (-0.83%)
M6 M1 w/o LMD Data2vec 91.18% (-0.14%) 81.02% (-0.61%)

On the importance of CIF alignment (all w/o language model distillation)
M7 M3 w/o CIF Data2vec 90.36% (-0.96%) 79.29% (-2.34%)
M8 +CTC-PT Data2vec 90.63% (-0.69%) 80.31% (-1.32%)

Table 2: Ablation study on the proposed CIF-PT. For fair comparison, models in this table use the same structure of
SLU decoder. For M7 where CIF is ablated, it directly passes the frame-level outputs of speech encoder to the SLU
decoder. For M8, it follows the model structure of M7 but performs CTC Pre-Training (CTC-PT) on ASR tasks
before training on SLU. The model structure of M4 is similar to M8 except using conformer as its speech encoder.
All models are pre-trained and fine-tuned only on the SLURP data.

the metric of accuracy and SLU-F1 (Bastianelli
et al., 2020) to evaluate the models on task of IC
and SF, respectively. During the inference of SF
task, we perform beam search with beam width 10
and a temperature scalar of 1.25 . All experimental
results are averaged at least 2 runs.

5 Results and Analysis

5.1 Main Results

To verify the effectiveness of our proposed meth-
ods, we first conduct three sets of experiments to
explore the importance of designs in CIF-PT. The
main results are summarized in Table 2.

The first two rows of Table 2 show the perfor-
mance of our end-to-end SLU models using CIF-
PT. Consistent with our expectation, the model M1
with the self-supervised data2vec encoder obtains
better results than the model M0 with conformer
encoder on both tasks. We also compare the perfor-
mance of our methods with the published results.
As shown in Table 1, the model with CIF-PT (M1
in Table 2) achieves state-of-the-art result on both
of IC and SF tasks. The performance advantages
on the task of SF reaches 2.71% SLU-F1. We sus-
pect that the cross-modal representation extracted
by CIF-PT contains more language knowledge that
benefits more to SF, which needs to predict the
slot key and speech content simultaneously . It is
worthy to mention that the model M0 with con-
former encoer also achieves competitive perfor-
mance, which is even superior or comparable to the
published strong models (Wang et al., 2021; Seo

et al., 2022) with self-supervised speech encoder.
For the model of M2 in Table 2, we ablate CIF-

PT utilized in the model M0 and conduct a joint
training of ASR and SLU tasks from scratch. The
results show that ablating CIF-PT leads to a large
performance degradation on both SLU tasks. Since
CIF-PT consumes extra pre-training steps, we sus-
pect the total training step maybe a factor of the
performance gap. Therefore, we increase the train-
ing step to triple (from 32k to 96k) to obtain the
model M3. The performance gap is narrowed but
the model M0 with CIF-PT still has a certain per-
formance advantage over model M3 with longer
SLU training.

For the model of M5 and M6 in Table 2, we
ablate language model distillation (LMD) utilized
in CIF-PT. During pre-training, we find applying
LMD bring 3.9% (14.83→ 14.25) relative WER re-
duction on the model with conformer encoder. Dur-
ing SLU training, we also observe the introduced
LMD methods boosts the performance improve-
ments on the two tasks in Table 2. For the reason of
the smaller performance improvements of data2vec
encoder , it may be that the model with data2vec en-
coder itself has strong modeling power and already
learns effective pattern and textual knowledge, so
that the injected textual knowledge can only be
helpful for fewer evaluation samples.

We also compare the cross-modal representation
extracted by CIF-PT with the speech representa-
tion derived from self-supervised learning. For the
model M7 in Table 2, we ablate the frame-to-token
CIF alignment in SLU models and directly pass
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Figure 2: (a) and (b) depict the performance fluctuation of different LMD methods on the two SLU tasks as the
weight λ of LMD loss changes. (c) depicts the performance fluctuation of the contrastive LMD method as the
temperature scalar τ changes.

the frame-level speech representation extracted by
data2vec to the SLU decoder. Although achiev-
ing competitive results, model M7 could achieve
further improvements after combining with CIF.
We suspect the reason is two-folds: 1) CIF per-
forms frame-to-text mapping that integrates rele-
vant speech/semantic information, thus able to re-
move information redundancy in adjacent frames,
2) CIF-PT bridges the speech representation and
text representation through ASR training and LMD,
thus providing more textual knowledge that bene-
fits SLU performance. To further verify our hypoth-
esis, we introduce CTC-based ASR pre-training
(CTC-PT) before the training of SLU model. Re-
sults show that CTC-PT provides improvements
on SLU tasks (M7→M8, M2→M4), but it still
has gap from CIF-PT . Above observations demon-
strate the effectiveness of CIF-PT.

5.2 Comparison on Language Model
Distillation

In this part, we compare different language model
distillation (LMD) methods applied in CIF-PT.
From the Figure 2 we get three observations: (1)
All LMD methods provide positive effects on SLU
performance in most cases, except for one outlier
uses MSE loss with a weight of 0.01 on SF. The
degradation disappears as the loss weight increases;
(2) The contrastive LMD method shows better qual-
ity on both SLU tasks than the other two methods.
We suspect the reason is contrastive distillation
with proper temperature scalar mainly focuses on
distinguishing hard negatives, instead of forcing
the representation to be consistent like MSE. This
helps the extracted representation retain speech and
language information at the same time, which may
benefit SLU modeling; (3) Different temperature

scalar in contrastive LMD method has effects on
down-streaming SLU tasks, with a τ value of 0.01
producing the best results on both SLU tasks.

5.3 Comparison on Neural Interfaces

We have compared the token-level representation
ci extracted by CIF-PT with frame-level speech
representations in section 5.1. In this part, we con-
tinue to compare ci with other popular token-level
neural interfaces (or representations) summarized
in (Raju et al., 2022), including hidden interface
mi, posterior interface pi, tied embedding interface
ei and the combinations. For fair comparison, we
give up using LMD loss in CIF-PT which benefits
ci. The results are shown in Table 3.

On the task of IC, we find all token-level neural
interfaces achieve comparable accuracy. This may
be because these interfaces contain close informa-
tion that is useful for IC, and the pooling operation
in intent decoder further reduce the discrimination
between representations. The combination of ci
and ei achieves the best performance. We suspect
this is because they are located at the beginning
(ci) and end (ei) of ASR decoder respectively, so
they may have a large information difference and
complementarity.

On the task of SF, we observe a relatively large
differentiation among these neural interfaces. On
the model using generation-based slot decoder, ci
obtains the best performance, while other inter-
faces have a certain performance gap in compar-
ison. This phenomenon can be understood as ci,
which is sourced from pure speech inputs, contains
more original and comprehensive speech informa-
tion. It can provide sufficient information for the
calculation of cross-attention in the slot decoder.
In contrast, the other interfaces are all calculated
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Interfaces IC (Acc.)
SF (SLU-F1)

generation tag
ci 88.31% 77.84% 71.68%
mi 88.26% 68.24% 74.21%
ei 88.25% 65.42% 74.42%
pi 88.30% 54.04% 72.94%

ci,mi 88.48% 74.94% 74.61%
ci, ei 88.79% 76.22% 74.52%

Table 3: Comparison with other token-level neural in-
terfaces summarized in (Raju et al., 2022). Here, ci
represents the cross-modal representations extracted by
CIF-PT. mi represents the output of ASR decoder (Hid-
den Interfaces). pi represents the posterior predicted by
ASR decoder (Posterior Interface). ei represent the to-
ken embedding of ASR’s one-best token sequence (Tied
Embedding Interface). Generation and tag in the table
describe two types of slot decoder used in our model,
we detail their structures in Section A.2.

via the autoregressive ASR decoder, thus the in-
formation may be biased to a certain hypothesis
with errors in inference. In addition, using ci as
the interface can also avoid the mismatch between
the teacher-forcing inputs and predicted inputs in
inference.

Interestingly, on the model using tag-based slot
decoder, ci performs inferior to other neural inter-
faces. Since the tag-based slot model predicts slot
key for each token of the one-best ASR hypothesis,
the neural interfaces mi, pi, ei that are updated syn-
chronously with the ASR decoding could provide
closer slot prediction for the final ASR hypothesis.
The original speech information provided by ci can
also provide supplements to these interfaces, and
the best performance is obtained by the combina-
tion of ci and mi.

Between two types of slot decoder, the model
with generation-based slot decoder is superior
to the tag-based slot decoder, we believe this is
because generation-based decoder utilize the bi-
directional contextual information from full se-
quence, which makes it have higher ceiling in the
prediction of slot information. In contrast, tag-
based decoder could only use the uni-directional
information that is limited by the autoregressive
ASR decoder. However, this characteristic makes
the tag-based model suitable for the application
scenario with low-latency.

Model IC (Acc.) SF (SLU-F1)
Slurp-Frozen 89.60% 78.67%
Slurp-Unfrozen 88.84% 78.08%
LS-Frozen 80.65% 64.02%
LS-Unfrozen 90.65% 79.74%

Table 4: Comparison on the out-of-domain data. In
the column of model, Slurp and LS before the dash
represent the utilized pre-trained dataset, LS represents
Librispeech. Frozen and Unfrozen represent the state of
pre-trained parameters in SLU training.

5.4 Comparison on Out-of-domain Data

In above experiments, CIF pre-training is per-
formed on the in-domain SLURP dataset. During
SLU training, the pre-trained parameters are kept
frozen (‘Slurp-Frozen’ in Table 4) and only the
part of SLU decoder is trained. In this part, we
first explore unfreezing the pre-trained parameters
during SLU training (‘Slurp-Unfrozen’ in Table
4). Specifically, we hold the pre-trained parameters
frozen in the first half of training, and then make the
model entirely trained by performing joint training
of ASR and SLU tasks. Results show that unfreez-
ing pre-trained parameters leads to slight perfor-
mance degradation. We suspect it is because the
textual knowledge injected by LMD suffers catas-
trophic forgetting during SLU training. But the
result achieved by ‘Slurp-Unfrozen’ is still better
than the model using the frozen pre-trained model
without LMD (model M5 in Table 2).

We also conduct experiments on an out-of-
domain pre-training dataset (Librispeech) to ex-
plore its effects on the final SLU performance. Con-
sistent with our expectations, freezing the parame-
ters pre-trained on out-of-domain data (‘LS-Frozen’
in Table 4) leads to a large performance degrada-
tion on SLU tasks of SLURP. When unfreezing
these pre-trained parameters (‘LS-Unfrozen’ in Ta-
ble 4) during SLU fine-tuning, the model obtains a
noticable performance boost, and even outperforms
the model achieved on slurp dataset. This partly
reflects the good generalization and the potential on
transfer learning of our proposed CIF-PT method.

6 Conclusion

In this work, we propose a new pre-training
paradigm: Continuous Integrate-and-Fire Pre-
Training (CIF-PT) for end-to-end SLU. CIF serves
as a bridge connecting speech and text modality:
on the one hand, it integrates speech representation
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into token-level through its frame-to-token align-
ment ability learned from ASR pre-training task.
On the other hand, it support one-to-one transfer
of the textual knowledge into the integrated token-
level speech representation via the pre-training of
language model distillation. After CIF-PT, we ob-
tain a cross-model representation that is used as
neural interface into down-streaming SLU tasks.

Evaluated on the largest SLU benchmark of
SLURP, CIF-PT creates new state-of-the-art result
on both of IC and SF tasks. We further validate
the effectiveness and generalization of CIF-PT by
a series of experiments including ablation study
and the pre-training on out-of-domain data. We
also observe the cross-modal representation ex-
tracted by CIF-PT shows its competitiveness in
comparison with other neural interfaces on SLU.
We believe that CIF-PT has the potential to bet-
ter encode long-form speech content (e.g. spoken
paragraph) through its language model distillation,
and will explore to combine it with LLM methods
like ChatGPT to further empower spoken language
understanding (SLU) systems.

7 Limitation

In the process of conducting experiments, we find
our method has some limitations. First, CIF-PT
needs to be performed on the dataset with speech-
text pair. For some small-scale dataset that only
contains speech and SLU labels, our method needs
to use external ASR dataset to conduct the pre-
training, leading to the increase of complexity of
model building. In addition, in CIF-PT, we need
to ensure that the tokenizer of the pre-trained lan-
guage model is consistent with the tokenizer in the
ASR task. However, there is usually a gap between
the two in terms of vocabulary size. In considera-
tion of performance, it is necessary to modify the
tokenzier of one or both sides.
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A Appendix

A.1 Computational Experiments
The total parameters for our SLU model with con-
former encoder is 95.07 M. It costs 10.1 hours and
12.0 hours for CIF-PT and SLU fine-tunig on 8
A100 GPUs, respectively. The batch size of both
stages is set to 30000 frames on each GPU. For
our CIF SLU model with data2vec encoder, it has
357.50M parameters and needs 23.0 hours and 7.5
hours to finish CIF-PT and SLU fine-tuning, the
corresponding batch size for the two stages is set
to 1.2M and 1.6M samples, respectively.

A.2 Details of Model Structure
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Figure 3: Model structure of our ASR decoder and SLU
decoders. Different neural interfaces are depicted in the
ASR decoder. The details of tag-based slot decoder and
generation decoder are also included in this figure. ci in
this figure could be replaced by other interfaces, which
are investigated in Table 3.
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