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Abstract

Many NLP tasks require to automatically iden-
tify the most significant words in a text. In
this work, we derive word significance from
models trained to solve semantic task: Natural
Language Inference and Paraphrase Identifica-
tion. Using an attribution method aimed to
explain the predictions of these models, we de-
rive importance scores for each input token. We
evaluate their relevance using a so-called cross-
task evaluation: Analyzing the performance of
one model on an input masked according to the
other model’s weight, we show that our method
is robust with respect to the choice of the initial
task. Additionally, we investigate the scores
from the syntax point of view and observe in-
teresting patterns, e.g. words closer to the root
of a syntactic tree receive higher importance
scores. Altogether, these observations suggest
that our method can be used to identify impor-
tant words in sentences without any explicit
word importance labeling in training.

1 Introduction

The ability to decide which words in a sentence are
semantically important plays a crucial role in vari-
ous areas of NLP (e.g. compression, paraphrasing,
summarization, keyword identification). One way
to compute (semantic) word significance for com-
pression purposes is to rely on syntactic patterns,
using Integer Linear Programming techniques to
combine several sources of information (Clarke and
Lapata, 2006; Filippova and Strube, 2008). Xu and
Grishman (2009) exploit the same cues, with sig-
nificance score computed as a mixture of TF-IDF
and surface syntactic cues. A similar approach esti-
mates word importance for summarization (Hong
and Nenkova, 2014) or learns these significance
scores from word embeddings (Schakel and Wil-
son, 2015; Sheikh et al., 2016).

Significance scores are also useful in an entirely
different context, that of explaining the decisions of
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Figure 1: The first pass (yellow plain arrows): A
premise and hypothesis are passed to the NLI model.
The interpreter takes both text inputs xp, xh, and hidden
states hp of the NLI model’s encoder. It generates a bi-
nary mask zp which is used to mask xp, resulting in x̂p.
The second pass (green dashed arrows): x̂p is passed
to the NLI model together with the original hypothesis.
The divergence D∗ minimizes the difference between
predicted distributions y and ŷ of these two passes.

Deep Neural Networks (DNNs). This includes in-
vestigating and interpreting hidden representations
via auxiliary probing tasks (Adi et al., 2016; Con-
neau et al., 2018); quantifying the importance of
input words in the decisions computed by DNNs in
terms of analyzing attention patterns (Clark et al.,
2019); or using attribution methods based on at-
tention (Vashishth et al., 2019), back-propagation
(Sundararajan et al., 2017) or perturbation tech-
niques (Guan et al., 2019; Schulz et al., 2020).
Along these lines, DeYoung et al. (2020) present
a benchmark for evaluating the quality of model-
generated rationals compared to human rationals.

In this study, we propose to use such techniques
to compute semantic significance scores in an in-
novative way. We demand the scores to have these
intuitive properties: (a) Content words are more im-
portant than function words; (b) Scores are context-
dependent; (c) Removing low-score words mini-
mally changes the sentence meaning. For this, we
train models for two semantic tasks, Natural Lan-
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Figure 2: Average scores for each POS category for the
NLI model (left) and PI model (right).

guage Inference and Paraphrase Identification, and
use the attribution approach of De Cao et al. (2020)
to explain the models’ predictions. We evaluate
the relevance of scores using the so-called cross-
task evaluation: Analyzing the performance of one
model on an input masked according to the other
model’s weights. We show that our method is ro-
bust with respect to the choice of the initial task and
fulfills all our requirements. Additionally, hinting
at the fact that trained hidden representations en-
code a substantial amount of linguistic information
about morphology (Belinkov et al., 2017), syntax
(Clark et al., 2019; Hewitt and Manning, 2019),
or both (Peters et al., 2018), we also analyze the
correlations of our scores with syntactic patterns.

2 Method

We assume that sentence-level word significance
(or word importance) is assessed by the amount of
contribution to the overall meaning of the sentence.
This means that removing low-scored word should
only slightly change the sentence meaning.

The method we explore to compute significance
score repurposes attribution techniques originally
introduced to explain the predictions of a DNN
trained for a specific task. Attribution methods typ-
ically compute sentence level scores for each input
word, identifying the ones that contribute most to
the decision. By explicitly targeting semantic pre-
diction tasks, we hope to extract attribution scores
that correlate well with semantic significance.

Our significance scoring procedure thus consists
of two main components: an underlying model and

an interpreter. The underlying model is trained to
solve a semantic task. We select two tasks: Natural
Language Inference (NLI) — classifying the rela-
tionship of a premise–hypothesis pair into entail-
ment, neutrality or contradiction — and Paraphrase
Identification (PI) — determining whether a pair
of sentences have the same meaning.

The interpreter relies on the attribution method
proposed by De Cao et al. (2020), seeking to mask
the largest possible number of words in a sentence,
while at the same time preserving the underlying
model’s decision obtained from the full sentence
pair. The interpreter thus minimizes a loss function
comprising two terms: an L0 term, on the one hand,
forces the interpreter to maximize the number of
masked elements, and a divergence term D∗, on the
other hand, aims to diminish the difference between
the predictions of the underlying model when given
(a) the original input or (b) the masked input.

We take the outputs of the interpreter, i.e. the
attribution scores, as probabilities that given words
are not masked. Following De Cao et al. (2020),
these probabilities are computed assuming an un-
derlying Hard Concrete distribution on the closed
interval [0, 1], which assigns a non-zero probability
to extreme values (0 and 1) (Fig. 9, De Cao et al.,
2020). During interpreter training, a reparametriza-
tion trick is used (so that the gradient can be propa-
gated backwards) to estimate its parameters. Given
the Hard Concrete distribution output, the attribu-
tion score for a token expresses the expectation of
sampling a non-zero value, meaning that the token
should be masked (Section 2, Stochastic masks,
De Cao et al., 2020). We illustrate the process in
Figure 1.

3 Experimental Setup

3.1 Underlying Models

We use a custom implementation of a variant
of the Transformer architecture (Vaswani et al.,
2017) which comprises two encoders sharing their
weights, one for each input sentence. This design
choice is critical as it allows us to compute impor-
tance weights of isolated sentences, which is what
we need to do in inference. We then concatenate
encoder outputs into one sequence from which a
fully connected layer predicts the class, inspired
by Sentence-BERT (Reimers and Gurevych, 2019)
architecture. See Appendix A.1 for a discussion on
the architecture choice, and for datasets, implemen-
tation and training details.
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3.2 Interpreter

We use the attribution method introduced by
De Cao et al. (2020). The interpreter consists of
classifiers, each processing hidden states of one
layer and predicting the probability whether to keep
or discard input tokens. See Appendix A.2 for
datasets, implementation and training details.1

4 Analysis

In our analysis of the predicted masks, we only con-
sider the last-layer classifier, rescaling the values so
that the lowest value and the highest value within
one sentence receive the scores of zero and one,
respectively. All results use the SNLI validation set.

4.1 Content Words are More Important

We first examine the scores that are assigned to
content and functional words. We compute the av-
erage score for each POS tag (Zeman et al., 2022)
and display the results in Figure 2. For both mod-
els, Proper Nouns, Nouns, Pronouns, Verbs, Adjec-
tives and Adverbs have leading scores. Determin-
ers, Particles, Symbols, Conjunctions, Adpositions
are scored lower. We observe an inconsistency
of the PI model scores for Punctuation. We sup-
pose this reflects idiosyncrasies of the PI dataset:
Some items contain two sentences within one seg-
ment, and these form a paraphrase pair only when
the other segment also consists of two sentences.
Therefore, the PI model is more sensitive to Punc-
tuation than expected. We also notice the estimated
importance of the X category varies widely, which
is expected since this category is, based on its def-
inition, a mixture of diverse word types. Over-
all, these results fulfil our requirement that content
words achieve higher scores than function words.

4.2 Word Significance is Context-Dependent

We then question the ability of the interpreter to
generate context-dependent attributions, contrast-
ing with purely lexical measures such as TF-IDF.
To answer this question, we compute the distribu-
tion of differences between the lowest and highest
scores for words having at least 100 occurrences in
the training and 10 in the validation data, excluding
tokens containing special characters or numerals.
The full distribution is plotted in Figure 3.

Scores extracted from both models report in-
creased distribution density towards larger differ-

1Our source code with the license specification is available
at https://github.com/J4VORSKY/word-importance
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Figure 3: The NLI model (left), PI model (right) and
the distribution of differences between the maximal and
minimal value for each token.

ences, confirming that significance scores are not
lexicalized, but instead strongly vary according to
the context for the majority of words. The greatest
difference in scores for PI model is around 0.5, the
analysis of the NLI model brings this difference
even more towards 1. We explain it by the nature
of datasets: It is more likely that the NLI model’s
decision relies mostly on one or on a small group
of words, especially in the case of contradictions.

4.3 Cross-Task Evaluation

In this section, we address the validity of impor-
tance scores. We evaluate the models using so-
called cross-task evaluation: For model A, we take
its validation dataset and gradually remove a por-
tion of the lowest scored tokens according to the
interpreter of model B. We then collect the pre-
dictions of model A using the malformed inputs
and compare it to a baseline where we randomly re-
move the same number of tokens. We evaluate both
models in this setting, however, since the results
for both models have similar properties, we report
here only the analysis of the PI model in Table 1.
See Appendix B for the NLI model results.

Table 1 reports large differences in performance
when the tokens are removed according to our
scores, compared to random removal. When one
third of tokens from both sentences is discarded, the
PI model performance decreases by 2.5%, whereas
a random removal causes a 15.1% drop (Table 1,
4th row and 4th column). The models differ most
when a half of the tokens are removed, resulting
in a difference in accuracy of 18.3% compared to
the baseline (Table 1, 6th row and 6th column).
Examining performance up to the removal of 20%
of tokens, the difference between the random and
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PI Model performance
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 85.1↑0.0 84.7↑0.7 84.5↑4.6 83.0↑6.8 80.9↑9.1 77.7↑12.2 74.3↑12.9 69.3↑10.6 62.6↑7.3 56.0↑4.0 50.0↑0.0
10% 84.7↑0.9 84.7↑2.0 84.4↑5.7 82.8↑7.6 81.0↑9.9 77.8↑12.9 74.5↑13.4 69.5↑11.3 62.6↑7.5 55.8↑3.8 50.0↑0.0
20% 84.2↑4.1 84.2↑5.2 84.3↑8.3 83.0↑10.3 81.5↑12.2 78.4↑14.7 74.9↑14.4 70.1↑12.3 63.0↑8.2 56.2↑4.3 50.0↑0.0
30% 83.1↑6.9 83.1↑7.7 83.3↑11.0 82.6↑12.6 81.8↑15.0 79.0↑16.1 75.6↑15.7 70.9↑13.3 63.5↑8.6 56.3↑4.6 50.0↑0.1
40% 80.7↑9.9 80.4↑10.4 81.0↑12.7 81.0↑14.0 80.9↑16.1 78.7↑17.9 75.5↑16.1 71.1↑13.7 64.2↑9.9 56.7↑5.0 50.0↑0.1
50% 77.3↑11.3 77.5↑11.6 78.1↑13.5 78.9↑15.0 78.8↑16.6 78.0↑18.3 75.2↑17.0 71.2↑15.0 64.2↑9.6 56.8↑5.0 50.0↑0.1
60% 73.6↑11.7 73.9↑12.0 74.4↑13.3 75.9↑15.2 75.3↑16.4 75.9↑17.9 74.4↑17.4 71.2↑15.7 65.3↑11.2 57.1↑5.2 49.9↓0.2
70% 68.4↑10.3 68.8↑11.1 68.7↑11.3 70.2↑12.8 70.7↑14.3 71.1↑15.3 71.0↑15.9 70.3↑15.4 66.4↑13.3 58.2↑6.0 50.0↓0.3
80% 62.3↑7.3 62.3↑7.5 62.4↑7.6 63.2↑8.7 63.6↑9.3 64.3↑10.4 64.7↑11.1 65.8↑12.6 67.0↑15.0 59.8↑8.2 49.7↓0.4
90% 56.2↑4.0 56.3↑4.1 56.5↑4.4 56.7↑4.7 57.2↑5.3 57.2↑5.4 57.5↑5.5 58.5↑7.1 60.5↑8.8 63.9↑12.1 50.2↓2.4
100% 50.0↑0.0 50.0↓0.0 50.0↑0.0 50.0↑0.1 50.0↑0.2 50.1↑0.1 50.0↑0.1 50.0↓0.1 50.1↓0.2 50.5↓0.5 50.0↑0.0

Table 1: The accuracy of the PI model when a given percentage of the least important input tokens are removed
from the first sentence (rows) or the second (columns) according to the NLI model’s weights. Each cell contains the
model accuracy (left), difference in comparison to the randomized baseline model (right) and an arrow denoting
the increase (↑) or decrease (↓) in performance of our model compared to the baseline. The difference of values in
italics is not statistically significant (p < 0.01).

NLI Model PI Model
Depth Avg Std Avg Std Count
1 0.52 0.35 0.64 0.31 9424
2 0.36 0.36 0.53 0.39 27330
3 0.23 0.31 0.40 0.35 26331
4 0.22 0.31 0.33 0.36 7183
5 0.22 0.30 0.35 0.35 1816

Table 2: Importance scores of tokens for each depth in
syntactic trees. Stat. significant differences between the
current and next row are bolded (p < 0.01).

importance-based word removal are not so signifi-
cant, probably because of the inherent robustness of
the PI model which mitigates the effect of the (ran-
dom) removal of some important tokens. On the
other hand, removing half of the tokens is bound
to have strong effects on the accuracy of the PI
model, especially when some important words are
removed (in the random deletion scheme); this is
where removing words based on their low impor-
tance score makes the largest difference. At higher
dropping rates, the random and the importance-
based method tend to remove increasing portions of
similar words, and their scores tend to converge (in
the limiting case of 100% removal, both strategies
have exactly the same effect). Overall, these results
confirm that our method is robust with respect to
the choice of the initial task and that it delivers
scores that actually reflect word importance.

4.4 Important Words are High in the Tree

Linguistic theories differ in ways of defining depen-
dency relations between words. One established
approach is motivated by the ‘reducibility’ of sen-
tences (Lopatková et al., 2005), i.e. gradual re-
moval of words while preserving the grammatical
correctness of the sentence. In this section, we

NLI Model PI Model
Dependency Relation Avg Std Avg Std Count
det, case, cop, cc, punct, mark -0.50 0.37 -0.37 0.49 34034
advcl, acl, xcomp 0.11 0.43 0.06 0.38 2789
nsubj -0.22 0.45 0.06 0.39 9323
punct -0.53 0.35 0.24 0.35 8148
compound 0.07 0.46 -0.04 0.35 2437

Table 3: The average and standard deviation of signifi-
cance scores, and the count of aggregated dependency
relations in syntactic trees.

study how such relationships are also observable
in attributions. We collected syntactic trees of in-
put sentences with UDPipe (Straka, 2018),2 which
reflect syntactic properties of the UD format (Ze-
man et al., 2022).3 When processing the trees, we
discard punctuation and compute the average score
of all tokens for every depth level in the syntactic
trees. We display the first 5 depth levels in Table 2.

We can see tokens closer to the root in the syntac-
tic tree obtain higher scores on average. We mea-
sure the correlation between scores and tree levels,
resulting in -0.31 Spearman coefficient for the NLI
model and -0.24 for the PI model. Negative coeffi-
cients correctly reflect the tendency of the scores
to decrease in lower tree levels. It thus appears that
attributions are well correlated with word positions
in syntactic trees, revealing a relationship between
semantic importance and syntactic position.

4.5 Dependency Relations

We additionally analyze dependency relations oc-
curring more than 100 times by computing the

2https://lindat.mff.cuni.cz/services/udpipe/
3UD favors relations between content words, function

words are systematically leaves in the tree. However, hav-
ing function words as leaves better matches our perspective of
information importance flow, unlike in Gerdes et al. (2018).
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score difference between child and parent nodes,
and averaging them for each dependency type. In
Table 3, we depict relations which have noteworthy
properties with respect to significance scores (the
full picture is in Appendix C). Negative scores de-
note a decrease of word significance from a parent
to its child. We make the following observations.

The first row of the table illustrates dependencies
that have no or very limited contribution to the
overall meaning of the sentence. Looking at the
corresponding importance scores, we observe that
they are consistently negative, which is in line with
our understanding of these dependencies.

The second row corresponds to cases of clausal
relationships. We see an increase in importance
scores. This can be explained since the dependents
in these relationships are often heads of a clause,
and thus contribute, probably more than their gov-
ernor, to the sentence meaning. It shows models’
ability to detect some deep syntactic connections.

The last block represents relations that are not
consistent across the models. Nominal Subject is
judged less important in the NLI model than in
the PI model. As mentioned in Section 4.1, Punc-
tuation differs similarly. Elements of Compound
are preferred in different orders depending on the
model. On the other hand, all other relation types
are consistent: Ranking each type of dependency
relation based on its average score and calculating
correlation across our models results in 0.73 Spear-
man coefficient. This reveals a strong correlation
between importance and syntactic roles.

5 Conclusion

In this paper, we have proposed a novel method
to compute word importance scores using attribu-
tion methods, aiming to explain the decisions of
models trained for semantic tasks. We have shown
these scores have desired and meaningful proper-
ties: Content words are more important, scores are
context-dependent and robust with respect to the
underlying semantic task. In our future work, we
intend to exploit these word importance scores in
various downstream applications.

Limitations

Our method of identifying important words re-
quires a dataset for a semantic task (in our case
NLI or PI), which limits its applicability. This re-
quirement also prevents us from generalizing our
observations too broadly: we tested our method

only on one high-resource language where both
dependency parsers and NLI / PI datasets are avail-
able. Our analysis also lacks the comparison to
other indicators of word significance.
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A Training

A.1 Underlying Models

Implementation Language modeling often treats
the input of semantic classification tasks as a one-
sequence input, even for tasks involving multiple
sentences on the input side (Devlin et al., 2019;
Lewis et al., 2020; Lan et al., 2020). However,
processing two sentences as one irremediably com-
pounds their hidden representations. As we wish to
separate representations of single sentences, we re-
sort to a custom implementation based on the Trans-
formers architecture (Vaswani et al., 2017), which
comprises two encoders (6 layers, 8 att. heads,
1024 feed forward net. size, 512 emb. size) sharing
their weights, one for each input sentence. Fol-
lowing Sentence-BERT (Reimers and Gurevych,
2019), we computed the mean of the encoder out-
put sentence representations u and v, and concate-
nated them to an additional |u − v| term. This
was passed to a linear layer for performing the final
classification. We implemented models in fairseq
(Ott et al., 2019).4

Datasets The NLI model was trained on SNLI

(Bowman et al., 2015)5, MULTI_NLI (Williams
et al., 2018)6 and QNLI (Rajpurkar et al., 2016)7

datasets. Since QNLI uses a binary scheme (‘en-
tailment’ or ‘non-entailment’), we interpret ‘non-
entailment’ as a neutral relationship. Table 6 de-
scribes the NLI training and validation data. The PI
model was trained on QUORA Question Pairs8 and
PAWS (Zhang et al., 2019)9 datasets. We swapped
a random half of sentences in the data to ensure
the equivalence of both sides of the data. Table 7
displays the PI training and validating data.

Training We trained both models using an adap-
tive learning rate optimizer (α = 3× 10−4, β1 =
0.9, β2 = 0.98) (Kingma and Ba, 2015) and a
inverse square root scheduler with 500 warm-up
updates. We trained with 64k maximum batch to-
kens over 6 epochs with 0.1 dropout regulation.
We trained on an NVIDIA A40 GPU using half-
precision floating-point format FP16, which took
less than 2 hours for both models. The PI model
and NLI model achieve 85.1% and 78.4% accuracy

4https://github.com/facebookresearch/fairseq
5https://huggingface.co/datasets/snli
6https://huggingface.co/datasets/multi_nli
7https://huggingface.co/datasets/glue#qnli
8https://huggingface.co/datasets/quora
9https://huggingface.co/datasets/paws
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NLI Model performance
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 78.4↑0.0 78.1↑0.5 77.9↑3.1 77.1↑5.5 75.8↑8.1 72.0↑8.9 68.6↑8.5 63.7↑7.3 55.9↑5.1 46.8↑3.1 33.5↑0.0
10% 78.4↑1.4 78.3↑1.8 78.1↑4.7 77.2↑6.5 75.7↑8.9 72.1↑9.4 68.6↑9.0 63.6↑7.6 55.8↑5.5 46.6↑3.0 33.6↑0.1
20% 78.0↑4.1 77.8↑4.3 77.7↑6.4 77.1↑8.4 75.4↑9.7 72.0↑10.2 68.2↑9.6 63.6↑8.3 55.7↑5.7 46.7↑3.8 33.5↑0.3
30% 77.3↑6.5 77.2↑6.6 77.0↑8.8 76.7↑10.3 74.9↑11.2 71.3↑11.8 68.1↑11.1 63.2↑8.9 55.7↑6.7 46.6↑3.9 33.4↑0.6
40% 76.1↑8.3 76.0↑8.6 75.9↑9.9 75.3↑11.0 74.0↑11.9 71.1↑12.5 67.4↑10.9 63.1↑9.5 55.7↑7.7 47.1↑5.1 33.5↑0.2
50% 72.8↑8.6 72.7↑8.6 73.1↑10.2 72.4↑10.2 71.5↑11.3 69.3↑12.6 66.7↑12.4 62.4↑10.2 55.5↑8.1 46.4↑4.5 33.5↓0.2
60% 68.7↑6.7 68.5↑6.9 68.9↑7.9 68.6↑9.1 67.7↑9.5 66.1↑10.6 64.3↑10.8 60.8↑9.9 54.0↑6.9 45.9↑3.8 33.4↓0.2
70% 63.2↑5.3 63.0↑5.2 63.5↑6.3 62.9↑6.0 62.2↑7.0 61.3↑7.8 60.2↑8.8 58.1↑9.5 52.5↑6.2 45.1↑3.4 33.4↑0.1
80% 57.4↑3.6 57.3↑3.6 57.7↑3.7 57.2↑3.3 57.1↑4.1 56.5↑5.4 55.1↑4.9 53.8↑6.0 50.3↑4.9 44.9↑3.7 33.4↓0.0
90% 52.5↑2.1 52.4↑2.1 52.9↑2.6 52.8↑2.1 52.4↑2.3 51.9↑2.9 51.2↑2.7 49.9↑2.5 47.6↑3.2 43.5↑3.2 33.7↑0.4

100% 42.8↑0.0 42.8↑0.1 43.5↑0.1 43.8↑0.2 44.5↑0.5 44.7↑0.5 45.1↑0.4 44.2↓0.8 43.1↓0.1 40.2↑0.3 33.8↑0.0

Table 4: The accuracy of the NLI model when a given percentage of the least important input tokens are removed
from the premise (rows) or hypothesis (columns) according to the PI model’s weights. The description of the cell
content is the same as in Table 3.

NLI Model PI Model
Dep. Rel. Avg Std Avg Std Count Description
cop -0.74 0.30 -0.74 0.27 1623 Copula, e.g. John is the best dancer; Bill is honest
case -0.55 0.35 -0.54 0.30 7651 Case Marking, e.g. the Chair ’s office; the office of the Chair
punct -0.53 0.35 0.24 0.35 8148 Punctuation, e.g. Go home !
aux -0.51 0.34 -0.67 0.27 4622 Auxiliary, e.g. John has died; he should leave
cc -0.48 0.32 -0.74 0.23 707 Coordinating Conjunction, e.g. and yellow
det -0.45 0.38 -0.55 0.38 14801 Determiner, e.g. the man
mark -0.39 0.34 -0.48 0.31 1104 Marker, e.g. before; after; with; without
nsubj -0.22 0.45 0.06 0.39 9323 Nominal Subject, e.g. John won
nummod -0.10 0.37 -0.02 0.38 1269 Numeric Modifier, e.g. forty dollars, 3 sheep
nmod -0.06 0.52 -0.13 0.42 3153 Nominal Modifier, e.g. the office of the Chair
advmod -0.01 0.51 -0.01 0.41 1299 Adverbial Modifier, e.g. genetically modified, less often
advcl 0.05 0.43 0.05 0.33 857 Adverbial Clause Modifier, e.g. if you know who did it, you should say it
compound 0.07 0.46 -0.04 0.35 2437 Compound, e.g. phone book; ice cream
conj 0.10 0.41 0.03 0.28 742 Conjunct, e.g. big and yellow
acl 0.11 0.43 0.04 0.41 1367 Adnominal Clause), e.g. the issues as he sees them; a simple way to get
amod 0.11 0.42 -0.01 0.32 2974 Adjectival Modifier, e.g. big boat
obl 0.16 0.47 0.09 0.33 5002 Oblique Nominal, e.g. last night, I swam in the pool
xcomp 0.21 0.41 0.12 0.38 565 Open Clausal Complement, e.g. I started to work
obj 0.25 0.44 0.12 0.36 4377 Object, e.g. she got a gift

Table 5: The average and standard deviation of significance scores, and the count and a short description of each
dependency relation between a parent and child node in the syntactic tree.

Training
Entail. Neutral. Contra. All

SNLI 183k 183k 183k 549k
QNLI 52k 52k - 105k
MULTI_NLI 131k 131k 131k 393k
All 366k 366k 315k 1047k

Validating
Entail. Neutral. Contra. All

SNLI 3.3k 3.3k 3.3k 10k

Table 6: The number of samples in training (top) and
validation (bottom) data for the NLI model.

on corresponding validating sets, respectively. We
consider this performance sufficient given limita-
tions put on the architecture choice.

A.2 Interpreter

Implementation We use the attribution method
introduced by De Cao et al. (2020). Assuming L
layers for the NLI encoder, the interpreter model
contains L+1 classifiers. Each classifier is a single-

Training
Paraphrase Non Paraphrase All

QUORA 146k 248k 394k
PAWS 25k 55k 80k
All 171k 303k 474k

Validating
Paraphrase Non Paraphrase All

QUORA 3.4k 3.4k 6.8k

Table 7: The number of samples in training (top) and
validation (bottom) data for the PI model.

hidden-layer MLP, which inputs hidden states and
predicts binary probabilities whether to keep or
discard input tokens. The implementation details
closely follow the original work.

Training We trained on the first 50k samples
of the corresponding underlying model’s training
data, using a learning rate α = 3 × 10−5 and a
divergence constrain D∗ < 0.1. The number of
training samples and the rest of hyper-parameters
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follow the original work. We trained over 4 epochs
with a batch size of 64.

B Cross-Task Evaluation

The performance of the NLI model in the cross-
task evaluation, compared to the baseline model, is
displayed in Table 4.

C Dependency Relations

We examined all dependency relations with a fre-
quency greater than 100 by computing the score
difference between child and parent nodes, and
averaging them for each every dependency type.
Results are in Table 5.
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