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Abstract

Contrastive learning has been widely studied in
sentence representation learning. However, ear-
lier works mainly focus on the construction of
positive examples, while in-batch samples are
often simply treated as negative examples. This
approach overlooks the importance of select-
ing appropriate negative examples, potentially
leading to a scarcity of hard negatives and the
inclusion of false negatives. To address these
issues, we propose ClusterNS (Clustering-
aware Negative Sampling), a novel method
that incorporates cluster information into con-
trastive learning for unsupervised sentence rep-
resentation learning. We apply a modified K-
means clustering algorithm to supply hard neg-
atives and recognize in-batch false negatives
during training, aiming to solve the two issues
in one unified framework. Experiments on se-
mantic textual similarity (STS) tasks demon-
strate that our proposed ClusterNS compares
favorably with baselines in unsupervised sen-
tence representation learning. Our code has
been made publicly available.1

1 Introduction

Learning sentence representation is one of the
fundamental tasks in natural language processing
and has been widely studied (Kiros et al., 2015;
Hill et al., 2016; Cer et al., 2018; Reimers and
Gurevych, 2019). Reimers and Gurevych (2019)
show that sentence embeddings produced by BERT
(Devlin et al., 2019) are even worse than GloVe
embeddings (Pennington et al., 2014), attracting
more research on sentence representation with pre-
trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2019). Li
et al. (2020a) and Ethayarajh (2019) further find
out that PLM embeddings suffer from anisotropy,
motivating more researchers to study this issue (Su
et al., 2021; Gao et al., 2021). Besides, Gao et al.
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Figure 1: An example of in-batch negatives, a hard
negative (in blue dotted box) and a false negative (in
red dotted box). Cosine similarity is calculated with
SimCSE (Gao et al., 2021). In-batch negatives may
include false negatives, while lacking hard negatives.

(2021) show that contrastive learning (CL) is able
to bring significant improvement to sentence rep-
resentation. As pointed out by Wang and Isola
(2020), contrastive learning improves the unifor-
mity and alignment of embeddings, thus mitigating
the anisotropy issue.

Most previous works of constrastive learning
concentrate on the construction of positive exam-
ples (Kim et al., 2021; Giorgi et al., 2021; Wu et al.,
2020; Yan et al., 2021; Gao et al., 2021; Wu et al.,
2022) and simply treat all other in-batch samples
as negatives, which is sub-optimal. We show an ex-
ample in Figure 1. In this work, we view sentences
having higher similarity with the anchor sample
as hard negatives, which means they are difficult
to distinguish from positive samples. When all
the negatives are sampled uniformly, the impact of
hard negatives is ignored. In addition, various neg-
ative samples share different similarity values with
the anchor sample and some may be incorrectly
labeled (i.e., false negatives) and pushed away in
the semantic space.

Recently quite a few researchers have demon-
strated that hard negatives are important for con-
trastive learning (Zhang et al., 2022a; Kalantidis
et al., 2020; Xuan et al., 2020). However, it is not
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trivial to obtain enough hard negatives through sam-
pling in the unsupervised learning setting. Admit-
tedly, they can be obtained through retrieval (Wang
et al., 2022b) or fine-grained data augmentation
(Wang et al., 2022a), but the processes are usually
time-consuming. Incorrectly pushing away false
negatives in the semantic space is another prob-
lem in unsupervised learning scenarios, because all
negatives are treated equally. In fact, in-batch nega-
tives are quite diverse in terms of similarity values
with the anchor samples. Therefore, false negatives
do exist in the batches and auxiliary models may
be required to identify them (Zhou et al., 2022). In
sum, we view these issues as the major obstacles
to further improve the performance of contrastive
learning in unsupervised scenarios.

Since the issues mentioned above have a close
connection with similarity, reasonable differentia-
tion of negatives based on similarity is the key. In
the meanwhile, clustering is a natural and simple
way of grouping samples into various clusters with-
out supervision. Therefore, in this paper, we pro-
pose a new negative sampling method called Clus-
terNS for unsupervised sentence embedding learn-
ing, which combines clustering with contrastive
learning. Specifically, for each mini-batch during
training, we cluster them with the K-means algo-
rithm (Hartigan and Wong, 1979), and for each
sample, we select its nearest neighboring centroid
(cluster center) as the hard negative. Then we treat
other sentences belonging to the same cluster as
false negatives. Instead of directly taking them as
positive samples, we use the Bidirectional Margin
Loss to constrain them. Since continuously up-
dating sentence embeddings and the large size of
the training dataset pose efficiency challenges for
the clustering, we modify the K-means clustering
to make it more suitable for training unsupervised
sentence representation.

Overall, our proposed negative sampling ap-
proach is simple and easy to be plugged into ex-
isting methods, boosting the performance. For ex-
ample, we improve SimCSE and PromptBERT in
RoBERTabase by 1.41/0.59, and in BERTlarge by
0.78/0.88 respectively. The main contributions of
this paper are summarized as follows:

• We propose a novel method for unsupervised
sentence representation learning, leveraging
clustering to solve hard negative and false neg-
ative problems in one unified framework.

• We modify K-means clustering for unsuper-

vised sentence representation, making it more
efficient and achieve better results.

• Experiments on STS tasks demonstrate our ev-
ident improvement to baselines and we reach
79.74 for RoBERTabase, the best result with
this model.

2 Related Works

2.1 Contrastive Learning

Contrastive learning is a widely-used method in
sentence representation learning. Early works fo-
cus on positive examples, and have raised various
kinds of effective data augmentations (Giorgi et al.,
2021; Wu et al., 2020; Yan et al., 2021; Gao et al.,
2021). Following these works, Wu et al. (2022)
improve positive construction based on Gao et al.
(2021). Zhou et al. (2022) improve the uniformity
of negative. Besides, Zhang et al. (2022b) mod-
ify the objective function and Chuang et al. (2022)
introduce Replaced Token Detection task (Clark
et al., 2020), reaching higher performance.

2.2 Negative Sampling

In-batch negative sampling is a common strategy in
unsupervised contrastive learning, which may have
limitations as we mentioned above. To fix these
issues, Zhang et al. (2022a) and Kalantidis et al.
(2020) synthesize hard negatives by mixing posi-
tives with in-batch negatives. Wang et al. (2022a)
utilize dependency parsing to create the negation
of original sentences as soft negatives. Follow-
ing Jiang et al. (2022) who use different prompt
templates as positive, Zeng et al. (2022) derive neg-
atives from the negation of the templates. The two
methods create negatives with fixed templates and
rules, thus may introduce bias. Chuang et al. (2020)
design a debiased contrastive objective that corrects
the false negatives without true labels. Zhou et al.
(2022) use a trained model to distinguish false neg-
atives, which results in addition module comparing
with our method.

2.3 Neural Clustering

Clustering methods have been extended to deep
learning and used for unsupervised representation
learning (Xie et al., 2016; Yang et al., 2017; Caron
et al., 2018; Li et al., 2020b; Zhang et al., 2021b).
Prototypical Network (Snell et al., 2017), a vari-
ety of clustering, is widely used in few-shot learn-
ing (Cui et al., 2022; Ding et al., 2020; Gao et al.,
2019). Several works have combined clustering
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Figure 2: Illustrations of the original contrastive learning and our ClusterNS frameworks. Comparing with the
naive framework, for the sample x1 in the mini-batch, we provide the nearest neighboring centroid c12 as the hard
negative, and regard the samples in the same cluster (such as x5) as false negatives and constrain them by the BML
loss.

with contrastive learning (Li et al., 2020b; Caron
et al., 2020; Zhang et al., 2021b; Wang et al., 2021).
Among them, Li et al. (2020b) argue that clustering
encodes high-level semantics, which can augment
instance-wise contrastive learning.

3 Methods

3.1 Preliminaries
Our clustering-based negative sampling method for
unsupervised sentence representation can be easily
integrated with contrastive learning approaches like
SimCSE (Gao et al., 2021) or PromptBERT (Jiang
et al., 2022). An illustration of ClusterNS and the
original contrastive learning framework is shown
in Figure 2. For a sentence xi in one mini-batch
{xi}Ni=1 (N samples in each mini-batch), SimCSE
uses Dropout (Srivastava et al., 2014) and Prompt-
BERT uses different prompt-based templates to
obtain its positive example x+i . Then they treat the
other samples in the mini-batch as “default” nega-
tives and apply the InfoNCE loss (Oord et al., 2018)
in Eq. (1), where τ is the temperature coefficient.

Lcl = − log
esim(xi,x

+
i )/τ

N∑
j=1

e
sim(xi,x+j )/τ

(1)

3.2 Boosting Negative Sampling
Our main contribution of this work is to improve
the negative sampling method with clustering. To
be more specific, we combine clustering with con-
trastive learning in the training process, recogniz-
ing false negatives in the mini-batch and providing
additional hard negatives based on the clustering
result. The clustering procedure will be introduced

in Section 3.3 in detail and for the moment, we
assume the samples in each mini-batch have been
properly clustered.

Supposing that there are K centroids c = {ci}Ki=1

after clustering, standing for K clusters C =
{Ci}Ki=1. For a sample xi in the mini-batch, we
sort the clusters C = [Ci1,Ci2,...,CiK] and cen-
troids c = [ci1,ci2,...,ciK] by their cosine similar-
ity cos(xi, cij) with xi. In this case, ci1 and ciK
are the nearest and farthest centroids to xi, respec-
tively. Therefore, xi is the most similar to ci1 and
belongs to cluster Ci1. We define the set x∗i =
{x∗ij}

count(Ci1)
j=1 , whose elements belong to Ci1, the

same cluster as xi.

Hard Negatives Zhang et al. (2022a) show that
hard negatives bring stronger gradient signals,
which are helpful for further training. The criti-
cal question is how to discover or even produce
such negatives. In our method, the introduced cen-
troids c can be viewed as hard negative candidates.
We get rough groups in mini-batch after clustering
and sorting by similarity. For the sample xi, we
pick the centroid ci2 as its hard negative. The rea-
son is that ci2 gets the highest similarity with xi
among all the centroids (except for ci1 which xi
belongs to) while having a different cluster.

In this way, all the samples have proper centroids
as their hard negatives, and the training objective
Lcl is as follows:

Lcl =− log
esim(xi,x

+
i )/τ

N∑
j=1

(
e
sim(xi,x+j )/τ + μe

sim(xi,x−j )/τ
)

(2)
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where x−j is the hard negative corresponding to xj ,
μ is the weight of the hard negative. Note that ci1
is more similar to xi compared with ci2, which is
another candidate for the hard negative. We have
compared the different choices in the ablation study
described in Section 4.4.

False Negatives For sample xi, we aim to 1) rec-
ognize the false negatives in the mini-batch and 2)
prevent them from being pushed away incorrectly
in the semantic space. For the former, we treat ele-
ments in x∗i as false negatives, since they belong to
the same cluster and share higher similarity with xi.
For the latter, it is unreliable to directly use them
as positives, since the labels are missing under the
unsupervised setting. However, the different simi-
larity between the anchor sample and others can be
summarized intuitively as the following Eq. (3):

cos(xi, x
−
i ) ≤ cos(xi, x

∗
ij) ≤ cos(xi, x

+
i ) (3)

where x∗ij ∈ x∗i . False negatives have higher simi-
larity with the anchor than normal negatives while
lower similarity than the positives. Inspired by
Wang et al. (2022a), we introduce the bidirectional
margin loss (BML) to model the similarity between
the false negative candidates and the anchor:

Δxi = cos(xi, x
∗
i )− cos(xi, x

+
i ) (4)

Lbml = ReLU(Δxi+α)+ReLU(−Δxi−β) (5)

BML loss aims to limit cos(xi, x∗i ) in an appro-
priate range by limiting Δxi in the interval [−β,
−α]. Accordingly, we find the potential false neg-
atives in the mini-batch and treat them differently.
Combining Eq. (2) and Eq. (5), we obtain the final
training objective function as follows:

L = Lcl + λLbml (6)

where λ is a hyperparameter.

3.3 In-Batch Clustering
K-means clustering is the base method we use,
while we need to overcome computational chal-
lenges during the training process. It is very inef-
ficient to cluster the large training corpus. How-
ever, we need to do clustering frequently due to the
continuously updating embeddings. Therefore, we
design the training process with clustering in Algo-
rithm 1. Briefly speaking, we use cosine similarity
as the distance metric, cluster the mini-batch and
update the centroids with momentum at each step.

Algorithm 1 Training with Clustering.
Input: Model parameters: θ; Training dataset: D;

Total update steps: T ; Warm-up steps: S

1: for t = 1 to T do
2: Get the sentence embeddings {xi}Ni=1 for

each mini-batch
3: if t == S then
4: Initialize centroids c with mini-batch sam-

ples heuristically
5: end if
6: if t > S then
7: Update centroids c with {xi}Ni=1

8: Provide centroids as hard negatives
{x−i }Ni=1

9: Calculate Lbml for false negatives
10: end if
11: Calculate Lcl

12: Loss backward and optimize θ
13: end for

Centroids Initialization We show the initializa-
tion in line 3–5 in Algorithm 1. The clustering is
not performed at the beginning, since high initial
similarity of embeddings harms the performance.
Instead, we start clustering a few steps after the
training starts, being similar to the warm-up pro-
cess. When initializing, as line 4 shows, we select
K samples as initial centroids heuristically: each
centroid to be selected should be the least similar
to last centroid.

Clustering and Updating We now describe line
7 in detail. First, we assign each sample into the
cluster whose centroid have the highest cosine simi-
larity with the sample. After clustering finishes, we
calculate a new centroid embedding for each clus-
ter by averaging embeddings of all samples in the
cluster with Eq. (7), and then update the centroid
in the momentum style with Eq. (8):

x̃i =
1

Ni

∑

xj∈Ci

xj (7)

ci = (1− γ)ci + γx̃i (8)

where γ is the momentum hyperparameter and Ni

indicates the number of elements in cluster Ci. Fi-
nally, based on the clustering results, we calculate
the loss and optimize the model step by step (in
line 9–12).

The method can be integrated with other con-
trastive learning models, maintaining high effi-
ciency.
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Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Non-Prompt models

GloVe embeddings 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase embeddings 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
*ClusterNS-BERTbase 69.93 83.57 76.00 82.44 80.01 78.85 72.03 77.55
RoBERTabase embeddings 32.11 56.33 45.22 61.34 61.98 54.53 62.03 53.36
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
ESimCSE-RoBERTabase 69.90 82.50 74.68 83.19 80.30 80.99 70.54 77.44
DCLR-RoBERTabase 70.01 83.08 75.09 83.66 81.06 81.86 70.33 77.87
*ClusterNS-RoBERTabase 71.17 83.53 75.29 82.47 82.25 81.95 69.22 77.98
SimCSE-BERTlarge 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
MixCSE-BERTlarge 72.55 84.32 76.69 84.31 79.67 79.90 74.07 78.80
DCLR-BERTlarge 71.87 84.83 77.37 84.70 79.81 79.55 74.19 78.90
*ClusterNS-BERTlarge 71.64 85.97 77.74 83.48 79.68 80.80 75.02 79.19

Prompt-based models
PromptBERTbase 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
*ClusterNS-BERTbase 72.92 84.86 77.38 84.52 80.23 81.58 69.53 78.72
ConPVP-BERTbase 71.72 84.95 77.68 83.64 79.76 80.82 73.38 78.85
SNCSE-BERTbase 70.67 84.79 76.99 83.69 80.51 81.35 74.77 78.97
PromptRoBERTabase 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
ConPVP-RoBERTabase 73.20 83.22 76.24 83.37 81.49 82.18 74.59 79.18
SNCSE-RoBERTabase 70.62 84.42 77.24 84.85 81.49 83.07 72.92 79.23
*ClusterNS-RoBERTabase 74.02 85.12 77.96 84.47 82.84 83.28 70.47 79.74
PromptBERTlarge 73.29 86.39 77.90 85.18 79.97 81.92 71.26 79.42
ConPVP-BERTlarge 72.63 86.68 78.14 85.50 80.13 82.18 74.79 80.01
SNCSE-BERTlarge 71.94 86.66 78.84 85.74 80.72 82.29 75.11 80.19
*ClusterNS-BERTlarge 73.99 87.53 78.82 85.47 80.84 82.85 72.59 80.30

Table 1: Overall Results on STS tasks of Spearman’s correlation coefficient. All baseline results are from original or
relative papers. We use symbol * to mark our models. Best results are highlighted in bold.

4 Experiments

4.1 Evaluation Setup

Our experiments are conducted on 7 semantic tex-
tual similarity (STS) tasks (Agirre et al., 2012,
2013, 2014, 2015, 2016; Cer et al., 2017; Marelli
et al., 2014) and the models are evaluated with the
SentEval Toolkit (Conneau and Kiela, 2018). We
take the Spearman’s correlation coefficient as the
metric and follow the Gao et al. (2021)’s aggrega-
tion method of results.

4.2 Implementation Details

Our code is implemented in Pytorch and Hugging-
face Transformers. The experiments are run on a
single 32G Nvidia Tesla V100 GPU or four 24G
Nvidia RTX3090 GPUs. Our models are based
on SimCSE (Gao et al., 2021) and PromptBERT

(Jiang et al., 2022), and named as Non-Prompt Clus-
terNS and Prompt-based ClusterNS, respectively.
We use BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) as pre-trained language models
for evaluation, with training for 1 epoch and evalu-
ating each 125 steps on the STS-B development set.
We also apply early stopping to avoid overfitting.
Hyperparameter settings and more training details
are listed in Appendix A.

4.3 Main Results

We present the experiment results in Table 1. We
compare with four types of models totally, 1)
vanilla embeddings of Glove, BERT and RoBERTa
models, we report their results provided by Gao
et al. (2021). 2) Baseline models: BERT-flow
(Li et al., 2020a), BERT-whitening (Su et al.,
2021), SimCSE (Gao et al., 2021) and Prompt-
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BERT (Jiang et al., 2022). 3) SimCSE-based
models: MixCSE (Zhang et al., 2022a), DCLR
(Zhou et al., 2022) and ESimCSE (Wu et al., 2022).
4) PromptBERT-based models: ConPVP (Zeng
et al., 2022) and SNCSE (Wang et al., 2022a). We
compare SimCSE-based models with Non-Prompt
ClusterNS, and PromptBERT-based models with
Prompt-based ClusterNS, respectively. In this way,
identical representation of sentence embeddings is
guaranteed for a fair comparison.

Our conclusions are as follows, comparing with
two baseline models, SimCSE and PromptBERT,
all ClusterNS models achieve higher performance,
indicating their effectiveness and the importance of
negative sampling. For non-prompt models, Clus-
terNS surpasses MixCSE and DCLR in BERTlarge,
and for prompt-based models, ClusterNS also sur-
passes ConPVP and SNCSE in BERTlarge and
RoBERTabase. All these models improve negative
samples through sampling or construction, demon-
strating our models’ strong competitiveness. At
last, Prompt-based ClusterNS achieves the state-
of-the-art performance of 79.74, which is the best
result for models with RoBERTabase.

4.4 Ablation Study

Our proposed method focuses on two issues, pro-
ducing hard negatives and processing false neg-
atives. To verify the contributions, we conduct
the ablation studies by removing each of the two
components on test sets of the STS tasks, with
Non-prompt BERT and RoBERTa models. As we
mentioned in Section 3.2, we also replace hard neg-
atives with the most similar centroids to verify our
choice of hard negatives (named repl. harder nega-
tive), and replace both centroids for hard and false
negatives with random clusters to verify our choice
of cluster centroids (named repl. random clusters).
The results are in Table 2.

Models BERTbase RoBERTabase
ClusterNS 77.55 77.98

w/o false negative 76.99(-0.56) 77.83(-0.15)
w/o hard negative 76.03(-1.52) 77.22(-0.76)

repl. harder negative 76.97(-0.58) 77.84(-0.14)
repl. random clusters 76.77(-0.78) 77.85(-0.13)
SimCSE 76.25 76.57

Table 2: Ablation results of our methods (Non-prompt
Models) on the test set of STS tasks.

We observe from Table 2 that removing either
component or replacing any part of models lead to

inferior performance: 1) Providing hard negatives
yields more improvement, since we create high sim-
ilarity sample leveraging clustering. 2) Processing
false negatives solely (without hard negatives) even
further harm the performance, indicating that pro-
viding virtual hard negatives is much easier than
distinguishing real false negatives. 3) Replacing
hard negative with most similar centroids also de-
grades the performance. Since they belong to the
identical cluster, the candidate hard negatives could
be actually positive samples. And 4) random clus-
ters are also worse, indicating that the selection of
clusters does matter. We discuss more hyperparam-
eter settings in Appendix E.

5 Analysis

To obtain more insights about how clustering helps
the training process, we visualize the variation of
diverse sentence pairs similarity during training
after clustering initialization in the Non-Prompt
ClusterNS-RoBERTabase model, and analyze the
results in detail.

5.1 In-Batch Similarity
We visualize the average similarity of positive, in-
batch negative and hard negative sentence pairs in
Figure 3. We observe that similarity of in-batch
negative drops rapidly as training progresses, indi-
cating that in-batch negatives are difficult to pro-
vide gradient signal. The hard negatives provided
by our method maintain higher similarity, which
properly handles the issue. Also notice that the sim-
ilarity of hard negatives is still much smaller than
positive pairs, which avoids confusing the model.

Figure 3: Variation for similarity of positive, in-batch
negative and hard negative (Hard Neg.) pairs.

5.2 Clustering Similarity
Furthermore, we also visualize the similarity re-
lated to clustering. In Figure 4, we show the av-
erage similarity of sample-nearest centroid pairs,
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Figure 4: Variation for similarity of sample-nearest
centroid pairs (Sample-centroid), Sample-hard negative
pairs, Sample-false negative pairs (Intra-cluster member
pairs), Inter-centroid pairs and In-batch negative pairs.

sample-hard negative pairs (second nearest cen-
troids, same as hard negative sentence pairs in Fig-
ure 3), inter-centroid pairs, intra-cluster member
pairs (same as false negative pairs) and in-batch
negative pairs. First, similarity of inter-centroid
pairs decreases during training, demonstrating that
clusters representing diverse semantics slowly scat-
ter. Second, false negative pairs get much higher
similarity than in-batch negatives, which indicates
the importance of recognizing them and the neces-
sity of treating them differently. At last, sample-
nearest centroid pairs and sample-hard negative
pairs maintain high similarity, demonstrating the
stability of clustering during the training process.

To answer the question what is a good hard nega-
tive, we experiment with different similarity levels.
We define a symbol σ, the average similarity thresh-
old of in-batch sentence pairs when the centroids
initialize. Since the similarity of hard negative pairs
depends on σ, we adjust the similarity level with
various σ settings.

We show the results in Figure 5 and Table 3. As
we set the threshold σ smaller, clustering begins
later and hard negatives gets larger similarity (with
the anchor sample), meaning that starting cluster-
ing too early leads to less optimal hard negative
candidates. The best performance is achieved at
σ = 0.4, the middle similarity level, verifying the
finding in our ablation study, i.e., hard negatives
are not the most similar samples.

In Figure 4, similarity of false negative pairs is
much smaller comparing with positive pairs, which
shows the distinction between positive and false
negative samples. False negatives are usually re-
garded as positive samples in supervised learning,
while it is difficult to recognize precisely in the
unsupervised setting. We argue that false negatives

Figure 5: Varition for average similarity of hard negative
pairs in different threshold σ

σ 0.2 0.4 0.6
Similarity 0.1814 0.1572 0.1442
Avg. STS 77.02 77.98 77.30
σ wo. Lbml 0.2 0.4 0.6
Similarity 0.1797 0.1574 0.1453
Avg. STS 77.43 77.83 77.46

Table 3: The average results of STS test sets in differ-
ent threshold σ with\without Lbml, similarity means
the average similarity of hard negative pairs at the last
checkpoints.

retrieved by our methods share similar topics with
the anchors, leading to higher similarity than “nor-
mal” negatives and lower similarity than positives.
We use Eq. (5) to constrain false negatives based
on this hypothesis. We also do case studies and
experiments to approve it in Appendix C.

To verify our choice of the BML loss, we imple-
ment experiments on different processing strategies
of false negatives. We compare BML loss with two
common strategies: use false negatives as positives
and mask all the false negatives. Results in Table 4
demonstrate the superiority of the BML loss.

Models Avg. STS
ClusterNS 77.98

w/o BML loss 77.83
Mask all false negatives 77.40
Use as positives 42.33

Table 4: Comparison of different false negative process-
ing on STS test sets. w/o BML loss is the same as w/o
false negative in Table 2.

6 Clustering Evaluation

We also evaluate the quality of sentence embed-
ding through clustering. We first use the DBpedia
dataset (Brümmer et al., 2016), an ontology classi-
fication dataset extracted from Wikipedia and con-
sists of 14 classes in total. We implement K-means
clustering (K=14) on the sentence embeddings of
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Models RoBERTa SimCSE ClusterNS
AMI 0.6926 0.7078 0.7355

Table 5: AMI score for K-means clustering (K=14) on
DBpedia dataset. We use Non-Prompt ClusterNS for
comparison. Higher values are better.

DBpedia, and take the adjusted mutual information
(AMI) score as the evaluation metric following Li
et al. (2020b). The results in Table 5 show that
both sentence embedding models improve the AMI
score, indicating that the cluster performance is
positively correlated with the quality of sentence
embeddings. ClusterNS achieves a higher AMI
score than SimCSE, verifying its effectiveness.

Furthermore, we follow Zhang et al. (2021a)
to conduct a more comprehensive evaluation of
the short text clustering on 8 datasets 2, including
AgNews (AG) (Zhang and LeCun, 2015), Biomed-
ical (Bio) (Xu et al., 2017), SearchSnippets (SS)
(Phan et al., 2008), StackOverflow (SO) (Xu et al.,
2017), GoogleNews (G-T, G-S, G-TS) (Yin and
Wang, 2016) and Tweet (Yin and Wang, 2016). We
perform K-means clustering on the sentence em-
beddings and take the clustering accuracy as the
evaluation metric. Results are shown in Table 6.
Our ClusterNS models achieve higher performance
than SimCSE in both two models, with an overall
improvement of 4.34 in BERTbase. Both main ex-
periments and two clustering evaluations show the
improvement of our method to the baseline, and
verify the effectiveness of improved negative sam-
pling. More details about evaluation metrics are
shown in Appendix D.

7 Alignment and Uniformity

To investigate how ClusterNS improves the sen-
tence embedding, we conduct further analyses on
two widely used metrics in contrastive learning pro-
posed by Wang and Isola (2020), alignment and
uniformity. Alignment measures the expected dis-
tance between the embeddings of positive pairs:

Lalign � E
(x,x+)∼ppos

‖f(x)− f(x+)‖2 (9)

And uniformity measures the expected distance
between the embeddings of all sentence pairs:

Luniform � log E
(x,y)∼pdata

e−2‖f(x)−f(y)‖2 (10)

2https://github.com/rashadulrakib/short-text-clustering-
enhancement

Both metrics are better when the numbers are
lower. We use the STS-B dataset to calculate the
alignment and uniformity, and consider the sen-
tence pairs with score higher than 4 as positive
pairs. We show the alignment and uniformity of
different models in Figure 6, along with the average
STS test results. We observe that ClusterNS strikes
a balance between alignment and uniformity, im-
proving the weaker metric at the expense of the
stronger one to reach a better balance. For the non-
prompt models, SimCSE has great uniformity but
weaker alignment compared to vanilla BERT and
RoBERTa. ClusterNS optimizes the alignment. On
the other hand, Prompt-based ClusterNS optimizes
the uniformity since PromptRoBERTa performs the
opposite of SimCSE. Besides, RoBERTa may suf-
fer server anisotropy than BERT, meaning that sen-
tence embeddings are squeezed in a more crowded
part of the semantic space. Therefore, RoBERTa
and PromptRoBERTa-untuned have extreme low
value of alignment, but poor uniformity.

Figure 6: Alignment and uniformity for different sen-
tence embedding models on the STS-B dataset. untuned
means the models are not fine-tuned. We mainly use
RoBERTabase models. Lower values are better.

8 Conclusion

In this paper, we propose ClusterNS, a novel ap-
proach that focuses on improving the negative sam-
pling for contrastive learning in unsupervised sen-
tence representation learning. We integrate cluster-
ing into the training process and use the clustering
results to generate additional hard negatives and
identify false negatives for each sample. We also
use a bidirectional margin loss to constrain the false
negatives. Our experiments on STS tasks show im-
provements over baseline models and demonstrate
the effectiveness of ClusterNS. Through this work,
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Models AG Bio Go-S G-T G-TS SS SO Tweet Avg.
SimCSE-BERTbase 74.46 35.64 59.01 57.92 64.18 67.09 50.78 54.71 57.97
ClusterNS-BERTbase 77.38 37.29 61.69 59.37 66.47 69.65 72.92 53.71 62.31
SimCSE-RoBERTabase 69.71 37.35 60.89 57.66 65.05 46.90 69.00 51.89 57.31
ClusterNS-RoBERTabase 65.00 36.38 58.58 57.88 65.54 52.55 74.38 51.63 57.74

Table 6: Clustering accuracy on short text clustering datasets. We use Non-Prompt ClusterNS for comparison and
evaluate on BERTbase and RoBERTabase. We reproduce all baseline results based on provided checkpoints. Best
results are highlighted in bold.

we demonstrate that it is valuable to pay more at-
tention to negative sampling when applying con-
trastive learning for sentence representation.
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A Training Details

We do grid search for the hyperparameters and list
the searching space below.

• Total batch size [256, 512]
• Learning rate [1e-5, 3e-5, 5e-5]
• Hard negative weight μ [1.0]
• Number of cluster K [96, 128, 256]
• Momentum γ [1e-3, 5e-4, 1e-4]
• Similarity threshold σ [0.2 0.3 0.4 0.5 0.6]
• Weight of Lbml [1e-2, 1e-3, 1e-4, 1e-5]
• Upper Bound of Lbml α [0, 0.05, 0.1, 0.15,

0.2, 0.25]
• Lower Bound of Lbml β [0.3, 0.4, 0.5, 0.6]

Our method has two main improvements on hard
negative and false negative, respectively. We apply
both improvements to most of the models except
one of them. We list the information in detail in
Table 7. More hyperparameter experiments are
discussed in Appendix E.

Non-Prompt BERT RoBERTa
Models Base Large Base

Hard Negative � � �
False Negative � � �
Prompt-based BERT RoBERTa

Models Base Large Base
Hard Negative � �
False Negative � � �

Table 7: Hyperparameter settings that whether to apply
both improvements on the models.

B Transfer Tasks

Following previous works, we also evaluate our
models on seven transfer tasks: MR (Pang and Lee,
2005), CR (Hu and Liu, 2004), SUBJ (Pang and
Lee, 2004), MPQA (Wiebe et al., 2005), SST-2

(Socher et al., 2013), TREC (Voorhees and Tice,
2000) and MRPC (Dolan and Brockett, 2005). We
evaluate with Non-Prompt ClusterNS models, and
use the default configurations in SentEval Toolkit.
Results are showed in Table 8. Most of our models
achieve higher performance than SimCSE and the
auxiliary MLM task also works for our methods.

C False Negative Details

We show the case study in Table 10. As we men-
tioned in Section 5, our method is able to clus-
ter sentences with similar topics such as religion
and music, demonstrating that clustering captures
higher-level semantics. However, intra-cluster sen-
tences do not necessarily carry the same meaning
and thus they are not suitable to be used as positives
directly.

We also show the variation tendency of the false
negative rate in Figure 7, which is equivalent to
the sample percentage of clusters having more than
two elements (i.e., the intra-cluster members are
the false negatives of each other). We observe that
the false negative rate maintains a high percentage
in the whole training process, which verifies the
necessity to specific handling the false negatives.

Figure 7: Variation for false negatives rate of Non-
Prompt ClusterNS-RoBERTabase in the training pro-
cess.

D Clustering Evaluation Details

We use adjusted mutual information (AMI) score
or clustering accuracy to evaluate clustering per-
formance. AMI score measures the agreement be-
tween ground truth labels and clustering results.
Two identical label assignments get the AMI score
of 1, and two random label assignments are ex-
pected to get AMI score of 0. Clustering accuracy
measures the clustering agreement with accuracy
metric, which need to map clustering results to
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Model MR CR SUBJ MPQA SST TREC MRPC Avg
GloVe embeddings 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS] embedding 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
SimCSE-BERTbase 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
w/ MLM 82.92 87.23 95.71 88.73 86.81 87.01 78.07 86.64
ClusterNS-BERTbase 82.01 85.46 94.44 89.09 86.27 88.80 73.57 85.66
w/ MLM 82.79 86.84 95.29 88.04 86.88 91.80 76.99 86.95
SimCSE-RoBERTabase 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
w/ MLM 83.37 87.76 95.05 87.16 89.02 90.80 75.13 86.90
ClusterNS-RoBERTabase 81.78 86.65 93.21 87.85 87.53 84.00 76.46 85.35
w/ MLM 83.51 88.11 94.56 86.04 88.85 92.40 76.70 87.17

Table 8: Transfer task results of different sentence embedding models. Best results are highlighted in bold.

ground truth labels with Hungary algorithm in ad-
vance.

E Supplement Experiments

E.1 Batch Size and Cluster Number

We use large batch sizes and the cluster number
K for our models in the main experiments. To
show the necessity, we implement the quantitative
analysis to compare with small batch sizes and clus-
ter numbers, and show the results in Figure 8 and
Figure 9. Both experiments of small batch sizes
and cluster numbers perform worse. We attribute
the performance degeneration to three factors: 1)
Contrastive learning requires large batch sizes in
general; 2) Smaller cluster numbers lead to more
coarse-grained clusters, weakening the clustering
performance; And 3) small batch sizes further re-
strain the number of clusters.

Figure 8: Comparisons of different batch size.

E.2 Centroids Initialization

We initialize the cluster centroids locally as men-
tioned in Section 3.3. While some other works
adopt global initialization (Li et al., 2020b), they
take the embeddings of whole dataset to initialize

Figure 9: Comparisons of different cluster number.

the centroids. We compare the two strategies by im-
plementing the global initialization version of Clus-
terNS (named global ClusterNS). We show the test
results in Table 9, and the variation of clustering
similarity in Figure 10. Overall, global ClusterNS
does not improve the performance. We obverse
that inter-centroid pairs have extreme high similar-
ity, meaning that clusters do not scatter, and the
similarity of hard negative pairs is very low, which
means hard negatives are not able to provide strong
gradient signal.

Models Avg. STS
ClusterNS-RoBERTabase 77.98
Global ClusterNS-RoBERTabase 77.81

Table 9: Comparsion of different centroid initialization
methods with Non-Prompt ClusterNS-RoBERTabase.
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Example 1
#1: Jantroon as a word is derived from an Urdu word [UNK] which means Paradise.
#2: While the liturgical atmosphere changes from sorrow to joy at this service, the faithful continue to fast
and the Paschal greeting, "Christ is risen!
#3: There is also a Methodist church and several small evangelical churches.
#4: Hindu Temple of Siouxland
#5: Eventually, the original marble gravestones had deteriorated, and the cemetery had become an eyesore.
#6: Reverend Frederick A. Cullen, pastor of Salem Methodist Episcopal Church, Harlem’s largest
congregation, and his wife, the former Carolyn Belle Mitchell, adopted the 15-year-old Countee Porter,
although it may not have been official.
#7: The also include images of saints such as Saint Lawrence or Radegund.
Example 2
#1: Besides Bach, the trio recorded interpretations of compositions by Handel, Scarlatti, Vivaldi, Mozart,
Beethoven, Chopin, Satie, Debussy, Ravel, and Schumann.
#2: Guitarist Jaxon has been credited for encouraging a heavier, hardcore punk-influenced musical style.
#3: Thus, in Arabic emphasis is synonymous with a secondary articulation involving retraction of the
dorsum or root of the tongue, which has variously been
#4: MP from January, 2001 to date.
#5: The song ranked No.
#6: The tones originate from Brown’s acoustic Martin guitar, which is set up through two preamplifiers
which are connected to their own power amplifiers.

Table 10: Illustrative examples in clusters resulting from ClusterNS. Sentences with similar topics are grouped into
clusters.

Figure 10: Variation for similarity of sample-nearest
centroid pairs (Sample-centroid), sample-hard negative
pairs, inter-centroid pairs, intra-cluster member pairs
and in-batch negative pairs in global ClusterNS, corre-
sponding to Figure 4.
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