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Abstract

Cosine similarity between two words, com-
puted using their contextualised token embed-
dings obtained from masked language models
(MLMs) such as BERT has shown to under-
estimate the actual similarity between those
words (Zhou et al., 2022). This similarity un-
derestimation problem is particularly severe
for highly frequent words. Although this prob-
lem has been noted in prior work, no solution
has been proposed thus far. We observe that
the ℓ2 norm of contextualised embeddings of
a word correlates with its log-frequency in the
pretraining corpus. Consequently, the larger
ℓ2 norms associated with the highly frequent
words reduce the cosine similarity values mea-
sured between them, thus underestimating the
similarity scores. To solve this issue, we pro-
pose a method to discount the ℓ2 norm of a con-
textualised word embedding by the frequency
of that word in a corpus when measuring the
cosine similarities between words. We show
that the so called stop words behave differently
from the rest of the words, which require spe-
cial consideration during their discounting pro-
cess. Experimental results on a contextualised
word similarity dataset show that our proposed
discounting method accurately solves the simi-
larity underestimation problem.

1 Introduction

Cosine similarity is arguably the most popular word
similarity measure used in numerous natural lan-
guage processing (NLP) tasks, such as question
answering (QA), information retrieval (IR) and ma-
chine translation (MT) (Echizen-ya et al., 2019;
Oniani and Wang, 2020; Kim et al., 2022; Hanifi
et al., 2022). First, a word is represented by a vector
(aka embedding) and then the similarity between
two words is computed as the cosine of the an-
gle between the corresponding vectors (Rahutomo
et al., 2012). Despite the good performance of co-
sine similarity as a similarity measure in various
downstream tasks, Zhou et al. (2022) showed that

it systematically underestimates the true similarity
between highly frequent words, when computed
using contextualised word embeddings obtained
from MLMs such as BERT (Devlin et al., 2018).

Compared to the problem of estimating similar-
ity between highly frequent words, the opposite
problem of estimating the similarity between (or
involving) rare (low frequency) words has received
greater attention, especially in the scope of static
word embeddings (Levy and Goldberg, 2014; Hell-
rich and Hahn, 2016; Mimno and Thompson, 2017;
Wendlandt et al., 2018). If a word is rare in a cor-
pus, we might not have a sufficiently large number
of contexts containing that word to learn an accu-
rate embedding for it. This often leads to unreliable
similarity estimations between words and has un-
desirable implications in downstream tasks such as
the detection of analogies and social biases (Etha-
yarajh et al., 2019a,b).

On the other hand, Zhou et al. (2022) studied
the impact of frequency on contextualised word
embeddings and showed that the cosine similarity
between highly frequent words are systematically
underestimated. Unlike in the previously discussed
low frequency word scenario, we do have adequate
contexts to learn an accurate semantic representa-
tion for highly frequent words. Therefore, it might
appear surprising at first that cosine similarity can-
not be correctly estimated even for the highly fre-
quent words. Zhou et al. (2021) show that the
diversity (measured by the volume of the bounding
hypersphere) of the contextualised embeddings of a
target word, computed from multiple contexts con-
taining the word, increases with the frequency of
that word. They provide an explanation that holds
true only for 2-dimensional embeddings, which
relates diversity to the underestimation of cosine
similarity. Unfortunately, this explanation does not
extend to the high dimensional embeddings used
in practice by the NLP community (e.g. BERT
token embeddings are typically more than 768 di-
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Figure 1: Cosine similarity between two instances of the
same word w in two contexts in the WiC train dataset.
When the log-frequency of w in the corpus increases,
cosine similarities computed for both contexts that ex-
press the same meaning of w as well as its different
meanings decreases.

mensional). More importantly, to the best of our
knowledge, no solution has been proposed in the
literature to address the cosine similarity underesti-
mation problem associated with the highly frequent
words.

In prior work, the ℓ2 norm of a static word em-
bedding has been shown to linearly correlate with
the log-frequency of that word (Arora et al., 2016;
Bollegala et al., 2018). On the other hand, we em-
pirically study the ℓ2 norm of the contextualised
embedding of a word w averaged over all of its
contexts, and find that it too approximately lin-
early correlates with the log-frequency of w in the
corpus used to pretrain the MLM. Recall that the
cosine similarity is defined as the inner-product
between two embeddings, divided by the ℓ2 norm
of those embeddings. Therefore, we suspect that
the underestimation of cosine similarity between
highly frequent words is due to the larger ℓ2 norms
associated with those words.

To correct for this bias associated with the ℓ2
norms of highly frequent words, we propose a lin-
early parameterised discounting scheme in the log-
frequency space. Specifically, we use Monte-Carlo
Bayesian Optimisation (Balandat et al., 2019) to
find the optimal discounting parameters. Our pro-
posed discounting method is shown to accurately
correct the underestimation of cosine similarities
between highly frequent words on the Word-in-
Context (WiC) (Pilehvar and Camacho-Collados,
2019) dataset where human similarity ratings are
available for the same word in two different con-

texts. Source code for reproducing the experiments
reported in this is paper is publicly available.1

2 Underestimation of Cosine Similarity

Let us denote the d-dimensional contextualised
word embedding produced by an MLM f for a tar-
get word w appearing in a context c by f(w, c)(∈
Rd). Moreover, let the set of contexts where
w occurs in a given corpus be S(w). We re-
fer to {f(w, c)∣w ∈ S(w)} as the set of sib-
ling embeddings of w. To study the relationship
between the cosine similarity scores and the fre-
quency of words, we use the 768-dimensional
bert-base-uncased2 as the contextualised
embedding model. We use the token embedding of
w from the final hidden layer of BERT as f(w, c).
We approximate the word frequencies in BERT pre-
training corpus using the BookCorpus (Zhu et al.,
2015). Let ψw be the frequency of w in this corpus.

We use the WiC dataset, which contains 5428
pairs of words appearing in various contexts with
annotated human similarity judgements. WiC
dataset is split into official training and develop-
ment sets, while a separate hidden test set is used
by the leaderboard for ranking Word Sense Disam-
biguation systems.3 WiC dataset contains pairs of
contexts labelled as having the same meaning (e.g.
“to drive sheep out of a field” vs. “to drive the cows
into the barn”) and different meaning (e.g. “the
play lasted two hours” vs. “they made a futile play
for power”).

We compute the cosine similarity between the
two contextualised embeddings of a target word in
two of its contexts to predict a similarity score. Fig-
ure 1 shows the predicted similarity scores for both
contexts in which a target word has been used in
the same or different meanings for all words in the
WiC dataset against log(ψw). As seen from Fig-
ure 3, ψw has a power-law distribution. Therefore,
we plot its log instead of raw frequency counts in
Figure 1.

From Figure 1, we see that for both same as well
as different meaning contexts, the predicted cosine
similarities drop with the word frequencies. More-
over, the gradient of the drop for same meaning
pairs (Pearson’s r = −0.3001) is larger than that

1https://github.com/LivNLP/
cosine-discounting

2https://huggingface.co/
bert-base-uncased

3https://pilehvar.github.io/wic/
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Figure 2: ℓ2 norm of the averaged contextualised word
embedding of a word against its log-frequency in the
pretrain corpus. Stop words and non-stop words are
shown respectively in orange and blue dots. Lines of
best fits for each category are superimposed.

Figure 3: Histogram of word frequencies in the BERT
pretrain corpus. We see a Zipfian (power-law) distribu-
tion, which turns out to be approximately liner in the
log-frequency space.

for the different meaning pairs (r = −0.2125), indi-
cating that the underestimation of cosine similarity
is more sever for the similar contexts of highly
frequent words.

3 ℓ2 norm Discounting

To understand the possible reasons behind the co-
sine similarity underestimation for highly frequent
words discussed in § 2, for each word w we com-
pute its mean sibling embedding, ŵ, given by (1).

ŵ = 1∣S(w)∣ ∑
c∈S(w)f(w, c) (1)

We plot ∣∣ŵ∣∣ against log(ψ(w)) in Figure 2 sep-
arately for a predefined set of stop words and all

other words (i.e. non-stop words). For this purpose,
we use the default 1466 stop words from NLTK and
randomly selected 997,425 non-stop words from
the BookCorpus. Pearson r values of stop words
and non-stop words are respectively 0.1697 and
0.3754, while the lines of best fits for each class
of words are superimposed. From Figure 2, we
see that overall, ∣∣ŵ∣∣ increases with log(ψw) for
both stop and non-stop words, while the linear cor-
relation is stronger in the latter class. Considering
that stop words cover function words such as de-
terminers and conjunctions that co-occur with a
large number of words in diverse contexts, we be-
lieve that the ℓ2 norm of stop words mostly remains
independent of their frequency. Recall that the co-
sine similarity between two words is defined as
the fraction of the inner-product of the correspond-
ing embeddings, divided by the product of the ℓ2
norms of the embeddings. Therefore, even if the
inner-product between two words remain relatively
stable, it will be divided by increasingly larger ℓ2
norms in the case of highly frequent words. More-
over, this bias is further amplified when both words
are high frequent due to the product of ℓ2 norms in
the denominator.

To address this problem, we propose to discount
the ℓ2 norm of a word w by a discounting term,
α(ψw), and propose a discounted version of the
cosine similarity given by (2).

cosα(x,y) = x
⊤
y∣∣x∣∣α(ψx) ∣∣y∣∣α(ψy) (2)

Following Figure 2, we linearly parameterise
α(ψw) separately for stop vs. non-stop words as in
(3).

α(ψw) = {1 +ms(bs − log(ψw)) w is a stop word
1 +mn(bn − log(ψw)) w is a non-stop word

(3)

The scalar parameters ms,mn, bs and bn are es-
timated as follows. First, we randomly initialise
all parameters uniformly in [0, 1] and use (2) to
predict cosine similarity between two contexts in
which a target word w occurs in the WiC train
instances. We then make a binary similarity judge-
ment (i.e. same or different meaning) for the pair
of contexts in an instance depending on whether
the predicted cosine similarity is greater than a
threshold θ. Next, we compute the overall bi-
nary classification accuracy for the similarity pre-
dictions made on the entire WiC training dataset,
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Figure 4: Cosine similarity between two instances of the
same word w in two contexts in the WiC train dataset,
computed using the original (non-discounted) cosine
similarity (shown in blue and green respectively for
the same and different meaning pairs) and using the
proposed ℓ2 norm discounted ((2)) (shown in orange
and red respectively for the same and different meaning
pairs). We see that the gradients of the drops have
decreased for both same and different meaning pairs
after applying the discounting.

and use Bayesian Optimisation to find the optimal
values: θ = 0.545, ms = 0.00422, bs = 0.643,
mn = 0.00427 and bn = 4.821. Specifically we
used the Adaptive Experimentation Platform4 for
learning those optimal values. We found this is
more efficient than conducting a linear search over
the parameter space. We repeat the estimation five
times and use the averaged parameter values in the
remainder of the experiments. Note that mn > ms

above, which indicates that non-stop words must
be discounted slightly more heavily than the stop
words. This makes sense since the impact of word
frequency of non-stop words on their ℓ2-norm is
stronger than that for the stop words as indicated
by the slopes of the lines of best fit in Figure 2.

4 Results

To evaluate the effect of the proposed ℓ2 norm dis-
counting when computing cosine similarity, we re-
peat the analysis presented in Figure 1 using (2) to
predict the similarity between contextualised word
embeddings. Comparing the lines of best fit for the
original (blue, r = −0.3006) vs. discounted (or-
ange, r = −0.1366) for the same meaning contexts,
we see that the gradient of the drop has decreased
by 51.65%. Likewise, comparing the lines of best
fit for the original (green, r = −0.2125) vs. dis-

4https://ax.dev/

Figure 5: Percentage of examples labelled as having the
“same meaning”. In high frequency words, we see that
the cosine similarity-based predictions (orange/middle)
are systematically underestimate the human similarity
judgements (blue/left). However, after the proposed
discounting method has been applied (green/right) the
underestimation has reduced.

counted (red, r = −0.0843) for the different mean-
ing contexts, we see the gradient of the drop has
decreased by 57.04%. This result clearly shows
that the proposed ℓ2 norm discounting method is
able to reduce the underestimation of cosine simi-
larities for the highly frequent words.

Given that the discounting parameters in (3) are
learned from the WiC train data, it remains an open
question as to how well the proposed discounting
method generalises when predicting similarity be-
tween contextualised embeddings of unseen words.
To evaluate this generalisability of the proposed
method, we use (3) with its learned parameters
from WiC train data, to predict the similarity be-
tween contextualised word embeddings in WiC dev
data.5 Specifically, we predict binary (same vs.
different meaning) similarity labels according to
the similarity threshold θ learnt in § 3 and com-
pare against the human judgements using binary
classification accuracy.

The maximum accuracy on WiC dev split ob-
tained using the original (non-discounted) cosine
similarities is 0.6667, which indicates that the co-
sine similarity is somewhat predictive of the human
binary judgements. The overall F1 is improved
by 2.4% (0.68 with original cosine vs. 0.71 with
the proposed discounting method) and recall is im-
proved by 12% (0.75 with original cosine vs. 0.84
with the proposed). On the other hand, the drop

5Note that the test set of WiC is publicly unavailable due
to being used in a leaderboard.
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in precision is 4.7% (from 0.64 to 0.61). There-
fore, the proposed method solves the cosine sim-
ilarity underestimation problem associated with
high-frequent words, without significantly affect-
ing the similarity scores for low-frequent ones

Figure 5 shows the average proportion of in-
stances predicted to be the same meaning as a func-
tion of frequency, grouped into ten bins, each with
the same number of examples. From Figure 5, we
see that in high frequency bins (i.e. bins 8, 9 and
10), the percentage of predicted instances as having
the same meaning is consistently lower than that
compared to the human judgements. This shows
an underestimation of the true (human judged) sim-
ilarity between contextualised word embeddings.

On the other hand, when we use the proposed
ℓ2 norm discounted cosine similarity (defined in
(2)), in the highest frequent bin (i.e. 10) we see
that the gap between human judgements vs. pre-
dicted similarities has reduced. Moreover, in the
low frequency bins (i.e. 1–4), we see that the pro-
posed discounting method does not affect the pre-
dictions made using cosine similarities. We see an
overestimation of the cosine similarities in the low
frequency bins as reported by Zhou et al. (2021).
As discussed already in § 1, the word embeddings
learnt for low frequency words tend to be unreli-
able due to data sparseness. Therefore, we believe
it is important to focus on the problem of learning
accurate word embeddings rather than to adjust co-
sine similarities between low-frequency words in a
post-processing step.

We see that in bins 5, 6 and 7 the similarity
scores are slightly increased by the proposed dis-
counting method, which is a drawback that needs
to be addressed in future work. More importantly
however, the overall percentage recall across all
bins for retrieving same meaning instances im-
proves significantly from 74.7% to 83.7% com-
pared to using respectively the original cosine sim-
ilarity vs. the discounted cosine similarity. Overall,
this result confirms the validity of the proposed dis-
counting method for addressing the underestima-
tion of cosine similarity involving highly frequent
words.

5 Conclusion

We proposed a method to solve the cosine simi-
larity underestimation problem in highly frequent
words. Specifically, we observed that the ℓ2 norm
of a contextualised word embedding increases with

its frequency in the pretrain corpus and proposed
a discounting scheme. Experimental results on
WiC dataset confirmed the validity of the proposed
method.

6 Limitations

We proposed a solution to the cosine similarity
underestimation problem associated with contextu-
alised word embeddings of highly frequent words.
Our evaluations used only a single contextualised
embedding model (i.e. BERT) with a single di-
mensionality (i.e. 768). Therefore, we believe that
our proposed method must be evaluated with other
(more recent) MLMs to test for its generalisability.
Moreover, our evaluations were conducted only on
the English language, which is known to be mor-
phologically limited. Although in our preliminary
experiments we considered discounting schemes
based on the part-of-speech of words (instead of
considering stop words vs. non-stop words), we did
not find any significant improvements despite the
extra complexity. However, these outcomes might
be different for more morphologically richer lan-
guages. In order to evaluate similarity predictions
in other languages, we must also have datasets sim-
ilar to WiC annotated in those languages, which
are difficult to construct. Although having stated
that using a single MLM and single language as
limitations of this work, we would like to point
out that these are the same conditions under which
Zhou et al. (2022) studied the cosine similarity un-
derestimation problem.

We used only a single dataset (i.e. WiC) in
our experiments in this short paper due to space
constraints. Other contextual similarity datasets
(e.g. Stanford Contextualised Word Similarity
(SCWS) (Huang et al., 2012)) could be easily used
to further validate the proposed discounting method
in an extended version.

7 Ethical Considerations

In this paper, we do not annotate novel datasets
nor release any fine-tuned MLMs. Therefore, we
do not see any direct ethical issues arising from
our work. However, we are proposing a method
to address the underestimation of cosine similarity
scores computed using contextualised word em-
beddings obtained from (possibly socially biased)
pretrained MLMs. We would therefore discuss the
ethical implication of this aspect of our work in this
section.
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Cosine similarity has been used in various
social bias evaluation measures such as the
WEAT (Caliskan et al., 2017), SemBias (Zhao
et al., 2018), WAT (Du et al., 2019), etc. These
methods measure the cosine similarity between a
gender and a set of pleasant or unpleasant set of
attributes to compute a social bias evaluation score.
Although originally these methods were developed
for evaluating the social biases in static word em-
beddings, they have been later extended to contex-
tualised word embeddings (Kaneko and Bollegala,
2022; Kaneko et al., 2022) and sentence embed-
dings (May et al., 2019), where cosine similarity
still remains the main underlying metric. How-
ever, Ethayarajh et al. (2019c) showed that inner-
products to be superior over cosine similarity for
social bias evaluation purposes. It remains unclear
as to how the underestimation in cosine similarities
discussed in our work would influence the social
bias evaluations. In particular, the effect of the pro-
posed ℓ2 norm discounting scheme on social bias
evaluation must be carefully studied in the future
work.
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