Kanbun-LM: Reading and Translating Classical Chinese
in Japanese Methods by Language Models

Hao Wang Hirofumi Shimizu

Daisuke Kawahara

Waseda University
{conan1024hao@akane., bowen1205@toki., dkw@}waseda.jp

Abstract

Recent studies in natural language process-
ing (NLP) have focused on modern languages
and achieved state-of-the-art results in many
tasks. Meanwhile, little attention has been
paid to ancient texts and related tasks. Clas-
sical Chinese first came to Japan approximately
2,000 years ago. It was gradually adapted
to a Japanese form called Kanbun-Kundoku
(Kanbun) in Japanese reading and translat-
ing methods, which has significantly impacted
Japanese literature. However, compared to
the rich resources for ancient texts in main-
land China, Kanbun resources remain scarce
in Japan. To solve this problem, we construct
the first Classical-Chinese-to-Kanbun dataset
in the world. Furthermore, we introduce two
tasks, character reordering and machine trans-
lation, both of which play a significant role in
Kanbun comprehension. We also test the cur-
rent language models on these tasks and discuss
the best evaluation method by comparing the
results with human scores. We release our code
and dataset on GitHub'.

1 Introduction

Classical Chinese was introduced to Japan approx-
imately 2,000 years ago (Okimori, 2017). Then
Classical Chinese began to be adapted to a Japanese
form in Japanese reading and translating methods
in the 8th century A.D. (Kin, 2010). This form
is called Kanbun-Kundoku. For simplicity, we
call it Kanbun in this paper. Kanbun has influ-
enced many famous Japanese literary works, such
as Manyoshu (Kobayashi, 1964) and The Tale of
Genji (Duan, 2008). To this day, Kanbun still oc-
cupies 50 points out of 200 in the common test for
Japanese university admissions, which shows the
deep influence of Kanbun on Japanese culture.
Although Chinese and Japanese have many char-
acters in common, reading Classical Chinese is not
easy for Japanese people because of the following

"https://github.com/nlp-waseda/Kanbun-LM

two reasons. First, Chinese (also Classical Chinese)
is in SVO (Subject-Verb-Object) word order, which
is the same as English. On the other hand, Japanese
is in SOV (Subject-Object-Verb) word order, which
leads to difficulties in understanding Chinese. Sec-
ond, Chinese is an isolating language with little to
no morphological variation and a nearly one-to-one
ratio of morphemes to words. However, Japanese
is an agglutinative language that attaches prefixes
and suffixes to a word to indicate the grammatical
relationship of that word in a sentence. These dif-
ferences led to the creation of Kanbun. To make the
text from SVO to SOV, from isolating to agglutina-
tive, Japanese people developed a system of various
conventional reading punctuation, diacritical and
syntactic markers (Crawcour, 1965). We list the
three main types of markers below and show a spe-
cific example of Kanbun in Figure 1. Since the
Kanbun system is highly sophisticated, we omit
to explain all the rules in this paper. There are
also other systems for reading Classical Chinese
in other regions like Korean Peninsula (Fujimoto,
2014) and Khitan, but we focus on the Japanese
Kanbun system in this paper.

Kaeriten (ja:i% D 5{) marks placed on the left
side of characters indicating the characters need to
be read in reverse, making the sentence from SVO
to SOV. (e.g., “FH L 5. (en:I have a brother)
should be read as “F .45, “L 7 is the mark)

Yomigana (ja:#t 4 {X £4) Hiragana (Japanese
phonological units) that are placed on the right side
of characters, indicating the characters’ reading in
Japanese. (e.g., “A° (en:no) is read as “3")

Okurigana (ja:iX D {[x#4) Katakana (Phonologi-
cal units, collectively referred to as Kana with Hira-
gana) that are placed on the right side of characters
for making the sentence from isolating to aggluti-
native. (e.g., the Chinese character “fR” (en:drink)
is “fRE>” in Japanese, which has an extra Kana)
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Figure 1: An example of Kanbun. “Z&HKARBE” (en:
This morning of spring in bed I'm lying) is original
Classical Chinese. To transform it into Kanbun, we first
add Kaeriten, Yomigana, and Okurigana to the sentence.
Two “L " on the left side are Kaeriten, indicating the
characters need to be read in reverse. On the right
side, there is a Yomigana g meaning “/N” should be
written as “9 7. “I” and “ 7 are Okurigana, making
the sentence from isolating to agglutinative. Now if we
read the sentence following the above rules, the sentence
becomes “FHKMEZ % 2 9 (While adding marks, we
use Katakana like “T” and “7”, but in a complete
sentence, we use Hiragana like “Z” and “%”. They
have no difference except for their looks).

Compared to the vast amount of research and
language resources available for Classical Chinese,
there is little research on Kanbun, and the language
resources for Kanbun are highly scarce. For in-
stance, over 48,900 Tang poems (poems written
in the characteristic style of the Tang dynasty) are
included in Quan Tangshi and are all accessible
via the Internet. However, to our knowledge, only
around 500 Tang poems adapted to Kanbun are
accessible. This large gap makes the research on
Kanbun increasingly difficult. Although a lot of
data of Kanbun exists in ancient books, it is be-
yond our ability to apply OCR to them and compile
the results into clean data. Therefore, building
a high-performance Classical-Chinese-to-Kanbun
translator is the most efficient way to address the
lack of Kanbun language resources. Moreover, un-
derstanding the mechanisms of Kanbun will also
lead to understanding Classical Japanese literature
(such as Wakan konkobun, a mixture of Japanese
and Chinese writing styles), as well as Japanese
culture and thought.

In previous work, Yasuoka (2018, 2019); Ya-
suoka et al. (2022) proposed a series of applications
for Classical Chinese using Universal Dependen-
cies (Nivre et al., 2016). Yasuoka (2020a,b) pro-
posed a method for Classical-Chinese-to-Kanbun

machine translation. However, this method is rule-
based and less precise, and the author did not make
a dataset to conduct a quantitative evaluation. In
this work, we construct the first Classical-Chinese-
to-Kanbun dataset in the world. Based on this,
we introduce Kanbun-LM, where we fine-tune lan-
guage models for reading and translating Classical
Chinese in Japanese methods, trying to fill the re-
source gap.

The main contributions of our work are summa-
rized as follows:

¢ We construct the first Classical-Chinese-to-
Kanbun dataset in the world, which addresses
the lack of Kanbun language resources.

¢ We introduce two tasks for the dataset, charac-
ter reordering and machine translation, both of
which are significant in Kanbun comprehen-
sion. We conduct quantitative evaluations for
both tasks and achieved state-of-the-art results
in both tasks using language models, which
has shown major improvement over the base-
line (Yasuoka, 2020a,b). We also construct a
pipeline for the tasks and verify whether pre-
reordering is helpful to machine translation.

* We discuss the best evaluation method for
Classical-Chinese-to-Kanbun translation by
comparing the results with human scores,
which is not covered in existing work.

2 Related Work

2.1 Work for Classical Chinese

Although Classical Chinese is still an unstud-
ied field, it has enough resources for exploration
compared to other low-resource ancient texts.
Daizhige® contains approximately 3.3 billion to-
kens and is the largest dataset for Classical Chi-
nese. The Siku Quanshu corpus is made from the
largest collection of books in Chinese history, with
36,381 volumes and approximately 997 million
words. Chinese-Poetry? is a database that contains
more than 300,000 ancient Chinese poems. There
are also several corpora with extra information that
can be used for downstream tasks. For example,
the Ancient Chinese Corpus (ACC)* is a dataset of
Zuo Zhuan (a Pre-Qin Chinese book published late

Zhttps://github.com/garychowcmu/daizhigev20
3https://github.com/chinese-poetry/chinese-poetry
*https://catalog.1dc.upenn.edu/docs/LDC2017T14
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in the 4th century BC) that contains the information
of word segmentation and POS tags.

Since BERT (Devlin et al., 2019) and BERT-
like models (Liu et al., 2019; Lan et al., 2019; He
et al., 2020) were proposed, pre-training language
models on a large corpus and fine-tuning them on
downstream tasks have become a paradigm in NLP
studies. In the Classical Chinese field, several pre-
trained models have also been proposed. Siku-
BERT and SikuRoBERTa (Wang et al., 2021) are
pre-trained on the Siku Quanshu corpus and eval-
uated on the following four tasks using the ACC
dataset: word segmentation, punctuation restora-
tion, POS tagging, and named entity recognition.
GuwenBERT? is pre-trained on the Daizhige cor-
pus and evaluated on the CCLUE® benchmark.
Meanwhile, GPT (Radford et al., 2019)-based mod-
els such as SikuGPT2’ and T5 (Raffel et al., 2020)-
based models such as Mengzi-T5 (Zhang et al.,
2021) are also proposed for text generation.

To evaluate the general performance of pre-
trained language models, benchmarks for natural
language understanding (NLU) tasks have been
proposed in many languages. For Classical Chi-
nese, CCLUE provides five NLU tasks, including
sentence segmentation, named entity recognition,
text classification, and text retrieval. Recently,
WYWEB (Anonymous, 2022) has been proposed.
It contains eight tasks, including sentence classifi-
cation, sequence labeling, reading comprehension,
and machine translation.

2.2 Work for Kanbun

Yasuoka (2018) proposed a method to reorder Clas-
sical Chinese sentences to Japanese reading order
using dependency parsing by Universal Dependen-
cies (Nivre et al., 2016). First, the method applies
morphological analysis to Classical Chinese sen-
tences to segment them into tokens and assign POS
tags. Second, it obtains dependency relations using
the arc-planar algorithm (Gémez-Rodriguez and
Nivre, 2010), which was mainly trained on Uni-
versal Dependencies of Mengzi, Lunyu, and Liji
(these are all ancient Chinese books). Finally, it
applies character reordering based on the results of
dependency parsing and 24 rules proposed by the
author.
Furthermore,
an encode-reorder-decode model,

Yasuoka (2020a,b) proposed
called UD-
Shitps://github.com/ethan-yt/guwenbert

Shttps://cclue.top
"https://huggingface.co/JeffreyLau/SikuGPT2

Kundoku, to translate Classical Chinese to Kan-
bun, while the encoding and reordering modules
take the approaches introduced in Yasuoka (2018).
To make the reordered sentences into Kanbun, the
author introduced a rule-based decoding module
that adds Okurigana to sentences and makes the
sentences from isolating to agglutinative. Okuri-
gana can be roughly divided into two categories:
auxiliary words and inflectional suffixes. The rules
also support special characters, such as characters
left unpronounced and characters that need to be
read twice when reading Kanbun.

Yasuoka (2020b) also conducted a brief evalua-
tion for generated Kanbun results using BLEU (Pa-
pineni et al., 2002) and RIBES (Hirao et al., 2011).
However, the author only evaluated a few examples
and did not make an in-depth discussion.

3 Our Dataset and Tasks

We construct a parallel dataset for Classical Chi-
nese and Kanbun. The dataset consists of original
ancient Chinese texts, Japanese reading orders, and
Kanbun texts. We show examples in Table 1.

Although it is crucial to choose texts that cover
as many periods as possible since vocabulary and
grammar change with time, it is difficult to con-
struct a comprehensive dataset. To our knowledge,
Tangshixuan® (Selection of Tang Poems) is the
largest resource containing both original ancient
Chinese texts and translated Kanbun texts. We
use this resource to make our dataset. For pre-
processing, we extract the Japanese reading order
from Kanbun by a rule-based program. For the
special tokens that may not appear in Kanbun or
appear multiple times, we annotated them manually.
We also convert the characters from old character
forms to new character forms (kind of like trans-
forming Traditional Chinese to Simplified Chinese,
but in Japanese character forms) using dictionaries
to mitigate the out-of-vocabulary problem.

Tangshixuan contains a total of 465 poems. We
split the dataset using group shuffle split to ensure
that all sentences in one poem would not be split.
Table 2 lists the statistics of the dataset.

Based on the dataset, we introduce two tasks,
character reordering and machine translation, both
of which are significant in Kanbun comprehension.
For character reordering, the goal is to transform
Classical Chinese texts into Japanese reading or-
ders, from SVO to SOV. Japanese reading orders as

8https://kanbun.info/syubu/toushisen000.html
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Figure 2: An overview of the pipeline. (A) is the character reordering module and (B) is the machine translation
module. (A) receives original Classical Chinese sentences and reorders them into Japanese reading order. (B)
receives reordered sentences from (A) and translates them into Kanbun.

Classical Chinese Japanese reading order Kanbun (English tr.)
BRI 12543 FRPEEZRZTS This morning of spring in bed I'm lying
AL AL T I 12453 AL IRE IS5 % i < Not wake up till I hear birds crying
PR B\ R 12345 PR BT D After one night of wind and showers
L&A Z D 12345 fE¥ED2Z L HIA®Z A%  How many are the fallen flowers

Table 1: Examples of our dataset. Each instance has a triple of the original ancient Chinese text, the Japanese
reading order (the numbers represent their index in the original text), and the translated Kanbun text.

Split Poems Sentences Characters
Train 372 2,731 16,411
Validation 46 320 2,038
Test 47 370 2,254

Table 2: Statistics of our dataset. The number of charac-
ters refers to the original ancient Chinese data.

shown in Table 1, such as “12543”, are the targets
to be predicted. Machine translation is a sequence-
to-sequence task that translates Classical Chinese
texts into Kanbun. Since the source and target
sentences share the vocabulary, it can also be con-
sidered as a multilingual rewriting task.

4 Experimental Setup

4.1 Implementation for Tasks

In this section, we introduce our implementation
details of the two tasks: character reordering and
machine translation. We also construct a pipeline
for the two tasks and verify whether pre-reordering
is helpful to machine translation. We use NVIDIA
A100 (40GB) for the experiments. Figure 2 shows
an overview of our pipeline.

For character reordering, we propose a rank-
based sorting method that fine-tunes BERT-like
models to predict the rank (position in Japanese
reading order) for every character in a sentence.

We split each sentence into characters and prepro-
cess them into inputs by the form {character}{the
character’s index in the sentence }[SEP]{sentence}.
The character’s index is added to handle the cases
where more than two identical characters appear in
one sentence. To make gold labels for training, we
normalize the ranks by the lengths of the sentences,
making the value of ranks range from O to 1 (for a
sentence of length 5, the ranks will be normalized
from 1,2, ...,5t00.2,04, ..., 1). Once we collect
the output ranks, we sort them in ascending order
and restore them to the original characters. Then
we obtain a reordered sentence. An illustration of
our sorting method is shown in (A) of Figure 2.

For machine translation, we simply fine-tune T5
and GPT to generate Kanbun from original Clas-
sical Chinese sentences. Since we want to see the
real level of each model, we did not apply any filter
to the generations.

For the pipeline, we pass original Classical Chi-
nese sentences to the character reordering module
first, making them from SVO to SOV. Then we
pass the sorted sentences to the machine transla-
tion module to add Okurigana, transforming from
isolating to agglutinative.
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4.2 Pre-trained Models
4.2.1

We conduct experiments on five models in total
for character reordering. Two models are pre-
trained on Japanese corpora, two on Chinese cor-
pora, and one on Classical Chinese corpora. All
of the models’ tokenizers are character-based be-
cause we intend to predict the exact position of
each character. We do not use multilingual mod-
els like mBERT (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020) because their to-
kenizers do not generally expect character-based
encoding.” We use the following five models, all
in base size, consisting of 12 layers, 768 dimen-
sions of hidden states, and 12 attention heads. We
show more details of the models in Appendix A
and details of fine-tuning hyper-parameters in Ap-
pendix B.

Models for Character Reordering

BERT-japanese-char This model is trained on
the Japanese version of Wikipedia.

RoBERTa-japanese-char-wwm This model is
trained on the Japanese version of Wikipedia and
the Japanese portion of CC-100 (Conneau et al.,
2020). The whole word masking (wwm) (Cui et al.,
2021) strategy is applied.

BERT-chinese This model is trained on the Chi-
nese version of Wikipedia.

RoBERTa-chinese-wwm-ext This model is
trained on 5.4B tokens, which include the Chinese
version of Wikipedia and extra data. The whole
word masking strategy is applied.

RoBERTa-classical-chinese-char  This model is
derived from GuwenBERT. Simplified characters’
embeddings are expanded to traditional characters,
making vocabulary size larger.

4.2.2 Models for Machine Translation

We use mT5 (Xue et al., 2021) and mGPT (Shli-
azhko et al., 2022) for machine translation experi-
ments. We do not use Japanese models because the
vocabulary size is much smaller than multilingual
models, and they generate many [UNK] tokens,
leading to unreadable generations. We show more
details of the models in Appendix A and details of
fine-tuning hyper-parameters in Appendix B.

°mBERT can tokenize Chinese into characters effectively.
However, there is no guarantee that it tokenizes Japanese into
characters too, since not all Japanese characters are in the CJK
Unicode range.

mTS5 mTS5 is trained on the mC4 (Raffel et al.,
2020) corpus, covering 101 languages (Chinese
and Japanese are both contained). We use small,
base, and large models in our experiments.

mGPT This model is trained on 60 languages
using Wikipedia and the mC4 corpus (Chinese and
Japanese are both contained).

4.3 Automatic Evaluation Metrics

4.3.1

Following the previous sentence reordering stud-
ies (Cui et al., 2020; Kumar et al., 2020; Zhu et al.,
2021), we use the following metrics for evaluation.

Metrics for Character Reordering

Kendall’s Tau (7) This metric measures the rank
correlation between two sentences. Fewer the num-
ber of inversions needed to sort predicted character
orders into ground truth character orders means
stronger correlation and better performance.

4(#inversions)

 #char(#char — 1)

Perfect Match Ratio (PMR) This metric mea-
sures the percentage of predicted character orders
exactly matching with ground truth orders.

4.3.2 Maetrics for Machine Translation

There is no systematic work on evaluating
Classical-Chinese-to-Kanbun translation. On top
of BLEU and RIBES, which are used by Ya-
suoka (2020b), we add ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2020) for our experi-
ments, trying to maintain the diversity of evalua-
tion metrics. We implemented all these metrics
on the basis of characters since word-based evalua-
tion highly depends on morphological analysis, and
related packages for Kanbun are still immature.

BLEU BLEU (Papineni et al., 2002) is the most
widely used metric in machine translation. It is
an n-gram-based metric that computes the exact
match precision scores of n-grams that occur in the
reference and the candidate.

RIBES RIBES (Hirao et al., 2011) is a rank-
based metric proposed to evaluate machine transla-
tion between languages with widely differing word
orders. It applies word mapping to the reference
and the candidate first, and then computes rank
correlation as scores for the evaluation.
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ROUGE ROUGE (Lin, 2004) is a commonly
used n-gram-based metric for summarization evalu-
ation. Lin (2004) proposed ROUGE-n, which com-
putes the exact match recall scores of n-grams, and
ROUGE-L, which computes scores using longest
common subsequence instead. Since ROUGE-1,
ROUGE-2, and ROUGE-L did not show much
difference in our experiments, we only report
ROUGE-L’s results in this paper.

BERTScore BERTScore (Zhang et al., 2020) is
an embedding-based metric that computes a sim-
ilarity score for each token in the candidate with
each token in the reference. To calculate character-
based scores, we use BERT-japanese-char (layer
11) in our experiments.

4.4 Manual Annotations

We recruited three people who are bilingual in Chi-
nese and Japanese as our human annotators. There
are two criteria for annotator selection: (1) ability
to read Classical Chinese in original word order;
(2) ability to get full marks in the Kanbun part of
the Japanese university admission exam.

For character reordering, to compare with the
models, we asked the annotators to do the same
sorting task, which the models did, with no access
to reference materials and the Internet. We col-
lected results, computed Kendall’s Tau and PMR
scores, and averaged them.

For machine translation, we asked the annotators
to evaluate models’ generations according to the
following three metrics, rated on a 5-point scale
from 1 to 5 (larger is better). The reference sen-
tences were also evaluated to measure the quality of
the dataset. The annotators were allowed to search
for reference materials in this evaluation.

Relevance This rating measures how well the
translation is done, which judges whether the con-
tent is translated without any shortage or deviation.

Accuracy This rating measures the quality of a
generation, which judges whether it is lexically and
grammatically correct in Japanese.

Fluency This rating measures the fluency and
naturalness of a generation and whether the rhythm
of Classical Chinese remains.

5 Results and Discussion

5.1 Character Reordering

The results of the character reordering task are pre-
sented in Table 3. UD-Kundoku is the baseline
method that was proposed by Yasuoka (2020a,b).
Human scores are the average of the three annota-
tors’ results.

All the BERT-like models outperformed the
baseline and human scores. The two Chinese
models performed slightly better than the two
Japanese models, and RoBERTa-classical-chinese-
char, which was pre-trained on the ancient Chi-
nese corpus, performed the best. Compared
to the baseline, RoBERTa-classical-chinese-char
achieved 22.5% better Kendall’s Tau and 94.7%
better PMR scores. Compared to human scores,
RoBERTa-classical-chinese-char achieved 11.8%
better Kendall’s Tau and 29.2% better PMR scores.

Gap between the Chinese and Japanese models.
Since more ancient texts are present in a Chinese
corpus like Wikipedia, we speculate that the score
gap between the Chinese and Japanese models orig-
inates from the pre-training corpus rather than the
reading orders of the pre-training languages. Con-
sidering that this task requires converting SVO to
SOV, it would be ideal to use both Chinese and
Japanese corpora for pre-training. However, since
the existing multilingual models cannot guarantee
to tokenize an input text into characters, we leave
this validation to future work.

Additional data did not help. The two
RoBERTa models did not score higher than the
two BERT models. This is probably because many
ancient texts do not exist in the additional corpus
like CC-100 (Conneau et al., 2020), and thus the
additional training in RoOBERTa did not strengthen
the models’ understanding of Classical Chinese.

BERT is more accurate in details. When com-
paring with human scores, we had an interest-
ing finding that although the PMR scores of hu-
mans and RoBERTa-japanese-char-wwm are simi-
lar, Kendall’s Tau score of the model is 5.9% higher.
This indicates that BERT is more accurate than hu-
mans in predicting the details of the orders. Al-
though our annotators are bilingual, they are not
experts in Classical Chinese. We hope to collab-
orate with real experts in the future to conduct
experiments and see if BERT can still retain an
advantage.

8594



Model Setup T PMR
UD-Kundoku 0.770 0.402
Human 0.844 0.606
BERT-japanese-char 0.898 0.637
RoBERTa-japanese-char-wwm 0.894 0.600
BERT-chinese 0917 0.689
RoBERTa-chinese-wwm-ext 0.920 0.718
RoBERTa-classical-chinese-char 0.944 (.783

Table 3: Kendall’s Tau (7) and PMR scores of character
reordering. UD-Kundoku is the baseline, and human
scores are the average of the three annotators’ results.

Error analysis. Since the PMR score of our best
model is 0.783, most predicted orders are exactly
correct. However, we still found some error pat-
terns that the model encountered. It is not easy to
distinguish whether a pair of two characters is a
noun or a combination of a verb and a noun. More-
over, determining the order becomes challenging
when two verbs appear in a sentence.

5.2 Machine Translation

5.2.1

Table 4 lists the results of machine translation,
which contains the automatic and manual evalu-
ation metrics. UD-Kundoku is the baseline, and
the reference is the Kanbun target.

For the automatic evaluation, all our models ex-
ceeded the baseline in all evaluation metrics. The
performance of mT5 increased as the model size
increases, with mT5-large performing best. The
performance of mGPT and mT5-small are close to
each other.

For the human evaluation, we asked annotators
to evaluate only the translations of mT5-small,
mT5-large, and mGPT. This is because mT5-base
performs close to mT5-large, and the baseline’s
results are too poor to be evaluated. As with the au-
tomatic evaluation, mT5-large performed the best.
On the other hand, mT5-small significantly out-
performed mGPT in this evaluation. The refer-
ence sentences obtained very high scores, prov-
ing that our dataset’s Kanbun data is of high qual-
ity. We also calculated Fleiss’ Kappa to measure
Inter-Annotator Agreement (IAA). The results of
Fleiss’ Kappa for relevance, accuracy, and fluency
are 0.360, 0.371, and 0.341, which show fair agree-
ments (?).

Model Performance

Generation examples. We show three genera-
tion examples in Table 5. In all three examples,

mT5-large performed flawlessly, giving the same
translations as the reference. mT5-base and mT5-
small generated translations similar to mT5-large,
but with some minor errors. mGPT sometimes re-
peated the characters in the original sentences (“=”
in (a), “H4” in (b), and “JB\” in (c)), which lowers
the scores of human evaluation. “Z&” in (c) is an
example of special characters that need to be read
twice, which should be read as “A&72...9" (en:yet).
In this case, mT5-base and mT5-large generated
the correct translation. However, mT5-small and
mGPT could not recognize it as a special character.

Why is mGPT so weak? Although mGPT has
almost 1.5 times the number of parameters of mT5-
large (detailed model sizes can be found in Ap-
pendix A), its translations are not even as good as
mT5-small. Since mT5 and mGPT are both mainly
trained on mC4 (Raffel et al., 2020), the effect of
the pre-training corpus can be largely excluded.
One reason is the repetition of words that we have
explained before. For other reasons, we speculate
that the encoder modules in mT5 have a significant
role in comprehending Classical Chinese. However,
this is only a hypothesis and needs to be tested with
more future experiments.

5.2.2 Correlation between Evaluation Metrics

We show Pearson and Spearman correlation co-
efficients between the automatic evaluation met-
rics and human evaluation metrics in Table 6.
BERTScore has the greatest correlation with all
three human evaluation metrics. BLEU and
ROUGE-L also performed well. The rank-based
metric, RIBES, performed the worst. We no-
tice that, compared to BLEU and ROUGE-L,
BERTScore only has a slight lead in the correla-
tion with relevance. However, the advantage has
increased in correlation with accuracy and fluency.
We speculate that this is because BERTScore can
potentially capture sequence information (Zhang
et al., 2020), which makes it more possible to judge
whether a sentence is accurate and fluent. We also
speculate that BERTScore better suits Classical-
Chinese-to-Kanbun because Kanbun is generally
very short, which can cause BLEU and ROUGE to
be influenced by small changes.

We also show the correlation between the human
evaluation metrics in Table 6. Accuracy and flu-
ency have the greatest correlation, which indicates
that grammatically and lexically correct sentences
are also fluent. In general, the correlation between
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Model Setup BLEU RIBES ROUGE-L BERTScore Relevance Accuracy Fluency
UD-Kundoku 0.097  0.309 0.546 0.884 - - -
reference - - - - 4.958 4.951 4.949
mT5-small 0.317  0.428 0.659 0.914 3.219 3.002 3.153
mT5-base 0462  0.520 0.735 0.930 - - -
mT5-large 0.514  0.583 0.747 0.934 3.948 3.884 3.904
mGPT 0.303 0476 0.606 0.898 2.548 2.270 2.236

Table 4: Results of machine translation, containing the automatic and manual evaluation metrics. UD-Kundoku is
the baseline, and reference is the Kanbun target of translation.

Model Setup (a) (b) (©)

input BEE ST K% B AR R B

reference EAFHUTHKEIFEZFHET BEEK-> THEME R AR EE T

mT5-small AL THAFEZHT S&BK - THEMz D kR ZE L

mT5-base FEEUTHIFIZHET BB TEMIizT BHMXEZEET

mT5-large EERBRUTHIFERET x> THEME D AR ERRZEE T

mGPT FEHLUTAIFICREETE2H B TEMETALTHHT B AREZEE T T TR

(English tr.)

Laid down my pen and turned to the war Mounted my horse and left through the gates

The forest’s battle drums remain unabated

Table 5: Generation examples of machine translation. Input is the original Classical Chinese sentence, and reference

is the Kanbun target of translation.

Metric Relevance Accuracy Fluency

r p r P r p
BLEU 0.667 0.650 0.637 0.605 0.594 0.576
RIBES 0.480 0.497 0.453 0.449 0389 0417
ROUGE-L  0.688 0.677 0.631 0.610 0.599 0.584
BERTScore 0.707 0.691 0.671 0.642 0.644 0.625
Relevance - - 0.862 0.849 0.835 0.829
Accuracy 0.862 0.849 - - 0.946 0.947
Fluency 0.835 0.829 0.946 0.947 - -

Table 6: Pearson () and Spearman (p) correlation co-
efficients for relevance, accuracy, and fluency between
automatic metrics and human judgment. We also show
the correlation between each human evaluation metric.

the metrics is relatively high. To consider more
different perspectives, we hope to reduce the corre-
lation by discussing with Classical Chinese experts
and reformulating the manual evaluation metrics in
future work.

5.3 Pipeline

We show the pipeline results in Table 7. The first
row of each model is the direct machine transla-
tion results, which are also shown in Table 4. The
second row (“+ reorder’’) shows the results using
RoBERTa-classical-chinese-char to reorder charac-
ters before passing the sentences to machine trans-
lation. The third row (“+ reorder (gold)”) uses
the gold labels of the reading orders instead of the
predictions by RoOBERTa to reorder characters.

By pre-reordering using RoOBERTa, most of the
evaluation metrics of mT5-small were improved.

Model Setup BLEU RIBES ROUGE-L BERTScore
mT5-small 0.317 0.428 0.659 0914
+ reorder 0.328  0.420 0.701 0.916
+ reorder (gold) 0.359  0.451 0.727 0.919
mT5-base 0462 0.520 0.735 0.930
+ reorder 0413 0.486 0.735 0.926
+ reorder (gold) 0.461  0.529 0.770 0.932
mT5-large 0.514 0.583 0.747 0.934
+ reorder 0479  0.551 0.748 0.931
+ reorder (gold) 0.502  0.573 0.774 0.935
mGPT 0.303  0.476 0.606 0.898
+ reorder 0.303  0.467 0.612 0.894
+ reorder (gold) 0.340  0.508 0.642 0.900

Table 7: Results of the pipeline. The first row of each
model is the direct end-to-end machine translation re-
sults. The second row (“+ reorder’’) uses RoOBERTa to
sort characters before doing machine translation. The
third row (“+ reorder (gold)”) does pre-reorder by gold
labels instead of ROBERTa’s predictions.

mGPT basically remained at the original level.
While mT5-base and mT5-large showed a decreas-
ing trend in most of the metrics. We speculate that
as the model’s performance increases, the model
will gradually be able to do character reordering
and machine translation at the same time. Since
the predictions of RoOBERTa are not 100% accurate,
wrong predictions may confuse models and lead to
their inability to determine correct orders.

In contrast, by pre-reordering using the gold la-
bels, all models received some degree of improve-
ment in almost all evaluation metrics. This indi-
cates that correct pre-reordering does help machine
translation, and it is necessary to do more work on
improving the character reordering module.
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6 Conclusion and Future Work

In this paper, to address the lack of Kanbun lan-
guage resources, we used language models to
read Classical Chinese in Japanese reading orders
and translate Classical Chinese into Kanbun. We
constructed the first Classical-Chinese-to-Kanbun
dataset in the world, which includes original an-
cient Chinese texts, translated Kanbun texts, and
the Japanese reading orders.

Furthermore, we introduced two tasks for the
dataset: character reordering and machine transla-
tion. We achieved state-of-the-art results in both
tasks, which have a great lead over the baseline.
We also constructed a pipeline for the two tasks
and verified that accurate pre-reordering is helpful
for machine translation. However, the accuracy of
current reordering models is not enough, and future
efforts are needed to improve the accuracy.

Moreover, we discussed which automatic eval-
uation metric is the most suitable for Classical-
Chinese-to-Kanbun translation by computing the
correlation between the automatic and human eval-
uation metrics. In our experiments, BERTScore is
the best. However, we only tested with character-
based metrics. More experiments are still needed
to test subword-based and sentence-based metrics.

In the future, we hope to continuously update the
dataset to include an increasingly comprehensive
range of ancient texts. We also hope to collabo-
rate with experts in Classical Chinese to find the
upper bound of human character reordering accu-
racy, refine the manual evaluation metrics to a more
streamlined one, and make a deeper exploration on
the best automatic evaluation metric.

Limitations

Due to the lack of data, our dataset is not com-
prehensive since it only consists of Tang poems.
Our model may not perform well on unseen data in
other forms. We plan to update the dataset in the
future continuously.

Our evaluation metrics and generation results
for the machine translation tasks are not certified
by experts in Classical Chinese, so the results and
discussions in this paper are not entirely reliable.
We welcome more experts and researchers to join
our work in the future.

Due to the limitation of GPU resources, we do
not experiment on larger models. We welcome
researchers to test our method on large models and
make some deeper discussions.
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A Details of pre-trained models

We show the details of the pre-trained models used in our experiments below. Table 8 lists the details
of the BERT-like models for character reordering, and Table 9 lists those of the pre-trained models for
machine translation.

Table 8: Details of pre-trained models (character reordering).

model corpus #dimension #layers #heads vocabulary size
BERT-japanese-char Wikipedia (ja) 768 12 12 6,144
(cl-tohoku/bert-base-japanese-char-v2)

RoBERTa-japanese-char-wwm Wikipedia (ja) + CC-100 (ja) 768 12 12 18,377
(ku-nlp/roberta-base-japanese-char-wwm)

BERT-chinese Wikipedia (zh) 768 12 12 21,128
(bert-base-chinese)

RoBERTa-chinese-wwm-ext Wikipedia (zh) + ext 768 12 12 21,128
(hfl/chinese-roberta-wwm-ext)

RoBERTa-classical-chinese-char Wikipedia (zh) + Daizhige + ext 768 12 12 26,318

(KoichiYasuoka/roberta-classical-chinese-base-char)

Table 9: Details of pre-trained models (machine translation).

model corpus #params #dimension #layers #heads vocabulary size
mT5-small mC4 (101 languages) 172M 512 8 6 250,112
(google/mt5-small)
mT5-base mC4 (101 languages) 390M 768 12 12 250,112
(google/mt5-base)
mT5-large mC4 (101 languages) 973M 1024 24 16 250,112
(google/mt5-large)
mGPT Wikipedia + mC4 1,417M 2048 24 16 100,000

(sberbank-ai/mGPT)  (both 60 languages)

B Hyper-parameters

We show the hyper-parameters used in our experiments in Table 10. The numbers in the curly brackets
indicate that grid searches were performed to select the best fit.

Table 10: Hyper-parameters used in the experiments.

hyper-parameter value

learning rate {1e-5, 2e-5, 5e-5}

batch size {8, 16, 32}

epoch {1-20} (BERT), {10, 20, 30} (T5), {1, 2, 3} (GPT)
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