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Abstract

Instructional videos make learning knowledge
more efficient, by providing a detailed mul-
timodal context of each procedure in instruc-
tion. A unique challenge posed by instructional
videos is key-object degeneracy, where any sin-
gle modality fails to sufficiently capture the
key objects referred to in the procedure. For
machine systems, such degeneracy can disturb
the performance of a downstream task such as
dense video captioning, leading to the genera-
tion of incorrect captions omitting key objects.
To repair degeneracy, we propose a retrieval-
based framework to augment the model repre-
sentations in the presence of such key-object
degeneracy. We validate the effectiveness and
generalizability of our proposed framework
over baselines using modalities with key-object
degeneracy.

1 Introduction

Instructions, which provide detailed information
about the procedures required to achieve the de-
sired goal, are a central part of how humans acquire
procedural knowledge. Instructions decompose a
sequence of complex procedures into key objects
and the associated actions expressed as verbs. As
machine systems increasingly aim to provide real-
world utility for humans, their ability to translate
human goals into natural language instructions to
follow becomes essential (Ahn et al., 2022). In
this light, instructional captioning, summarizing in-
structional videos into a set of succinct instructions,
is thus an important component of enabling the dis-
tillation of human-level procedural knowledge to
machines.

For instructional captioning, we focus on the
task of dense video captioning (DVC) (Krishna
et al., 2017) which aims to produce a precise set
of instructions from visual input (e.g. instructional
videos). For example, to illustrate the procedure
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s2 in Figure 1, the instructional video details the
procedure, while simultaneously showing how this
action is performed. DVC system can then summa-
rize this video into a set of salient captions, form-
ing a set of instructions that enhances the visual
demonstration with informative text descriptions.
While the task of extracting a salient instruction

from complex visual input can be effortless for hu-
mans, it presents a unique challenge for machine
systems, which we denote as key-object degener-
acy. That is, machine systems can often fail at the
fundamental task of key-object recognition, which
is core to instructions. This is due to the fact that
frequently, key objects are not easily recognized
from either images (Shi et al., 2019a; Zhou et al.,
2018a) or transcripts of the frames (Huang* et al.,
2018) during a demonstrative and conversational
presentation. While humans can impute such miss-
ing information by flexibly aggregating across var-
ious available modalities, key-object degeneracy
can cause critical failures in existing DVC systems.

Input Modality Recognizability
Image (X) 56.07
+Transcript (X,T ) 63.16

+Instructional Script (X,T,R) 74.60

Table 1: Statistics of the key objects in recognizable
forms, recognizability.

To quantify the degeneracy in instructional
videos, we first conduct a study measuring the num-
ber of recognizable key objects from the images X
and transcripts T in one of our target instructional
video corpora, YouCook2 (Zhou et al., 2018a)1. We
define recognizability as the percentage of key ob-
jects which are recognizable in at least one modal-
ity, and present the statistics in Table 1.

From the result in Table 1, we can observe that
many key objects are not recognizable from the
image alone. Though we can observe that recog-
nizability improves when the image is augmented

1We provide detail of computing degeneracy in Sec. 7.2
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Figure 1: Overall illustration of our framework and a real-life example. The key object “Chicken” of procedure
s3 is hard to recognize from the images and transcripts of Frame 3 and 4 of the instructional video VS (right top),
which we call degeneracy. To repair degeneracy, we supervise the machine system to retrieve procedural sentences
(left middle) aligned to each video frame utilizing key object aware inter-frame information (connected with yellow
line), unless it fails to distinguish Frame 2 and 3, 4 and retrieve recipe sentence aligned to Frame 2 for Frame 3,4
(connected with green line). We feed frame representation augmented with the retrieved procedural sentence to the
downstream task model, DVC, whose generated caption of s3 (left bottom) becomes more detailed and contains the
key object.

with the temporally paired transcript, this does not
entirely resolve key-object degeneracy, as nearly
40% of key objects remain unrecognized. For in-
stance, in Figure 1, the key object of procedure s3,
chicken, is not recognizable from either the image
or transcript of Frame 3.

Having different reasons for degeneracy, each
modality has distinct methods to make key objects
recognizable: 1) reducing occlusion of key objects
in images or 2) reducing ambiguity by mentioning
the key objects with nouns in text. Based on the
preliminary study, we pursue the latter, and propose
a disambiguation method based on retrieval from
instructional scripts, such as recipes for cooking.

The sufficient condition of instructional scripts
for our method is that they contain disambiguated
key objects, and provide adequate coverage of
valid (key-object, action) pairs. For the YouCook2
dataset, we quantitatively confirm the efficacy of
instructional scripts in repairing degeneracy, in Ta-
ble 1, where it is shown that the instructional scripts
can successfully make the unrecognized key ob-
jects recognizable. For example, in Figure 1, the
unrecognizable key object in the third and fourth
frames, chicken, becomes recognizable after the

procedural sentence r3 ∈ RS (middle left of Fig-
ure 1) explicitly mentioning “chicken” is paired
with the image and transcript.

While such well-aligned procedural sentences
can reduce key-object degeneracy, in most cases,
there exists no alignment supervision between the
video frame and procedural sentences, as the two
are generated independently. Our solution is to
generate such alignment using a machine retriever.
However, key-object degeneracy in the video frame
negatively affects the existing retrieval systems as
well, e.g., image-text retrieval, from retrieving the
aligned procedural sentence.

Inspired by the contextualized understanding of
previous/following frames (Qi et al., 2022), our
distinction is to guide the retriever to achieve key-
object-aware alignment with procedural sentences,
by conducting retrieval based on aggregating inter-
frame information in an object-centric manner. For
this goal, we propose Key Object aware Frame
Contrastive Learning (KOFCL) for improved dif-
ferentiation of nearby frames of distinctive proce-
dures, and more robust contextualization of the key
object beyond a single procedure.

Our major contributions are threefold: 1) pro-
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pose a temporal description retrieval task to find
the procedural sentences procedurally aligned to
each frame in instructional videos, 2) propose a
key object-aware frame contrastive learning ob-
jective (KOFCL) to improve temporal description
retrieval, and 3) show the improved temporal de-
scription retrieval repairs degeneracy and improves
DVC significantly.

2 Preliminaries and Related Work

We first introduce our target domain, namely, in-
struction, and its representations and previous re-
search on their characteristics (§2.1). Our goal is
to improve the encoding of video frame G (§2.2).
Then we provide a concise overview of our down-
stream task, DVC (§2.3).

2.1 Target Domain: Instruction and Video,
Script

Instruction Instruction refers to structured
knowledge explaining how to perform a wide va-
riety of real-world tasks. An instruction S can be
represented as a list of N procedures, S = {sj}Nj=1,
where each procedure describes the action required
for the task, as a tuple of verb aj and key object set
Ôj , sj = (aj , Oj). For example, the instruction
for cooking chicken parmesan would be a list com-
posed of tuples such as (coat, [chicken, mixture])
which is written in text or shown in the video for
human consumption as depicted in Figure 1.

Instructional Video Instructional video, denoted
as VS , is a video explaining instruction S. It
consists of a list of frames, VS = {vji |i ≤
|VS | and j ≤ N}. The procedure sj is represented
in the key clip kj , the subset of video frames start-
ing at bj and ending at ej . Then, the i-th frame, vji ,
represents the corresponding procedure sj when it
is included in the key clip kj or the null procedure
s0 if it is not covered by any key clip. For exam-
ple, Frame 1 in Figure 1 explains its procedure by
showing and narrating its key objects in its image
xji and transcript tji .

It is widely known that degeneracy is prevalent in
each modality of instructional videos (Zhou et al.,
2018a). Specifically, this indicates a large differ-
ence between the key object set Oj and the key
objects recognizable in the frame vji , Ôj

i . There
have been previous works that discovered and ad-
dressed the degeneracy in a single modality of im-
age (Shi et al., 2019b) or transcript (Huang* et al.,
2018). However, our approach aims to repair the

degeneracy in both modalities, by leveraging the
procedural sentences from instructional transcripts.

Instructional Script An instructional script
RS = {rj}Nj=1 consists of procedural sentences
where each procedural sentence rj represents its
corresponding procedure sj explicitly as words
describing the action aj and the key objects Oj .
Representing procedures in disambiguated form,
previous works construct instruction S from its
corresponding instructional script RS (Lau et al.,
2009; Maeta et al., 2015; Kiddon et al., 2015). We
propose to adopt RS to disambiguate the unrecog-
nizable key object for mitigating degeneracy.

2.2 Baseline: Representation gji
A baseline to overcome degeneracy is to encode the
temporally paired image and transcript (xji , t

j
i ) into

joint multi-modal representation gji . For such pur-
pose, we leverage pretrained LXMERT (Tan and
Bansal, 2019)2, as it is widely adopted to encode
the paired image transcript of video frame (Kim
et al., 2021; Zhang et al., 2021). Specifically, the
transcript tji and image xji of the video frame vji
are fed together to pretrained LXMERT. We utilize
the representation at the special [CLS] token as the
frame representation gji as follows:

gji = LXMERT (xji , t
j
i ). (1)

We use the resulting representation G = {gji |i ≤
|VS | and j ≤ N} as features of individual frames
that will be fed to DVC systems.

2.3 Target Task: DVC

Given an instructional video VS describing instruc-
tion S, DVC consists of two subtasks of key clip
extraction and caption generation.

Key Clip Extraction Given a sequence of video
frames, key clip extraction module predicts key clip
k̂ = (b̂, ê) by regressing its starting/ending time b̂
and ê (Zhou et al., 2018a; Wang et al., 2021). It
also outputs the likelihood Pk(k̂) estimating the
predicted clip k̂ to be a key clip which is further
used to select the key clips for caption generation.

Caption Generaton The caption generation task
aims to generate caption ĉ describing the predicted
key clip k̂. The predicted key clip k̂ is fed to the

2We refer to a survey (Du et al., 2022) for overview of
multi-modal representation techniques, as our focus is not on
enhancing multi-modal representation.
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captioning module which generates each word ŵi

by estimating the probability distribution over vo-
cabulary set W conditioned on key clip k̂:

ŵi = argmaxw∈WP (w|w≤i−1, k̂). (2)

We adopt EMT and PDVC, DVC systems which
are widely adopted or SOTA, as our DVC systems.
We refer (Zhou et al., 2018b; Wang et al., 2021)
for further details, as our focus is not on improv-
ing downstream task models, but on repairing the
degeneracy of input instructional videos, which is
applicable to any underlying models.

3 Our Approach
Building on preliminaries, we now describe our
retrieval augmented encoding framework in detail.

First, we explain how instructional scripts can
contribute to repairing the degeneracy (§3.1). Our
framework combines a cross-modal TDR module
(§3.2), which can aggregate the key objects across
frames (§3.3), to build robust multi-modal repre-
sentations which repair key-object degeneracy.

3.1 Representation Augmentation with
Procedural Sentence

Our hypothesis to mitigate degeneracy is that a pro-
cedural sentence rji in RS represent a procedure s̃ji
similar to the procedure sj of each frame vji . Ex-
plaining a similar procedure, the key object set Õj

i

of rji has common key objects sufficient to repair
degeneracy. Our first distinction is to augment the
individual frame representation gji with the repre-
sentation dji of such procedural sentence rji . Thus,
when procedural sentence rji is provided with video
frame vji , more key objects become recognizable,

n(Oj
i ∩Oj) ≤ n((Oj

i ∪ Õj
i ) ∩Oj), (3)

and the degeneracy in video frames can be reduced.

3.2 Temporal Description Retrieval (TDR)
Cross-modal Retrieval for Aligning Sentences
with Frames The preliminary study in Sec. 3.1
establishes the potential of procedural sentences
to repair key-object degeneracy. However, it as-
sumes the ideal scenario where the procedure de-
scribed by the procedural sentence rj , matches
that of the frame vji , which we call procedural
alignment. However, such procedural alignment
between procedural sentences and frames is not
available in practice, as data of the two modalities
are generated completely independently.

We, therefore, propose a cross-modal retrieval
task, Temporal Description Retrieval (TDR), as a
solution to learn such procedural alignments. We
train a frame-sentence retriever, ϕ(vji , RS) to take
the query frame vji from video VS , and the instruc-
tional script RS as input, and predict, for every
procedural sentence ri ∈ RS , their relevance.The
goal of ϕ is to find the procedural sentence r̂i which
best explains the procedure sj .

Here, it is important to note that the retrieval task
itself is also susceptible to key-object degeneracy,
making TDR more challenging. In the presence of
key-object degeneracy, single-modality (image or
text) encodings can exacerbate this problem, due
to a potential information imbalance between the
two modalities. Therefore, we formulate the cross-
modal TDR as retrieving text encodings using a
joint image-text query, using the LXMERT joint
image-text representation, gji .

Finally, we augment the feature vector gji of the
frame with vector representation dji of the retrieved
procedural sentence r̂i as depicted in Figure 1.

Dense Retrieval for Efficiency There can be sev-
eral options to implement the frame-sentence re-
triever ϕ(vji , RS). Existing architectures fall into
two categories, cross retrievers and dense retriev-
ers (Humeau et al., 2020). These differ in how
the interaction between the query frame vji and the
procedural sentence rl is modeled.

As TDR conducts retrieval for each frame in
VS , efficiency should be prioritized, and we mainly
consider the dense retrieval architecture. First archi-
tecture, the cross retrieval requires the exhaustive
computation of O(|VS | × |RS |) as the vji and rl
interact within a single neural network. However,
the dense retrieval conducts the retrieval with little
computation cost, at O(|VS | + |RS |), by reusing
the encoding of the vji and rl.

Specifically, the dense retriever consists of two
distinct encoders ΩV and ΩR, which encode the
query frame vji and the procedural sentence rl in-
dependently. Then, the interaction between vji and
rl is modeled as a simple dot product operation,
resulting in retrieval as follows:

r̂i = argmaxrlΩV (v
j
i ) · ΩR(rl). (4)

For training, we adopt the contrastive learning
objective (Mnih and Kavukcuoglu, 2013), denoted
by LTDR, that guides the retriever to assign larger
relevance for the gold procedural sentence r+ than
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that of negative procedural sentences r−:

LTDR = − log
exp(ΩV (vji )·ΩR(r+))

exp(ΩV (vji )·ΩR(r+))+
∑

exp(ΩV (vji )·ΩR(r−))
,

(5)
We utilize the caption cj as the gold procedural
sentence r+, as there is no available gold proce-
dural sentence, and this approach is reported to be
effective in previous work (Gur et al., 2021). We
also utilize in-batch negatives, treating all other
gold procedural sentences representing different
procedures from the identical instructional video,
as negative procedural sentences.

3.3 Key Object-aware Frame Contrastive
Learning (KOFCL)

The key aspect separating instructional videos from
standard image-text or textual retrieval is the addi-
tional temporal dimension. In order to repair key-
object degeneracy, it is critical to aggregate inter-
frame information across this temporal dimension.
To illustrate, consider the key object of frames 3
and 4 in Figure 1, “chicken”, which is not recog-
nizable from either the transcript or the images of
Frame 3 and 4, but is clearly recognizable in both
image v11 and transcript t11 of Frame 1.

We adopt LSTM as a sequence encoder simi-
lar to existing video works (Zhou et al., 2018a)
and build LXMERT-I2 which encodes prece-
dent/following frames, g≤j

≺i and g≥j
≻i , and outputs

the resulting query frame encoding←→g j
i as follows:

←→g j
i = FCN(

←−−−→
LSTM(gji , g

≤j
≺i , g

≥j
≻i )). (6)

However, the locality of the frame-level pro-
cedure annotations biases such model to sim-
ply encode temporally local inter-frame informa-
tion (Wang et al., 2020), not the key objects. Specif-
ically, the procedures are represented as tempo-
rally local frames and such local frames of identi-
cal procedures can contribute to repair degeneracy.
However, as all local frames are not of identical
procedures, e.g. boundaries of the key clips, en-
coding such frames cannot repair degeneracy and
rather confuse the models to consider as the preced-
ing/following procedures. For Frame 3 in Figure 1,
temporally local inter-frame information of Frame
2 and 3 is redundant with the given frame, adding
little new information. Even worse, confusing that
Frame 2 and 3 describe the identical procedure, the
model misaligns Frame 3 to the procedural sen-
tence r2 of the different procedure. On the other
hand, identifying the key object which appears in

Frame 1, and binding this information into the en-
coding for Frame 3, would successfully repair the
key-object degeneracy of Frame 3.

A recent approach, frame contrastive learning
(FCL) (Dave et al., 2022), partially addresses the
temporal locality bias. It regards the arbitrary frame
pair (vji , v

m
n ) as positive when they represent iden-

tical procedure and negative otherwise as follows:

1(vji , v
m
n ) =

{
1, ifj = m

0. otherwise
(7)

What makes FCL address the temporal locality bias
is that it supervises the difference in the procedures
between the local frames so that local frames of
different procedures, such as Frame 2 for given
Frame 3 in Figure 1, can be less aggregated.

Then, the frame encoder is supervised to map
the frames of identical procedures close together in
the representation space, while pushing away those
of different procedures by FCL loss, Laux(vji , vmn ),
defined as follows:

yin = σ(←→g j
i ·Waux · ←→g m

n ) (8)

Laux(vji , vkl ) = BCE(1(vji , v
m
n ), yin), (9)

where σ is sigmoid function and Waux is parameter
of bilinear layer. Finally, the retriever is optimized
to simultaneously minimize LTDR and Laux:

L = LTDR + λauxLaux, (10)

where λaux is a hyper-parameter weighing contri-
bution of Laux during training.

However, FCL is limited to contextualizing local
frames of identical procedure as the inter-frame
information. To extend such contextualization be-
yond the single procedure, we propose key object-
aware frame contrastive learning (KOFCL), which
encourages contextualizing the frames of different
procedures when they share common key objects,
based on a globally shared notion of key objects.
The clear advantage of such contextualization is
that it enables retrieving the correctly aligned pro-
cedural sentence, even when key objects are hardly
recognizable in the query frame, by leveraging key-
object information. For example, the missing key
object “chicken” of Frames 3 and 4 in Figure 1 can
be found in Frame 1 of procedure s1, where Frames
1, 3, and 4 will be encouraged to share similar rep-
resentations through KOFCL. More concretely, we
label the frame pair vji and vmn as positive when
they have common key objects. To measure how
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many key objects a frame pair shares, we com-
puted the intersection of union (IoU) between the
key object set of frame pair3 as follows:

IoUobj(v
j
i , v

m
n ) =

n(Oj ∩Om)

n(Oj ∪Om)
. (11)

Using IoUobj(v
j
i , v

m
n ), we labeled the frame pair,

vji and vmm , when they share key objects over pre-
defined threshold µ as follows:

1obj(v
j
i , v

m
n ) =

{
1, if IoUobj(v

j
i , v

m
n ) > µ

0. otherwise
(12)

Converting the FCL label in Eq.(7) into our pro-
posed label in Eq.(12), KOFCL supervises to map
frame pair, vji and vmn , close when they not only
describe the identical procedure but also share key
objects. Thus, the retriever can build a more robust
understanding of the key objects in the query frame
vji with key object aware inter-frame information.

4 Experimental Setup
4.1 Dataset
We used two distinct instructional video datasets,
YouCook2 (Zhou et al., 2018a), a dataset of in-
structional cooking videos and IVD (Alayrac et al.,
2017), a dataset of instructional videos with 5
distinct goals such as CPR, jump the car. As
each video provides its goals, we collected the
instructional scripts by querying its goal to the
web archive4 for YouCook2 following previous
work (Kiddon et al., 2015) and the Google search
engine for IVD dataset. Our instructional script
collection contains an average of 15.33 scripts with
10.15 sentences for each goal in YouCook2 and 1
instructional script with an average of 7.4 sentences
for each goal in IVD dataset. We used transcripts
generated by YouTube ASR engine following pre-
vious works (Xu et al., 2020; Shi et al., 2019a,
2020).5

4.2 Evaluation Settings
TDR We evaluated TDR in two distinctive set-
tings to utilize both gold captions and our collected
instructional scripts. First, we report the recall
metric (R@K) of the gold captions, where all the

3Human-annotated key object is limited to subset of videos.
Therefore, we applied pos-tagging on the groud-truth caption
and filtered out the nouns and proper nouns.

4www.allrecipes.com
5We provide further details of our datasets in Appendix 7.4

captions in the same video are considered candi-
dates for retrieval. Second, we evaluated TDR
performance on our collected instructional scripts
using NDCGROUEGE−L metric (Messina et al.,
2021a,b). It replaces the relevance annotation be-
tween the query frame and procedural sentences
with lexical similarity score, ROUGE-L, between
gold captions and procedural sentences. We report
each metric on top-1/3/5 retrieval result. Especially,
for recall metrics, we mainly considered the top-1
retrieval result as our priority is to address key ob-
ject degeneracy. Specifically, retrieving sentences
of different procedures containing the same key
objects may result in a slightly lower R@3,5.

DVC For the caption generation of DVC, follow-
ing convention (Krishna et al., 2017; Zhou et al.,
2018b), we report lexical similarity of generated
captions with gold captions, using BLEU@4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), CIDEr (Vedantam et al., 2015), and Rouge-
L (Lin, 2004), abbreviated as B-4, M, C, and R. For
the key clip extraction, we report the average recall
of the predicted key clips denoted as AR follow-
ing convention (Escorcia et al., 2016; Zhou et al.,
2018b). For every metric, we provide the average
and standard deviation of 5 repetitive experiments.

5 Results
We now present our experimental results, aiming to
address each of the following research questions:
RQ1: Is our cross-modal retrieval using joint
image-text query more effective than standard re-
trieval approaches for TDR?
RQ2: Does KOFCL address key-object degeneracy
in TDR, and help the retriever to build a robust
understanding of key objects?
RQ3: Does retrieval-augmentation using procedu-
ral sentences improve DVC by repairing key-object
degeneracy?

5.1 RQ1: Effectiveness of joint image-text
query formulation for TDR

Query Encoder Input R@1 R@3 R@5
BM25 tji 35.02 59.34 74.88
BERT tji 41.45 72.4 86.95
TERAN xji 39.73 72.39 86.75
NAAF xji 39.37 72.89 88.17
LXMERT xji , t

j
i 47.30 78.50 91.14

LXMERT (NAIVE DISAMB.) xji , τ
j
i 44.75 77.31 90.42

LXMERT-I2+KOFCL (Ours) xji , t
j
i 56.83 84.49 94.45

Table 2: Recall (R@1,3,5) for Youcook2 Retrieval with
different query frame modality
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Dataset YouCook2 IVD
Metric NDCG R@K R@K
Query Encoder K=1 K=3 K=5 K=1 K=3 K=5 K=1 K=3 K=5
LXMERT 39.56 41.93 43.50 47.30 78.50 91.14 30.83 62.10 78.54
LXMERT-I2 41.90 44.21 45.99 55.24 85.86 95.09 40.35 77.77 89.83
+FCL 42.01 44.25 45.82 55.88 85.55 94.89 40.51 74.46 87.15
+KOFCL (OURS) 42.73 44.92 46.50 56.83 84.49 94.45 43.42 76.58 87.86

Table 3: Temporal description retrieval results ablated on inter-frame information

To verify the effectiveness of our joint image-
transcript query formulation for TDR, we compare
our approach with baselines consisting of existing
textual and image-text retrieval systems as follows:

• BM25 (Robertson, 2009) and BERT (Devlin
et al., 2019) are widely used approaches in
text retrieval. We adopt them as a baseline
using the transcript as a query.

• TERAN (Messina et al., 2021a) and
NAAF (Zhang et al., 2022) are the state-of-
the-art image-text retrievers. We adopt them
as baselines using the image xji as a query.

Table 2 shows TDR result of the baselines and
our joint image-text query formulation LXMERT
for the YouCook2 dataset. We can observe that
baselines using single modality queries, i.e. BM25
or TERAN, are insufficient for finding the aligned
procedural sentence, with R@1 score lower than
40%. LXMERT shows higher TDR results with
large margins over baselines in every metric, con-
firming the effectiveness of our proposed joint
image-transcript query. For comparison, we also
include the TDR result of our full model, which
further improves significantly over LXMERT.

Additionally, we compare a straightforward
method to repair degeneracy, by disambiguat-
ing pronouns in transcripts. Following previous
work (Huang* et al., 2018), we use a co-reference
module (Gardner et al., 2017) to convert transcripts
into their disambiguated versions, τ ji . Interestingly,
we observe a degradation of TDR in every metric.
We hypothesize that the co-reference resolution
introduces noise from several sources, including
the module’s inaccuracy itself, but also incorrect
pronoun resolution using key objects belonging to
other, adjacent procedures.

5.2 RQ2: KOFCL contextualize key objects
and improves TDR.

Next, we evaluate the effectiveness of inter-frame
information, in conjunction with KOFCL, in im-
proving the performance of TDR. In Table 3, we re-
port the respective results of TDR on the YouCook2

and IVD datasets, with varying inter-frame infor-
mation supervision approaches.

First, on both datasets, we observe a large im-
provement of LXMERT-I2 over LXMERT, re-
flecting the importance of inter-frame information
for TDR. Next, we focus on the effect of jointly
supervising LXMERT-I2 with FCL or KOFCL.
When LXMERT-I2 supervised by FCL, the in-
crease in R@1 is negligible. In contrast, when
supervised with our proposed KOFCL, we can ob-
serve a meaningful improvement in R@1, on both
datasets. These results indicate that KOFCL im-
proves TDR by capturing key-object aware inter-
frame information in a generalizable manner.

Query Encoder R@1
LXMERT-I2 55.04
+FCL 55.16
+KOFCL (OURS) 56.99

Table 4: Recall@1 score on the isolated set.

In order to further verify that KOFCL contextual-
izes key objects and repairs key-object degeneracy,
we collect an isolated subset of YouCook2, where
nearby frames are prone to confuse frame-sentence
retrievers with a temporal locality bias. Specifi-
cally, we collect the query frames vji whose cor-
responding procedure sj has distinct6 key objects
from neighboring procedures sj−1 and sj+1.

We report the R@1 score on this isolated set
in Table 4. Whereas FCL fails to improve over
LXMERT-I2, R@1 improves meaningfully when
the frame-sentence retriever is supervised with
our proposed KOFCL. These results indicate that
KOFCL contributes to the contextualization of key
objects, and alleviates the temporal locality bias.

5.3 RQ3: Retrieved procedural sentences
repair degeneracy and improve DVC

Next, we evaluate the impact of repairing degener-
acy on improving downstream task of dense video

6We considered procedure sj to have distinct key objects
with neighboring procedures when their IoUobj defined in
Eq.(12) is lower than 0.05
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DVC Model EMT PDVC

Representation
Captioning KCE Captioning KCE

M C R B-4 AR M C R B-4 AR
gji 7.140.20 18.201.09 20.130.52 0.800.09 65.912.95 6.210.42 28.762.61 14.460.75 1.180.16 17.171.09
gji ; d

j
i w/ τ ji 8.030.25 21.680.61 21.950.80 1.000.08 66.552.99 6.800.44 31.222.10 15.580.94 1.290.14 19.061.27

gji ; d
j
i w/ LXMERT-I2 + KOFCL 8.370.25 24.370.67 22.950.44 1.400.17 68.931.72 7.170.15 33.860.78 16.550.45 1.320.13 20.160.83

Table 5: BLEU-4, METEOR, CIDEr, Rouge-L for captioning, Average Recall (AR) for Key Clip Extraction (KCE).

captioning, which is the main objective of this work.
We evaluate our proposed approach, which uses a
trained retriever to retrieve procedural sentences
from instructional scripts to augment frame rep-
resentations, with a baseline without any consid-
eration of key-object degeneracy, as well as an
advanced baseline, which augments frame repre-
sentations using the disambiguated version of the
transcript τ ji , instead of procedural sentences.

We first report the DVC performance on
YouCook2 in Table 5. The advanced baseline,
which augments the baseline representation gji
with dji using τ ji , improves performance on both
captioning and key clip extraction, showing that
DVC can be improved by augmenting frame rep-
resentations with disambiguated key-object infor-
mation. Notably, our proposed framework, which
augments using procedural sentences retrieved us-
ing the LXMERT-I2 + KOFCL retriever, signifi-
cantly outperforms both baselines, on all metrics
measured, for both tasks. These results indicate
that by repairing key-object degeneracy, our re-
trieved procedural sentences are a better source to
augment frame representations for DVC. Moreover,
our augmented representations improve results on
both EMT and PDVC downstream models, which
confirms that our method can be easily applied to
improve standard DVC systems, without dramatic
modification of the downstream task models.

Representation
Captioning KCE

M C R B-4 AR
gji 7.140.20 18.201.09 20.130.52 0.800.09 65.912.95
gji ; d

j
i w/ τ ji 8.030.25 21.680.61 21.950.80 1.000.08 66.552.99

gji ; d
j
i w/ LXMERT 7.690.21 20.400.69 21.910.49 1.120.15 66.851.08

gji ; d
j
i w/ LXMERT-I2 7.970.33 21.801.21 22.340.50 1.200.15 67.670.25

gji ; d
j
i w/ LXMERT-I2 + KOFCL 8.370.25 24.370.67 22.950.44 1.400.17 68.931.72

Table 6: BLEU-4, METEOR, CIDEr, Rouge-L for cap-
tioning, Average Recall (AR) for Key Clip Extraction
(KCE).

Representation
Captioning KCE

M C R AR
gji 9.20.73 61.693.73 14.880.61 36.072.08
gji ; d

j
i w/ LXMERT-I2 16.011.26 102.656.84 24.521.13 27.830.97

gji ; d
j
i w/ LXMERT-I2 + KOFCL 19.760.85 123.694.88 29.790.96 37.971.61

Table 7: Dense video captioning results on IVD dataset.
METEOR, CIDEr, Rouge-L for captioning, Average
Recall (AR) for Key Clip Extraction (KCE).

Next, we conduct an ablation study of the contri-
bution of each of our framework components. In
Tables 6 and 7, we report the results of DVC on
YouCook2 and IVD respectively, using the EMT
model with various frame-sentence retrievers. The
results confirm that the improvement in the retrieval
outcomes translates to better downstream perfor-
mance on DVC, with LXMERT-I2 and KOFCL
meaningfully improving DVC performance on both
datasets. Also, our proposed retrieval augmen-
tation method showed more improvement in the
IVD dataset than YouCook2. The key difference
between the Youcook2 and IVD datasets is that
the IVD dataset is composed of more distinctive
instructions, such as “jump the car”, “re-pot the
plant” and “make coffee”, than YouCook2, which
contains only cooking instructions. For such dis-
tinctive instructions, knowing the key objects can
act as clarifying information about the instruction
and thus can help generate more accurate captions.

Representation Definite Degenerative
gji 16.38 13.61
gji ; d

j
i w/ LXMERT-I2 + KOFCL 15.33 17.15

Table 8: CIDEr scores results on definite/degenerative
sets.

Finally, to verify that the improvement in DVC
performance is attributable to the repair key-object
degeneracy, we divided the test set into definite
and degenerative sets and compared the results
of baseline representation gji and our augmented
representation gji ; d

j
i w/ LXMERT-I2 + KOFCL.

Specifically, the caption cj is considered degener-
ative when the video frames corresponding to the
ground-truth key clip kj have lower than 60% rec-
ognizability of image and transcript, and definite
when the recognizability is higher than 80%. In
Table 8, in contrast to representation gji , whose
CIDEr score decreases on the degenerative set, our
augmented representation gji ; d

j
i w/ LXMERT-I2 +

KOFCL increases the score on the degenerative set,
showing that our augmented representation using
retrieved procedural sentences is effective in re-
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solving the key-object degeneracy in instructional
videos.

6 Conclusion

We proposed retrieval-augmented encoding, to
complement video frames, by repairing degener-
acy and considering correlations between steps.
Our evaluation results validated that our proposed
framework improves existing DVC systems signifi-
cantly.

Limitations

Our method overcomes degeneracy in instructional
videos under the assumption of the existence of
textual instructional scripts describing the exact
instructions of instructional videos. Thus, our
method is applicable to instructional videos hav-
ing such recipe documents. However, we note that
similar documents exist for various types of instruc-
tions other than cooking, such as topics in other
datasets (Alayrac et al., 2017), e.g., how to jump
start a car, or change a tire.
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7 Appendix

7.1 Implementation Details

7.1.1 Temporal Description Retrieval
For temporal description retrieval, we followed the
convention of (Krishna et al., 2017; Zhou et al.,
2018b; Shi et al., 2019a) and obtained the image
frames from the video by down-sampling for every
4.5s. The obtained image frames are then fed to
pre-trained object detector (Anderson et al., 2018)
to yield the sequence of object region features. For
image encoder Ωv and the text encoder Ωr, we
used the image encoder of pretrained LXMERT
and BERT-base-uncased (Devlin et al., 2019), re-
spectively. For training temporal description re-
trieval, we used one video as a batch, resulting in
all the sampled frames and recipe sentences in a
batch coming from the same video. We adopt an
Adam optimizer with a learning rate of 0.0001. We
set the weighing contribution λaux in Eq. 10 to
be 0.05 and the threshold µ for KOFCL to be 0.1,
based on validation set result.

7.2 Computation of Recognizability

To compute the joint recognizability of the image
and transcript, instructional script, we first com-
puted the recognizability in each modality. In the
image, we considered the key objects to be recog-
nizable when they are labeled to be inside the image
without occlusion in human annotation (Shen et al.,
2017). In the textual modality, transcript and in-
structional script, the key objects are considered to
be recognizable when they are lexically referred in
transcripts or instructional scripts. Then, we con-
sidered the key objects to be recognizable when
they are in the union of the recognizable key object
set of each modality.

7.3 Ablation on Sequence Encoder

Here, we show the result of TDR with distinct
sequence encoders. In Table 9, LSTM showed the

Sequence Encoder R@1
CNN 50.65
TRANSFORMER 43.69
LSTM (OURS) 55.04

Table 9: Recall@1 score with different sequence en-
coder.

highest R@1 score. While we adopted LSTM as
our sequence encoder, our KOFCL is orthogonal
to any sequence encoder and can be adapted to any
existing sequence encoder.

7.3.1 Dense Video Captioning
EMT For the key clip extraction task, we follow
the convention of (Zhou et al., 2018b) to use 16
different kernel sizes for the temporal convolution
layer, i.e., from 3 to 123 with the interval step of
8, which can cover the different lengths. We use
a transformer encoder and decoder with 768 inner
hidden sizes, 8 heads, and 2 layers which we fed
context-aware recipe sentences and video frame
features after concatenation. We adopt an AdamW
optimizer with learning rate of 0.00001 to train the
model. The batch size of training is 12 and we use
one RTX2080Ti GPU to train our model.

PDVC We use single transformer models with
768 inner hidden sizes, 12 heads, and 2 layers
which we fed context-aware recipe sentences and
video frame features after concatenation. We adopt
an AdamW optimizer with learning rate of 0.00005
to train the model. The batch size of training is
1 and we use one RTX2080Ti GPU to train our
model.

7.4 Dataset

We conducted experiments on the two distinct in-
structional video datasets, YouCook2 (Zhou et al.,
2018a), a dataset of instructional cooking videos
and IVD dataset (Alayrac et al., 2017), a dataset of
instructional videos with 5 distinct topics.

Though YouCook2 originally provides 2000
videos, as some videos are unavailable on YouTube,
we collect the currently available videos, obtain-
ing 1,356 videos. For the dataset split, we follow
the original split ratio from (Zhou et al., 2018a)
to YouCook2: 910 for training, 312 for validation,
and 135 for testing for YouCook2. For the IVD
dataset, we used 104 for training, 17 for validation,
and 32 for testing.

This split is used for both TDR and DVC. Each
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video is labeled with starting and ending times
of key clips, and their textual descriptions. For
transcripts, we use YouTube’s ASR engine. We
collected the instructional documents from the
web archive7 for YouCook2 following previous
work (Kiddon et al., 2015) and top-1 retrieved re-
sult from the google search engine for IVD dataset.
Our instructional document collection contains an
average of 15.33 documents with 10.15 sentences
for YouCook2 dataset and 1 instructional document
with 20 sentences for IVD dataset.

7.5 Qualitative Results
Here, we provide the generated result of EMT with-
out/with our retrieved recipes in Figure 2. In all
examples, there exist the key objects hardly recog-
nizable from the images which EMT fail to men-
tion in the generated caption. However, our re-
trieved recipes provide the disambiguated reference
of such key objects and enable EMT to generate
more accurate caption containing them.

7www.allrecipes.com
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Figure 2: Example of the retrieved procedural sentence and generated captions without/with retrieved procedural
sentence. Top 2 figures are from YouCook2 dataset and bottom figure is from IVD dataset.
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