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Abstract

Large language models have demonstrated
great potential to assist programmers in gen-
erating code. For such human-AlI pair program-
ming scenarios, we empirically demonstrate
that while generated code are most often eval-
uated in terms of their functional correctness
(i.e., whether generations pass available unit
tests), correctness does not fully capture (e.g.,
may underestimate) the productivity gains these
models may provide. Through a user study with
N = 49 experienced programmers, we show
that while correctness captures high-value gen-
erations, programmers still rate code that fails
unit tests as valuable if it reduces the overall ef-
fort needed to complete a coding task. Finally,
we propose a hybrid metric that combines func-
tional correctness and syntactic similarity and
show that it achieves a 14% stronger correlation
with value and can therefore better represent
real-world gains when evaluating and compar-
ing models.

1 Introduction

Large language models trained on code (e.g.,
Codex (Chen et al., 2021), AlphaCode (Li et al.,
2022), CodeGen (Nijkamp et al., 2022), InCoder
(Fried et al., 2022)) have shown impressive capa-
bilities on code generation tasks. One important
application for such models is Human-Al pair pro-
gramming, where a model suggests in-line code
completions (e.g., within an IDE) that program-
mers can choose to ignore, accept, or edit as needed.
Early studies suggest that this paradigm may dra-
matically boost productivity and transform the prac-
tice of software development (Ziegler et al., 2022;
Kalliamvakou, 2022).

As is common with model development more
generally, code-generation advances are largely
driven by comparing model performance on offline
metrics (i.e., metrics computed automatically over
held out evaluation data) that can be easily tracked
on leaderboards. Functional correctness metrics

Reference Code Snippet Generated Code Snippet

even_odd_count(num):
even_count = 0
odd_count = 0
r i in str(abs(num)):
f int(i)%2=0:
even_count +=1

def even_odd_count(num):
even_count = 0
odd_count = 0
for i in jSErCRUm)S

if int(i) % 2 0:

even_count += 1
3 else:
odd_count +=1
return (even_count, odd_count)

odd_count += 1
rn even_count, odd_count

Functional Metric Similarity Metric Human preference

pass =0 edit similarity = 0.93 preference = 0.9

Figure 1: In the example above (counting even and odd
numbers), code suggested by a model fails unit tests
but is deemed useful by programmers because adding a
short check (abs value) fixes the generation.

such as pass@k (Chen et al., 2021) currently rep-
resent the state-of-best-practice (Chen et al., 2021;
Fried et al., 2022; Austin et al., 2021; Chowdhery
et al., 2022; Nijkamp et al., 2022; Hendrycks et al.,
2021; Kulal et al., 2019). These metrics evaluate
generations by executing a set of unit tests and as-
sessing whether the generations pass or fail. While
functional correctness is clearly important, it does
not fully capture the productivity gains program-
mers may value about code generation assistance.
For example, a generation that fails unit tests might
yet provide critical hints to solve a task (see ex-
ample in Fig 1), or serves as boilerplate that can
be adapted with minimal effort. Likewise, func-
tionally correct code might be difficult to read or
maintain, or may contain other vulnerabilities.
With developer productivity in mind (Forsgren
et al., 2021), we investigate syntactic similarity-
based offline performance metrics (e.g., (Svy-
atkovskiy et al., 2020; Chowdhery et al., 2022; Pap-
ineni et al., 2002)) as proxies of programmer effort
needed to modify or correct automatic code genera-
tions. Similarity-based metrics compute how simi-
lar a generation is to reference or ground truth code,
typically available in the offline setting. We then
conducted a user study with N=49 experienced pro-
grammers to assess how well self-reported utility
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(Forsgren et al., 2021) correlates with similarity-
based and functional correctness metrics. Our work
answers the following key research questions:

1. Do programmers still value code generations
that may be incorrect (fail unit tests)?

2. How well do existing offline performance met-
rics align with programmer-rated value, accu-
racy and effort?

3. Does a metric that captures both functional
correctness and effort saved better align with
programmers’ perceived value?

In our studies, we showed participants code gen-
erated by Al models and asked them to provide
ratings in terms of the accuracy of the code, overall
value of the code and effort associated with fixing
the code (if any). We find that while ratings on ef-
fort and accuracy both correlate with value, effort is
significantly more correlated. In other words, code
that is perceived as easy-to-fix is judged to be more
valuable. Conversely, when considering offline
metrics, we find that while functional correctness
metrics are more correlated to value compared to
similarity based metrics, similarity based metrics
offer complementary information. Specifically, we
find 42% of generations that failed unit tests were
still rated as valuable - and similarity based metrics
provide a better signal as to value in this regime.
We therefore propose a metric that combines func-
tional correctness and similarity and show that it
increases correlation with perceived value by 14%.

2 Related Work

Offline performance evaluation of Al models typi-
cally consists of running models as isolated com-
ponents over benchmark datasets and then comput-
ing aggregate metrics (e.g., accuracy, AUC, and
precision/recall) that can be easily compared and
tracked on leaderboards. While these evaluation
practices have led to rapid advancements in Al
by enabling efficient apples-to-apples model com-
parison, a growing body of work has raised con-
cerns about the mismatch between popular metrics
and what people need and value in the real world
(Thomas and Uminsky, 2022; Raji et al., 2022;
Hellendoorn et al., 2019; Hand, 2006; Jacobs and
Wallach, 2021; Chandar et al., 2020; Zhou et al.,
2022). Using metrics that fail to appropriately cap-
ture what people value can result in deploying mod-
els that are at best less effective than they could be,
and at worst harmful to people and society (Thomas
and Uminsky, 2022; Raji et al., 2022; Hand, 2006).

In this work, we investigate the extent to which
common offline code generation metrics capture
what professional programmers value about code
generation models. In particular, we examine how
well existing code generation metrics capture no-
tions of developer effort and productivity Forsgren
et al. (2021).

The current most popular family of code gen-
eration metrics is based on measuring functional
correctness. Functional correctness metrics seek to
evaluate generated code against known objective
properties such as passing unit tests (Chen et al.,
2021; Austin et al., 2021; Li et al., 2022; Roziere
et al., 2020). Following the release of Codex and
the HumanEval dataset (Chen et al., 2021)—which
is a dataset of 164 hand-written problems in python
with associated unit tests—the functional correct-
ness metric of pass@k (where k code samples are
generated per problem and a problem is consid-
ered solved if any of the k generations passes the
corresponding unit tests) has emerged as the domi-
nant method for evaluating code generation models
(e.g., (Fried et al., 2022; Xu et al., 2022; Li et al.,
2022; Austin et al., 2021)). Advocates of functional
correctness metrics argue for their resemblance to
programming best practices (e.g, test-driven de-
velopment) and fidelity to capturing functional be-
haviour (Chen et al., 2021). However, in this work
we demonstrate that functional correctness does
not fully capture what people value about code
generation models.

Similarity-based metrics compare tokens from
generated code to tokens of known solutions, with
code that is more similar to given solution(s) being
considered better. Multiple similarity-based met-
rics have been proposed for evaluating code genera-
tion models including exact match (Lu et al., 2021),
edit distance (Svyatkovskiy et al., 2020; Chowd-
hery et al., 2022), BLEU (Papineni et al., 2002),
CodeBLEU (Ren et al., 2020), and ROGUE (Lin,
2004). Analyses of similarity-based metrics and
other measures of code quality have been mixed
(e.g., (Ren et al., 2020) vs Austin et al. (2021)).
However, in most of these cases, similarity was con-
sidered a proxy for functional correctness. In this
work, we revisit similarity-based metrics as proxies
for effort saved in coding tasks Svyatkovskiy et al.
(2020) and demonstrate how they can be used to
better capture value.

In this work we focus on passQFk as a proxy
for functional correctness and we experiment with
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two similarity-based metrics, namely, normalized
edit similarity (Lu et al., 2021; Svyatkovskiy et al.,
2020; Chowdhery et al., 2022) (which measures
how many single-character edits— including in-
sertion, substitution, or deletion—are required to
convert generated code to some reference code) and
BLEU (which measures the token overlap between
the generated and reference text) to investigate how
these metrics approximate different facets of what
programmers value in practice.

3 User Study

We designed a user study to evaluate how well
functional correctness- and similarity-based offline
metrics approximate value of code generations for
programmers. The study showed experienced pro-
grammers various programming tasks, together
with code generations and reference solutions. Pro-
grammers then rated the generations on perceived
accuracy, effort, and value.

3.1 Dataset for Programming Tasks

We selected programming tasks from the Hu-
manEval dataset (Chen et al., 2021), which consists
of 164 hand-crafted programming tasks and solu-
tions written in Python. Each task includes a task
description (i.e., a function header followed by a
comment describing the task with some sample test
cases (115 — 1360 characters)), a canonical hand-
written solution, and a set of associated unit tests.
HumanEval has been extensively used to evaluate
code generation systems (e.g., (Chen et al., 2021;
Fried et al., 2022; Xu et al., 2022; Chowdhery et al.,
2022; Nijkamp et al., 2022)). To the best of our
knowledge, HumanEval is not part of any model’s
training data, and its simple standalone tasks makes
it an ideal choice for user studies.

3.2 Offline Metrics for Code Generation

We experimented with three offline metrics, one of
which served as a proxy for functional correctness
and the other two served as a proxy for a program-
mer’s effort.

PASS: As a proxy for functional correctness, we
computed the pass@k metric (Chen et al., 2021).
passQFk takes k generations for a problem and con-
siders the problem solved if any generation passes
the accompanying unit tests (in our case the unit
tests provided in the HumanEval dataset). While
related work has presented pass@QF results for val-
ues of k including 1, 10, and even up to 1M (Chen

etal., 2021; Li et al., 2022), we focus our analysis
on k£ = 1 which most closely resembles the real-
world scenario where a programmer sees a single
generation inline within a coding editor.

EDIT-SIM: As one proxy for effort, we com-
puted normalized edit similarity (Svyatkovskiy
et al., 2020) as follows:

EDIT-SIM =1 — lev(gen, ref)

maz(len(gen),len(ref))

where gen is code generated by a model for a
problem in the HumanEval dataset, re f is the hand-
written reference solution to the problem and lev
is the character Levenshtein edit distance.

BLEU: As another proxy for effort, we com-
puted BLEU using the formulation introduced by
Papineni et al. (2002) (generated code compared
with a single reference), and based on the imple-
mentation in the Tensorflow library (Abadi et al.,
2015).

We focused on syntactic similarity-based metrics
like EDIT-SIM Lu et al. (2021); Svyatkovskiy et al.
(2020); Chowdhery et al. (2022) and BLEU Barone
and Sennrich (2017); Karaivanov et al. (2014);
Nguyen et al. (2013); Ahmad et al. (2021); Wang
et al. (2021) because they have been commonly-
used metrics for evaluating text-based generative
models, especially, for code generation scenarios.

3.3 Code Generation Models

We selected 5 publicly available autoregressive
large language models trained on code, varied
mostly by the parameter size of each model. The
first two models are variants of the CodeGen model
introduced by Nijkamp et al. (2022) (CodeGen350
Multi, CodeGen2B Multi) - autoregressive trans-
formers with the regular next-token prediction lan-
guage modeling as the learning objective trained
on a natural language corpus and programming lan-
guage (C, C++, Go, Java, JavaScript, and Python)
data curated from GitHub. Next, we use three pub-
licly available variants of the Codex model (Chen
et al., 2021), a GPT language model fine-tuned on
publicly available code from GitHub (Cushman,
Davincil, Davinci2). Note that the goal of this
work is to compare code-generation metrics and
not to assess the performance of models. We used
models of different sizes to help ensure our findings
on how metrics behave translate across a range of
model qualities. Following guidance from Chen
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et al. (2021) who demonstrate the importance of op-
timizing sampling temperature for particular values
of k, we used a low temperature value of ¢ = 0.2
for £ = 1 so that each model generates the most
likely code tokens.

3.4 Tasks

We used programming tasks from the HumanEval
dataset, where for each task, participants were
shown the task description (function header and
docstring describing the task along with sample
test cases), the corresponding unit tests, and two
code snippets — the reference solution from the
HumanEval dataset and a generation for that task
from one of the models — shown in a random or-
der. Each snippet was randomly assigned a name -
Code Snippet A or Code Snippet B for easy refer-
ence in the subsequent questions. All parts of the
interface showing code were syntax highlighted to
improve readability.

For each task, participants answered questions
designed to collect their judgements along three
dimensions of interest: overall value, accuracy, and
effort which we hypothesized would impact value.
Each question used 5-point Likert scales and were
shown sequentially only after the previous question
had been answered. The questions were as follows:

ACCURACY: The first question asked partici-
pants to judge whether both snippets were func-
tionally equivalent. Since the reference solution
is correct, functional equivalence can be used to
infer perceived accuracy of a generation (complete
equivalence indicates the participant believes the
generation would produce the same outputs for all
the same inputs as the reference solution which
passes the provided unit tests). We used this equiv-
alence question-based approach to assess perceived
accuracy because our pilots suggested that judging
equivalence is easier than solving the coding task
from scratch, and also because it enabled us to de-
sign a simpler, consistent survey — the other two
survey questions (as described next) also compared
the generation to the reference.

At this point in the task, participants were not
told which snippet corresponded to the generation
and which was written by a human programmer to
minimize the impact of any existing biases about
the capabilities of Al models.

VALUE: Once participants advanced to the sec-
ond question, the interface disclosed which snip-
pet (A or B) was Al generated and which was a

reference solution. They were then asked how use-
ful the generated snippet would be assuming they
were a programmer attempting to solve the task
themselves. We described usefulness in terms of
whether participants believed the generation pro-
vided a useful starting point, ranging from Ex-
tremely useful (they "would definitely accept it
and use it as a starting point") to Not at all useful
(they "would not even want to see the generation"
let alone accept and use it as a starting point).

EFFORT: The final question asked participants
how much effort they believed it would require
them to modify the Al generated solution into a
correct solution similar to the snippet written by a
human programmer, if any.

3.5 Study Protocol and Participants

The study consisted of four sections: consent form,
instructions, main study, and a brief post-study
feedback section. The instructions section was a
sample task designed to familiarize participants
with the mechanics of the study interface (e.g., they
will be shown problems and asked to provide rat-
ings, they will not be allowed to go back and revise
previous responses) and to anchor them to pair pro-
gramming scenario.

The main study was made up of 12 tasks. We
chose 12 because our pilot studies showed that
participants could complete 12 tasks within an hour.
For each task, participants were shown a generation
from one randomly chosen model from our set of
5 models.

A key goal of our study was to assess how well
our offline metrics of interest align with what pro-
grammers value. We were particularly interested
in understanding the tradeoffs between functional
correctness and similarity as they relate to value
and so we wanted to probe cases where these met-
rics disagreed. Therefore, to select study tasks,
we first considered taking a random sample from
HumanEval. However, the number of generations
falling into regions where these metrics agreed on
the largest model (Davinci2) was over-represented
compared to the disagreement region (70% agree-
ment vs 30% disagreement). Therefore, we chose a
stratified sampling method where we first assigned
each HumanEval problem into one of three buckets:
PAss =1 and EDIT-SIM is low, PASS = 0 and EDIT-
SIM is high, PASS and EDIT-SIM agree .! Then,

'According to Davinci2 and where similarity was thresh-
olded along the median similarity value for that model.
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we sampled equally across each bucket aiming to
annotate 20 problems per bucket for this study.

Because we intended to recruit professional pro-
grammers, we aimed to obtain up to 2 annotations
per problem-model pair. With 60 problems (20 per
bucket), 5 models, and 2 annotations per task and a
budget of 12 problems per participant, this required
us to recruit 50 participants for this study. We as-
signed annotation tasks to participants by randomly
sampling a problem from our sample of 60 and then
randomly sampling a generation for that problem,
without repeating a problem for any participant,
until each problem-model pair was assigned 2 an-
notations.

We recruited professional programmers from a
large technology company for this study and re-
cruitment emails were sent out to a randomly sam-
pled subset of software engineers. Participants
were required to have at least 1-2 years of pro-
gramming experience with Python and to program
in Python at least a few times a year. 61% of re-
spondents indicated they had worked on a python
project in the last month and 59% had never used a
pair programming Al assistant like GitHub Copilot.

The study was deployed as a web application.
Participants were given five days to complete the
study, and could pause and resume using their per-
sonalized study link. At the end of the study, par-
ticipants were given a $50 online gift card. As an
additional incentive, we awarded the top 5 perform-
ers an additional $50 gift card. We determined top
performers based on the rate at which participants
correctly indicated a generation was equivalent to
the reference code when it passed vs when it failed
the given unit tests. This experiment was approved
by our organization’s internal IRB process.

4 Study Results

At the end of the study period, we obtained re-
sponses from 49 participants. We then applied
the following criteria to evaluate the quality of re-
sponses: First, we computed the median response
time per task for all participants and also computed
a performance rating on the code equivalence task
in the same way we determined top performers
in our study. Data from three participants who
fell within the bottom 10th percentile of the me-
dian task completion times and their performance
was worse than the probability of random chance
(given the questions they responded to) was ex-
cluded from the data analysis. The final dataset

Human Judgement Offline Metrics

Value Accuracy Effort Pass EditSim bleu Combined
value | (G0N
Accuracyé 0.87 -
erfort | [HOISAN) [10:867) [N60N
Pass 066 062 [[1007]
Editsim | 0.48 | 046 [ 051 i 033 [JiGol
bleu 0.36 034 039 019 [T068 | [GoN
Combined 071 [ 072 088N o061 038 [JE00N

Figure 2: Correlation (Pearson) between human judge-
ments (perceived value, accuracy and effort) and offline
metrics (functional correctness, edit similarity and a
combined metric (see section 4.4)). All correlations are
significant with p < 0.001.

includes data from 46 participants with 552 annota-
tions across 290 unique tasks and 1.96 annotation
per task. Finally, across tasks where we obtained
multiple annotations, we verified that there was
agreement between annotators> and then computed
the mean annotation per task for use in our analysis.
In this section, we present the main findings based
on this data.

4.1 Accuracy is Valuable, but Effort Matters

Our first finding is that the VALUE of a generation
is nearly perfectly correlated with the perceived
EFFORT needed to correct a generation (Pearson
r = 0.94; 95%-confidence interval [0.92 — 0.95]).
Recall that EFFORT is reverse-coded such that a
score of 5 indicates “no effort” is needed. ACCU-
RACY is also highly correlated (Pearson r» = 0.87;
95%-confidence interval [0.84 — 0.90]), but sig-
nificantly less so — we note that their confidence
intervals do not overlap. From this we conclude
that ACCURACY isn’t everything, and EFFORT
is at least as important a signal for capturing
VALUE. We will return to this theme throughout
the paper. Correlations between these dimensions
are presented in the top-left quadrant of Figure 2.

4.2 Offline Metrics Highly Correlate with
Programmers’ Judgements, But There is
Room for Improvement

Our second finding confirms that the metrics used
in practice (PASS, EDIT-SIM, and BLEU) are in-
deed positively correlated with VALUE, but there
are important differences (Fig. 2, bottom-left quad-
rant). As an example, PASS shows the strongest

2In 50% of cases, annotators are in perfect agreement; 75%
differ by at most one point in valence (on a rating scale of 1-5)
and the mean difference is 0.89.

8520



Perceived Value

[ Pass=0
50 [ Pass=1

1 2 3 4 5
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Figure 3: Distributions of VALUE judgments, in cases
where generations pass unit tests (PASS = 1, green),
and fail unit tests (PASS =0, blue). When generations
pass unit tests, they are likely to be judged as valuable
(VALUE > 3). In fact, only 3% of generations fall
below this score. When functions fail unit tests, they are
somewhat more likely to have lower VALUE scores, but
90 generations (42%) are still considered “somewhat
useful” by participants. The metric misses many high-
value generations.

association with ACCURACY of the three metrics
(r = 0.66; p < 0.001). This is unsurprising, given
that PASS is a direct measure of functional correct-
ness. More surprising to us, however, is that PASS
is also the most strongly correlated metric to both
EFFORT and VALUE (r = 0.62;p < 0.001, and
r = 0.62;p < 0.001 respectively). This was un-
expected since EDIT-SIM is a direct measure of
the number of changes needed to correct a sug-
gestion, and yet shows weaker correlation to EF-
FORT (r = 0.48;p < 0.001). With a correlation
of r = 0.36;p < 0.001, BLEU under-performs
all other metrics. Finally, given that none of the
metrics correlate better than r = 0.66, there is sig-
nificant opportunity to develop improved metrics.

4.3 Code That Passes Unit Tests (PASS = 1) is
Extremely Likely to be High-Value

Our third finding is that when PASS = 1 (i.e.,
when generations pass unit tests), we can be rea-
sonably certain that they will be of high VALUE
(Figure 3). In fact, only 2 of 77 (3%) generations
that passed unit tests were found to have a VALUE
scores less than 3. Recall, a VALUE score of 3
indicates that the participant found a suggestion to
be at least “somewhat useful.”

However, PASS = 0 is less good at filtering
low-value suggestions; Only 123 of the 213 (58%)
generations that failed unit tests scored lower than

Perceived Value Perceived Value

3 Pass=0 & Edit Sim=Low

3 Pass=1 & Edit Sim=Low

1 2 4 5 2 3 4 5
« Not at all Useful | Extremely Useful —» « Not at all Useful | Extremely Useful -

Perceived Value Perceived Value
40 40

3 Pass = 0 & Edit Sim=High

3 Pass = 1 & Edit Sim=High
30 30

£
320 20
o

- |

1 2 3 4 5 1 2 3 4 5
« Not at all Useful | Extremely Useful —» « Not at all Useful | Extremely Useful —»

Figure 4: Distributions of VALUE judgments, in the four
possible combinations of PASS outcomes and low/high
EDIT-SIM scores. The top and bottom rows indicate
cases where EDIT-SIM falls below and above the 50%-
percentile, respectively. The left and right columns indi-
cate cases where PASS = 0 and PASS = 1 respectively.
When PASS = 1, generations are likely be high value
(blue regions). When both PASS = 0 and EDIT-SIM
=low, generations are likely to be low value (red region).
The VALUE is more uniformly distributed in the remain-
ing region where both PASS = 0 and EDIT-SIM =high.

3 on value. Stated differently, 90 generations
(42%) were found to be at least somewhat valuable.
This finding confirms existing qualitative work that
while programmers value functionally correct code,
they may still find considerable value in code that
is not functionally correct (Weisz et al., 2021).

4.4 TImproved Metrics Through Combination

Upon further inspection, we realized that EDIT-
S1M was itself a useful lens through which to un-
derstand how VALUE is distributed when unit tests
are failed. Figure 4 shows a partitioning of re-
sults such that left and right columns correspond
to (PASS = 0) and (PASS = 1) respectively. Top
and bottom rows correspond to cases where the
EDIT-SIM is below and above the 50™-percentile
respectively (referred to as EDIT-SIM =Low and
EDIT-SIM =High). As before, we find that when
(PASs = 1), the VALUE tends to be high (blue out-
lined regions). However, we also find that when a
generation both fails the unit test and has low
EDIT-SIM (i.e., PASS = 0; EDIT-SIM = low), it
tends to be judged to have low VALUE (red out-
lined region). Conversely, in the final region (PASS
= 0; EDIT-SIM = high), VALUE is distributed
more uniformly, and the signal is less clear. This
strongly suggests that if human labeling is limited
by budget, it may be worthwhile oversampling this
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region to maximally recover some of the missing
VALUE signal.

This also suggests that there is an opportunity
to combine metrics because PASS = 1 is good at
spotting high-value generations, while PASS = 0;
EDIT-SIM = high is good at spotting low-value
generations. To investigate this further, we formally
define a simple combined metric as follows:

COMBINED = min(1.0, PASS + EDIT-SIM)

Figure 2, row 7, shows some merit to this approach:
The combined metric correlates better with hu-
man judgments of value (r = 0.70;p < 0.001)
than PASS (r = 0.61;p < 0.001) and EDIT-SI™M
(r = 0.48;p < 0.001) for EDIT-SIM. This is an
extremely promising result, but was also only our
first attempt at combining metrics. Future work is
needed to explore other potential combinations.

5 Discussion & Future work

5.1 What Do Programmers Value?

Much of the current research evaluating code gen-
eration models aims to approximate overall value
via some notion of correctness (Chen et al., 2021;
Fried et al., 2022; Austin et al., 2021; Chowdhery
et al., 2022; Nijkamp et al., 2022; Hendrycks et al.,
2021; Kulal et al., 2019). Even research exploring
similarity-based metrics have tended to validate
these against some general notion of code qual-
ity (e.g., Mathur et al. (2020) consider “adequacy"
while Ren et al. (2020) consider “good vs bad").
In this work, we aim to tease out distinct aspects
of value to better understand how they contribute
what programmers want from their Al-pair pro-
grammers. In this study, we examine the impact
of correctness and effort. Our findings show that
effort indeed matters to programmers. Accuracy
also matters but, interestingly, our findings suggest
that effort savings may be even more valuable to
programmers than accuracy.

In general, we take the position that value is
a multidimensional theoretical construct (Thomas
and Uminsky, 2022). As such, while our findings
showed effort as more valuable to programmers
than accuracy, because both are still highly corre-
lated with value, we recommend considering both
when assessing the impact of human-Al pair pro-
gramming. Moreover, there are likely many other
properties of Al-pair programmers that develop-
ers find valuable (Forsgren et al., 2021) and future

work warrants investigating how these may also be
captured in offline evaluations.

5.2 How can Developers Approximate Value?

Our results show that when developers have access
to evaluation data containing high quality unit tests
(as in HumanEval), generations that pass unit tests
are highly likely to be valuable to programmers.
This suggests that PASS could be used as a reason-
able filter in high precision scenarios (e.g., if an
Al-pair programmer was tuned to limit distractions
by only showing generations when they most likely
to be valuable).

That said, however, PASS alone may miss a sig-
nificant fraction of generations that programmers
might find valuable. Our findings show that another
offline metric — EDIT-SIM can help overcome this
issue when we combine it with PASS according to
Equation 4.4. This new metric is similar in spirit to
hinge-loss in support vector machines.? In that set-
ting, misclassifications are penalized based on their
distance to the hyperplane decision boundary. Con-
versely, correct classifications all receive a fixed
loss of 0, following the intuition that they don’t
become more correct the further they move from
the hyperplane. In our setting, we expect VALUE
to increase as generations become more similar
to a reference solution, but once it reaches func-
tional correctness it doesn’t become more correct
the closer it gets (syntactically) to the reference
solution.

We emphasize, however, that metrics can have
varying implications on model development deci-
sions and therefore the choice of when or if to
combine them is important. For example, when
developers are seeking to make deployment deci-
sions between models, selecting models that rank
highest in terms of the overall value they may pro-
vide to programmers seems reasonable. In this
case, the theoretical construct being approximated
is perceived VALUE and our COMBINED metric
is better at estimating this than PASS or EDIT-SIM
alone. However, when developers are diagnosing
issues during model development (e.g., via error
analyses) we recommend that PASS and EDIT-SIM
be applied independently to get a clearer picture of
model behavior (Thomas and Uminsky, 2022) and
to ensure appropriate mitigation strategies are used
for different issues. For example, PASS failing on

Shttps://en.wikipdia.org/wiki/Hinge_
loss
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certain types of problems (e.g., recursive problems)
or code blocks (e.g., conditional statements, error
handling) may suggest additional data is needed
in fine tuning. Whereas, EDIT-SIM failures may
warrant new user interface techniques to help pro-
grammers focus attention to parts of the code most
likely needing edits.

5.3 Approximating Accuracy and Effort

Our results show that programmers value both ac-
curacy and effort savings when it comes to their
Al pair programmers. We demonstrate that PASS
is a reasonable proxy for accuracy. Surprisingly,
however, we found that EDIT-SIM is only mod-
erately correlated with effort and in fact is less
correlated with effort than PASS. This is somewhat
counter-intuitive since EDIT-SIM directly measures
the number of characters that need to be changed
to convert a generation to the reference solution
(Svyatkovskiy et al., 2020; Lu et al., 2021).

This, along with our finding that program-
mers value effort reduction from their Al pair-
programmers, suggests that an important area for
future work is to experiment with alternative ways
to operationalize effort for offline evaluation. This
also, emphasizes the importance of validating that
metrics faithfully capture the theoretical constructs
they are trying to measure (Jacobs and Wallach,
2021).

5.4 When Should Developers Use EDIT-SIM?

Our findings show that EDIT-SIM is moderately
correlated with PASS. This is important because
there are many situations where computing PASS
may be undesirable. For example, PASS requires
executing arbitrary generated code which can be re-
source intensive and may pose security risks (Chen
et al., 2021). PASS and other functional evaluation
metrics also require the availability of comprehen-
sive, high-quality unit tests as well as language-
specific test infrastructure, assumptions which may
not hold in some evaluation scenarios (e.g., testing
functions in the wild). Therefore, while we rec-
ommend PASS when it is appropriate because it
is more strongly correlated with value than EDIT-
S1M, our findings suggest that EDIT-SIM may be a
reasonable alternative when it is desirable to avoid
limitations of functional evaluation.

Of course, limitations of similarity metrics
should also be weighed against their benefits. For
example, similarity metrics can fail when tasks
have multiple syntactically divergent solutions -

e.g. an algorithm may have an iterative vs recur-
sive implementation with low token overlap, lead-
ing to noisy similarity metric. However, we in-
tuit that this scenario is relatively infrequent given
the structured nature of programming languages
and existing research on developer behaviour e.g.,
Allamanis et al. (2018) who mention that devel-
opers prefer to write (Allamanis et al., 2014) and
read code (Hellendoorn et al., 2015) that is conven-
tional, idiomatic, and familiar, because it helps in
understanding and maintaining software systems.
A convergence towards idiomatic solutions make
it more likely the solutions and patterns learned
by large language models of code coincide with
ground truth solutions, limiting the scenario where
generated code is syntactically different from but
functionally equivalent to ground truth.

6 Conclusion

We studied how well two types of offline metrics
for evaluating code generation models (i.e., func-
tional correctness such as pass@Fk based on unit
tests and similarity-based metrics such as edit simi-
larity) align with human judgements of value when
used for human-Al pair programming. Our user
study with 49 experienced programmers suggests
that while programmers find functionally correct
code generations valuable, the effort to edit and
adapt generations also matters. Existing offline
metrics show high correlation with human judge-
ments of value, but there is room for improvement.
One reason is that while code that passes unit tests
is very likely to be rated high-value, code that fails
unit tests is often still considered valuable by pro-
grammers. Based on this observation, we propose
a combined offline metric inspired by hinge-loss
in support vector machines that allows for partial
credit by combining strengths of functional cor-
rectness and similarity-based metrics. Our analy-
sis shows that this combined metric aligns better
with human judgements of value in code genera-
tions than functional correctness or similarity alone.
Overall our work highlights the importance of vali-
dating that offline metrics in Al capture what peo-
ple value and that human-centered metrics, inspired
by what people value, can provide better estimates
of what people want from their Al-pair program-
mers.
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Limitations

In this work, we focused on problems posed in
the hand-crafted HumanEval dataset (Chen et al.,
2021). A potential pitfall of a curated dataset such
as HumanEval is that the results may not general-
ize to real-world scenarios where developers often
deal with more complex problems and code bases
(e.g, code with multiple dependencies across multi-
ple files). To address this limitation, we originally
explored the use of datasets mined from GitHub.
However, our experiments indicated memoriza-
tion issues (e.g., verbatim generation of solutions
to niche problem), potentially due to the sample
code already being included in the model training
set(Lee et al., 2021). In practice, high quality code
deduplication required to avoid this specific limi-
tation is challenging. Work by Allamanis (2019)
find that the impact of duplicate code can be severe,
sometimes inflating model performance scores by
up to 100%. Furthermore, in our early pilot tests,
functions extracted in the wild were found to con-
tain insufficient context (e.g. absence of docstring)
for even expert human annotators and isolating
functional tests is challenging without heavy cura-
tion. Further research is therefore needed to under-
stand how our findings might generalize to a wider
variety of deployment settings as well as research
on designing diverse evaluation datasets. In addi-
tion, future work may also explore the impact of
problem difficulty on the observed results in our
study.

Ethics Statement

While our study informs current practices in eval-
uating code generation models, we acknowledge
that measures of value can differ across multiple
demographics with impact on productivity. For our
experiments (approved by an internal IRB board),
we generate code snippets based on a publicly avail-
able dataset, using publicly available models that
are annotated by experienced developers. These
choices make our work readily reproducible. We
also developed a library that implements multiple
metrics for bench marking code generation models
which we will make available as an open source
library (MIT license) at the time of publication.
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