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Abstract
Current structured and semi-structured knowl-
edge bases mainly focus on representing
descriptive knowledge but ignore another
commonsense knowledge (Procedural Knowl-
edge). To structure the procedural knowl-
edge, existing methods are proposed to au-
tomatically generate flow graphs from proce-
dural documents. They focus on extracting
sequential dependency between sentences but
neglect another two important dependencies
(i.e., inclusion dependency and constraint de-
pendency) in procedural documents. In our
paper, we explore a problem of automatically
generating procedural graph with multiple de-
pendency relations to extend the flow graph
constructed by existing methods and propose
a procedural graph construction method with
syntactic information and discourse structures.
A new dataset (WHPG) is built and extensive
experiments are conducted to evaluate the ef-
fectiveness of our proposed model.

1 Introduction

Many well-known structured knowledge bases
(e.g., Wikidata1) and semi-structured knowledge
bases (e.g., Wikipedia2) have been built and as-
sist many applications to achieve remarkable per-
formance, such as the question-answering (QA)
(Li and Moens, 2022), information retrieval (Zhou
et al., 2022)) and recommendation systems (Cui
and Lee, 2022). They focus on representing the de-
scriptive knowledge i.e. the knowledge of attributes
or features of things (Yang and Nyberg, 2015), but
lack another kind of commonsense knowledge—
Procedural Knowledge. Specifically, the knowl-
edge which is in the form of procedures or se-
quences of actions to achieve particular goals is
called as procedural knowledge, such as cooking
recipes and maintenance manuals.

∗The authors contribute equally.
†Corresponding author

1http://wikidata.org/
2http://wikipedia.org/

Generally, most procedural knowledge is ex-
pressed in unstructured texts (e.g., websites or
books of cooking recipes). To extract the structured
procedural knowledge, existing methods (Honkisz
et al., 2018; Qian et al., 2020; Pal et al., 2021)
are designed to transform the unstructured proce-
dural documents into flow graphs (or workflows)
which can effectively present the main operations
and their ordering relations expressed in procedu-
ral documents. However, they only focus on ex-
tracting the sequential dependency (i.e., the depen-
dency relation “Next” in Figure 1) between steps
(operational sentences) in a procedural document,
which is insufficient in real-world scenarios. As
shown in Figure 1, sentences S2 and S3 are the
sub-actions of sentence S1, which provide more
fine-grained operational statements to finish oper-
ation S1. There is another kind of dependency—
inclusion dependency between sentences S1 and
S2 (or between S1 and S3). Nevertheless, the
flow graphs constructed by current methods (Qian
et al., 2020; Pal et al., 2021) ignore the inclusion
dependencies among sentences and wrongly con-
nect sentences S1 and S2 as a “Next” relation, as
shown in Figure 1.

Furthermore, declarative (or descriptive) sen-
tences commonly appear in real-world procedural
documents, which state the constraints (e.g, rea-
sons, conditions and effects) of doing things. Cur-
rent researches have shown that declarative sen-
tences in procedural documents can provide impor-
tant clues for the procedural semantic understand-
ing and reasoning (Georgeff and Lansky, 1986)
in many downstream tasks such as operation di-
agnosis (Luo et al., 2021) and technical mainte-
nance (Hoffmann et al., 2022). However, current
knowledge structure methods (Qian et al., 2020;
Pal et al., 2021) simply transform the declarative
sentences into an information flow in a flow graph
(e.g., S7 → S8 in Figure 1), which neglects the
constraint dependency between operational and
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Figure 1: An Example of Flow Graph (Pal et al., 2021) and Procedural Graph (Ours) with Multiple Dependency
Relations.

Figure 2: Syntactic Structures of Procedural Sentences.

declarative sentences. As shown in Figure 1, the
declarative sentences S7 and S8 respectively de-
scribe the effect constraint and condition constraint
for the execution of operational sentence S6.

Based on the above motivations, we explore a
problem of automatically constructing a procedu-
ral graph with multiple dependency relations be-
tween sentences in a procedural document. Ac-
cording to our observation, the syntactic struc-
tures of sentences can provide obvious features
for identifying sentence types and then assist
to detect the dependency relations between sen-
tences. As shown in Figure 2, the syntactic pattern

“verb(VB)
obj−→noun(NN)” is a strong indicator for

classifying sentences S2 and S3 into operation
types. Meanwhile, the sentence type prediction can
further benefit the dependency relation detection
between sentences. For example, the constraint
dependency cannot exist between two sentences
with an operation type. Moreover, inspired by re-
searches in discourse parsing (Zhu et al., 2019;
Wang et al., 2021), we observe that the contex-
tual dependency structures (which is called as dis-

course structures) can provide features to recognize
the dependency relations between sentences. As
shown in Figure 1, the dependency relation be-
tween S1 and S3 can be inferred as Sub-Action
according to their contextual dependency structure
S1

Sub-Action←− S2
Next-Action−→ S3.

In our paper, we design a procedural graph con-
struction method to detect the multiple dependency
relations between sentences in procedural docu-
ments by utilizing syntactic information and dis-
course structures. Specifically, a GCN-based syn-
tactic structure encoder with multi-query attention
is proposed to capture the syntactic features of sen-
tences and improve the ability to distinguish be-
tween operational and declarative sentences. More-
over, a structure-aware edge encoder is designed to
assist the inference of dependencies between sen-
tences by infusing the contextual structure features
in procedural documents. Furthermore, due to the
lack of dependencies between sentences in existing
procedural text datasets, a new dataset WHPG is
built based on the wikiHow3 database.

To summarize, the main contributions of this
paper are listed as follows:

• We explore a problem of automatically gen-
erating procedural graphs with multiple de-
pendencies from unstructured procedural doc-
uments, aiming to extend the flow graphs in
existing methods that ignore dependencies of
sentences. To the best of our knowledge, our
work is the first study focusing on generating
procedural graphs with multiple dependencies
from procedural documents.

3http://www.wikihow.com/
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• We design a GCN-based syntactic structure
encoder and a discourse-structure aware edge
encoder to effectively identify node types and
assist the detection of dependency relations in
procedural documents.

• We create a new procedural text dataset
WHPG which builds dependency relations be-
tween operational and declarative sentences.
Extensive experiments are conducted on two
public datasets from different domains and
our created dataset to evaluate the effective-
ness of our model in automatically generating
the procedural graph.

2 Related Work

Many prominent knowledge bases such as Wiki-
Data (Vrandečić and Krötzsch, 2014), Wikipedia
(Lehmann et al., 2015) and FreeBase (Bollacker
et al., 2007) mainly focus on representing de-
scriptive knowledge (i.e., the knowledge of at-
tributes or features of things (Yang and Nyberg,
2015)). But they do not sufficiently cover pro-
cedural knowledge (i.e., the knowledge of proce-
dures or sequences of actions for achieving the
particular goals (Georgeff and Lansky, 1986)). Re-
cently, to obtain the structured procedural knowl-
edge, two categories of methods (i.e., entity-
level and sentence-level based methods) are pro-
posed. Specifically, the entity-level based meth-
ods (Jermsurawong and Habash, 2015; Feng et al.,
2018; Mysore et al., 2019; Qian et al., 2020; Xu
et al., 2020; Yamakata et al., 2020; Jiang et al.,
2020; Fang et al., 2022) aim to extract the pre-
defined entities and their relations from unstruc-
tured procedural texts (e.g., cooking recipes). How-
ever, they require large-scale fine-grained anno-
tated data for each domain and lack domain gener-
alization ability.

To alleviate these issues, sentence-level based
methods (Pal et al., 2021) are designed, aiming to
construct the flow graphs at sentence-level for pro-
cedural documents. However, they only focus on
extracting the action flows with sequential depen-
dencies, which is limited in real-world scenarios.
In practice, both the inclusion dependency and con-
straint dependency are common in procedural texts
and benefit the procedural text understanding and
reasoning (Georgeff and Lansky, 1986; Hoffmann
et al., 2022). Thus, our paper explores a problem of
automatically generating a procedural graph with
dependency relations from a procedural document.

Up to the present, several public entity-level pro-
cedural text datasets (Yamakata et al., 2020; Qian
et al., 2020; Mysore et al., 2019; Mishra et al.,
2018) and a sentence-level dataset CTFW (which
is not publicly available due to ethical consider-
ations) (Pal et al., 2021) are built. Nevertheless,
existing public datasets do not annotate the depen-
dency relations between sentences in a procedural
document. Thus, a new dataset WHPG based on
the wikiHow knowledge base is built and will be
publicly available for evaluation in future research.

3 Model

3.1 Problem Definition and Notations

The goal of our task is to extract the depen-
dency relations between sentences and construct
a procedural graph for each procedural docu-
ment. Specifically, given a procedural document
D = {s1, s2, . . . , sN}, a procedural graph GD =
{D,Ψ, R} with nodes (i.e., sentences) si ∈ D
and triplets (si, ri,j , sj) ∈ Ψ is constructed, where
ri,j ∈ R denotes the dependency relation between
sentences si and sj ; N is the number of sentences
in a procedural document D. Note that the de-
pendency relation set R contains four kinds of de-
pendency relations: Next-Action, Sub-Action, Con-
straint and None, as shown in Figure 1.

To construct the procedural graphs, three sub-
tasks (i.e., Node Type Classification, Edge Pre-
diction and Dependency Relation Classification)
are required. For Node Type Classification task,
each node si ∈ D is classified into one of the
node types (i.e., Operation, Declaration, Both and
None). Then, the extraction of triplets (si, ri,j , sj)
from the procedural document D can be di-
vided into two tasks: Edge Prediction P (si →
sj |(s1, s2, . . . , sN )) which predicts whether an
edge exists for each sentence pair Si and Sj ; and
Dependency Relation Classification P (ri,j |si →
sj) which classifies each sentence pair (predicted
as an edge in Edge Prediction task) into one of the
dependency relations (i.e., Next-Action, Sub-Action
and Constraint).

3.2 Syntactic Graph Construction

The part-of-speech and syntactic structure of sen-
tences can provide the evident clues for facilitat-
ing the inference of node types and dependency
relations. For each sentence, we use the Stand-
ford CoreNLP libraries (Manning et al., 2014) to
recognize the part-of-speech of each token and
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Figure 3: The Overview of Our Proposed Model with Syntactic and Document Structures.

dependency relations among tokens, as shown
in Figure 3. Thus, given the sentence si =
{xi,1, xi,2, . . . , xi,n}, a syntactic relational graph
is created as follows:

Gsyn
i = {Pi,Φi, R

syn
i } (1)

where Pi represents a set of the part-of-speech
in sentence si; R

syn
i is a set of syntactic depen-

dency relations and Φi denotes a set of triplets
(pi,j , r

syn
j,k , pi,k) with the part-of-speech pi,j ∈ Pi

of the token xi,j and syntactic dependency relation
rsynj,k ∈ R

syn
i between part-of-speech pi,j and pi,k.

3.3 Sentence (Node) Feature Representation

3.3.1 Syntactic RGCN Encoder
Each type of part-of-speech p ∈ P and dependency
relation r ∈ Rsyn are respectively initialized into
a learnable vector p ∈ Rdr and a learnable weight
matrix Wr ∈ Rdr×dr . Then, given a syntactic
graph Gsyn

i for sentence si, each part-of-speech
node pi,j is encoded by Relational Graph Convo-
lutional Networks (RGCN) (Schlichtkrull et al.,
2018) encoder as follows:

p
(l+1)
i,j = σ(

∑

r∈Rsyn
i

∑

k∈Nr
j

1

|N r
j |
W (l)

r p
(l)
i,k+W

(l)
0 p

(l)
i,j)

(2)
where N r

j is the set of neighborhood node for the
node pi,j with the relation r ∈ Rsyn

i ; W0 ∈ Rdr

denotes the learning parameters and l is the number
of layers in RGCN encoder.

3.3.2 Multi-Query Syntactic-Aware Attention

Moreover, not all the syntactic features are equally
important to identify the node types and the de-
pendency relations between the nodes. For ex-
ample shown in Figure 3, the syntactic pattern

“VB
obj−→NN” is a strong indicator for classifying

nodes as “Operation” types, while the pattern “De-
terminer (DT) det−→Noun (NN)” does not provide
explicit features for the node type classification.
Meanwhile, different tasks also focus on different
syntactic features. Motivated by this, a multi-query
syntactic-aware attention module is designed to
enable the model to pay attention to the relevant
syntactic features for the target tasks. Specifically,
given a sentence si, the syntactic feature represen-
tation is obtained as follows:

vsyn
i =

Nq∑

k=1

n∑

j=1

αk
i,jpi,j

αk
i,j =

exp(qkpi,j)∑n
m=1 exp(qkpi,m)

(3)

where n is the number of tokens in sentence si; Nq

is the number of query and qk ∈ Rdr denotes a
learnable vector.
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3.3.3 BERT-based Bi-GRU Encoder

For a sentence si, each token xi,j can be en-
coded into a numerical vector vi,j ∈ Rdbert by
the pre-trained language model BERT (Kenton and
Toutanova, 2019). Then, a hierarchical GRU en-
coder consisting of two bidirectional GRUs (Bi-
GRU) is utilized to learn the contextual features.
Specifically, given a sequence of embedding vec-
tors Ei = {vi,1,vi,2, . . . ,vi,n} of sentence si,
the first Bi-GRU is utilized to encode them as
hi ∈ Rdgru by concatenating the last hidden states
from the two directions. In this way, each sentence
si is encoded into a vector hi. Then, the procedural
document D can be encoded as a sequence of vec-
tors Hsent = {h1,h2, . . . ,hN}, where N is the
number of sentences in the procedural document.
Moreover, to capture the global contextual features,
the second Bi-GRU encoder is adopted to transform
Hsent into Hdialog = {vgru

1 ,vgru
2 , . . . ,vgru

N },
where vgru

i ∈ Rdgru denotes the feature represen-
tation of the sentence si ∈ D.

3.3.4 Feature Fusion
Each sentence si ∈ D can be obtained by con-
catenating the syntactic feature representation vsyn

i

and the semantic feature representation vgru
i , as

follows:
vi = [vsyn

i ;vgru
i ] (4)

where [·; ·] denotes the concatenation operation for
the given two vectors.

3.4 Structural-Aware Edge Feature
Representation

The contextual dependency structures in a proce-
dural document have been proven to be effective
in discourse parsing (Shi and Huang, 2019; Wang
et al., 2021). The structure-aware attention is de-
signed to capture the contextual structure features
for each target sentence pair in both edge predic-
tion and relation classification. Specifically, given
a node pair (si, sj), the edge representation riniti,j

is initialized by concatenating the syntactic feature
representation vsyn

i , vsyn
j and the distance embed-

ding vdist
i,j as follows:

riniti,j = σ([vsyn
i ;vdist

i,j ;vsyn
j ]WC) (5)

where i < j, j − i < win and win is the longest
distance length between the given two nodes in a
procedural document. Then, we update the node

representation vi in Equation (4) with the contex-
tual features as follows:

vatt
i =

N∑

j=1

αi,j(vjW
V + riniti,j W F )

αi,j =
exp(ei,j)∑N
k=1 exp(ei,k)

ei,j =
(viW

Q)(vjW
K + riniti,j WR)T

√
dr + dgru

(6)

where WQ,W F ,WK , W V and WR are learn-
able parameters and dr + dgru is the dimension
of the node representations. Finally, the edge rep-
resentation ri,j is calculated by refusing the node
features, as follows:

γi,j = σ([vatt
i ;vatt

j ]W r)

zi,j = σ([vatt
i ;vatt

j ]W z)

r
′
i,j = tanh([γi,j � riniti,j ;vatt

i ;vatt
j ]W h)

ri,j = (1− zi,j)� riniti,j + zi,j � r
′
i,j

(7)

where W r, W z and W h are the learnable param-
eters; � denotes the dot-product operation.

3.5 Projection and Loss Function
The representation of node si and edge ri,j
can be encoded by Equation (4) and Equa-
tion (7) as vi and ri,j . We adopt a projection
layer with a softmax function to calculate
the probability distribution of categories
(i.e., {Operation, Declaration, Both, None}
for node type classification task;
{Existing, Non-Existing} for edge prediction task
and {Next-Action, Sub-Action, Constraint, None}
for dependency relation classification task).

Given the training dataset M , the model is
trained with the following training objective:

£(M, θ) =
∑

D∈M
(£t(D; θ)+£e(D; θ)+£r(D; θ))

(8)
where £t(D; θ), £e(D; θ) and £r(D; θ) are the
cross-entropy loss functions for node type classifi-
cation, edge prediction and relation classification
tasks; and D is a procedural document from the
training dataset M .

4 Experiment

We firstly introduce the construction of the new
dataset WHPG and then analyze the experimental
results in detail.
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Dataset statistics COR MAM CTFW WHPG

# Doc. 297 575 3154 283
Avg Size of Doc. 9.52 8.12 17.11 23.47
Avg Len. of Sent. 65.46 34.81 92.87 79.76
# Edges (|e+|) 2670 5043 54539 7341
|e+| : (|e+|+ |e−|) 0.18 0.12 0.07 0.07
Avg degree of node 1.83 1.76 1.88 2.21

Table 1: Dataset Statistics. |e+|+ |e−| is the total num-
ber of actual edges |e+| and possible edges |e−|.

Node Type Size

Operation 3585
Declaration 1794

Both 1100
None 163

Relation Type Size

Next-Action 2272
Sub-Action 2371
Constraint 2698

Table 2: The Size of Sentence (Node) Types and De-
pendency Relations in WHPG.

4.1 Dataset Collection & Annotation

We build the original corpus from the online wik-
iHow knowledge base (Anthonio et al., 2020)
which provides a collection of how-to articles
about various topics (e.g., entertainment and crafts).
We exploit the wikiHow knowledge base to cre-
ate WHPG, a dataset of procedural texts with
dependency-relation annotations among opera-
tional and declarative sentences. The online wik-
iHow knowledge base provides an Export pages4

service which allows exporting the texts of wiki-
How articles (Anthonio et al., 2020). We adopt the
python library urllib5 to request the Export pages
services and crawl procedural articles. With the
candidate set of procedural documents, we filter
out the unnecessary information (e.g., writing date,
citations and URLs). The procedural documents
containing only one step are also filtered out. Fi-
nally, three parts (i.e., titles, method names and
steps of procedural documents) are kept to form a
complete instance. Statistically, we obtain a can-
didate set of 330 procedural documents from the
Crafts topic.

As shown in Figure 1, for each procedural docu-
ment, we provide three kinds of annotations: sen-
tence type (i.e., “Operation”, “Declaration”, “Both”
or “None”), edge (i.e., the connections between two
sentences) and dependency relation (i.e., “Next-
Action”, “Sub-Action” and “Constraint”). Three
well-educated annotators are employed to make
annotations by averaging the candidate procedural

4https://www.wikihow.com/index.php?title=
Special:Export&action=submit

5https://docs.python.org/2/library/urllib2.
html

Label Train Validation Test

Operation 2471 412 702
Declaration 1261 163 370

Both 743 125 232
None 139 18 6

Table 3: Label Distributions of Sentence (Node) Type
Classification.

Label Train Val Test

Next-Action 1542 264 466
Sub-Action 1630 270 471
Constraint 1881 280 537

Table 4: Label Distributions of Dependency Relation
Classification

documents using the BRAT tool6. To ensure the
annotation quality, each annotator are required to
give the confidence score for each annotated label.
We weigh the confidence score of each annotator
for the same label and the label with the highest
score will be preserved. Moreover, the annota-
tion samples with the lowest confidence scores will
be brainstormed to determine the final annotation
results. Moreover, the labeled instances that are
difficult to reach a consensus will be discarded. Fi-
nally, two well-trained annotators are required to
recheck all the annotation results to further ensure
the annotation quality.

Finally, the final dataset contains 283 procedural
documents with about 7341 edges. The statistical
comparison of WHPG with existing sentence-level
procedural text datasets is shown in Table 1. More-
over, the statistics of sentence (node) types and
dependency relations of our created dataset WHPG
is shown in Table 2. We also show the label distri-
butions of the node types and dependency relations,
as shown in Table 3 and Table 4.

4.2 Experiment Settings

4.2.1 Datasets & Experimental Settings
We conduct extensive experiments7 on our anno-
tated dataset WHPG. Following Pal et al. (2021),
we split WHPG dataset into train, validation and
test sets with 7:1:2 ratio. Furthermore, two pub-
lic datasets (i.e., COR (Yamakata et al., 2020) and
MAM (Qian et al., 2020) which do not consider
dependency relations among sentences) are also

6http://brat.nlplab.org/index.html
7The code and datasets are publicly available at https:

//github.com/betterAndTogether/WHPG
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Settings win = 5 win = 10 win = 20 ALL
Edge Edge&Rel Edge Edge&Rel Edge Edge&Rel Edge Edge&Rel

BERT-NS 55.44 22.98 39.24 16.53 28.05 11.16 21.28 10.02
RoBERTa-NS 55.54 23.07 40.02 16.31 27.82 11.29 21.74 8.43
BERT-GCN 42.57 17.69 27.32 11.73 20.57 8.28 18.02 7.24

RoBERTa-GCN 42.59 16.75 27.23 10.87 18.65 7.99 16.20 6.32
BERT-GAT 49.07 21.99 32.91 13.76 23.29 9.84 16.83 6.52

RoBERTa-GAT 47.34 19.87 34.13 14.69 22.48 9.12 18.60 7.32
BERT+SBil - - - - - - 29.67 17.58

Ours w/o SynEncoder 62.63 41.85 60.16 39.38 59.13 38.80 57.36 37.85
Ours w/o MultiQAtt 65.01 42.98 62.94 40.52 60.83 39.47 59.22 38.54

Ours w/o SAtt 59.52 38.98 58.72 37.71 57.40 36.67 55.47 35.43

Ours 65.71 43.61 63.79 41.39 61.87 40.31 60.84 39.06

Table 5: The Experiment Results (F1 scores) on WHPG dataset. Edge denotes the performance of edge predic-
tion task only, and Edge&Rel which is the main metric, denotes the performance when both edge prediction and
dependency relation classification tasks are correctly predicted at the same time. SynEncoder denotes the Syn-
tactic RGCN Encoder; MultiQAtt denotes the Multi-Query Syntactic-Aware Attention module; SAtt denotes the
Structural-Aware Attention module.

utilized to conduct the comparative experiments on
the Edge Prediction task.

For the Node Type Classification task, we use
the accuracy as the evaluation metric. Considering
the label imbalance in Edge Prediction task, F1-
score of the positive class (i.e., the sentence pair
existing an edge) is used as the evaluation metric
for the Edge Prediction. The performance of De-
pendency Relation classification task is affected by
the previous stage Edge Prediction. Thus, we com-
bine them to make an evaluation with the F1-score
metric (i.e., Edge&Rel in Table 5).

In the edge prediction and dependency relation
classification tasks, each sentence in the procedural
document needs to be respectively combined with
all the following sentences to determine whether
there is an edge and what types of dependency re-
lations they have. To evaluate the generalization
ability, four experimental settings (i.e., win = 5,
win = 10, win = 20 and ALL) are used to eval-
uate the effectiveness of our proposed model. For
example, for the win = 5 setting, given the first
sentence s1 ∈ D, five candidate sentence pairs
i.e. {(s1, s2), (s1, s3), (s1, s4), (s1, s5), (s1, s6)}
should be examined by the model to predict
whether there are edges and which type of depen-
dency relation they belong to. In training stage,
we use AdamW optimizer with 4 batch size, 2e-5
learning rate and 0.4 dropout rate.

4.3 Result Analysis

To evaluate the effectiveness of our proposed model
on the three tasks (i.e., Node Type Classification,
Edge Prediction and Dependency Relation Clas-

sification), we compare the performance of our
proposed model with 7 recent related works (Pal
et al., 2021; Zhou and Feng, 2022) which focus on
constructing flow graphs from a procedural docu-
ment, as shown in Table 5. To explore the problem
of generating procedural graphs from procedural
documents, a new dataset WHPG is built and uti-
lized to perform comparative experiments on both
edge prediction and dependency relation classifica-
tion tasks. Moreover, another two public datasets
(i.e., COR (Yamakata et al., 2020) and MAM (Qian
et al., 2020)) from different domains are used to
conduct the comparative experiments. Since these
two public datasets ignore the dependencies be-
tween sentences, we can only perform experiments
on Edge Prediction task.

4.3.1 Node Type Classification
As shown in Table 6, five baselines (Pal et al., 2021;
Zhou and Feng, 2022) are used to perform the com-
parative experiments. Compared with them, syntac-
tic structures are embedded into the node feature
representations in our model. From the experimen-
tal results, our model achieves the highest accura-
cies than current related works on both validation
and test datasets. It can evaluate that syntactic
structure features can be effectively captured and
further improve the ability to distinguish between
operational and declarative sentences.

4.3.2 Edge & Relation Classification
Table 5 shows the comparative experimental re-
sults under four window size settings (i.e., 5, 10,
20 and ALL) on both edge prediction and depen-
dency relation classification tasks. Our proposed
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Figure 4: The Experimental Results (F1 scores) of Each Relation on WHPG Dataset. The results are reported when
both edge prediction and relation classification tasks are correctly predicted at the same time.

Model Val Test

BERT-Base 76.04 80.76
RoBERTa-Base 75.06 80.45

BERT-Large 75.11 80.01
RoBERTa-Large 76.10 80.55

BERT+SBil 55.91 60.71

Ours 76.90 81.38

Table 6: Experimental Results (Mean Accuracy (%)
from three seed values) of Node Type Classification
Task on Both Validation and Test Set of WHPG dataset.

model achieves the highest F1 scores with a large
margin (nearly 15% F1 score in Edge and 20% F1
score in Edge&Rel) than current related works on
all experiment settings. Specifically, current exist-
ing methods mainly focus on constructing a flow
graph with only sequential dependency for each
procedural document. They ignore another two sig-
nificant dependencies (i.e., inclusion dependency
and constraint dependency) between sentences. By
capturing syntactic structures and discourse struc-
tures, our model can effectively identify the depen-
dencies between sentences. Moreover, we observe
that the performance of all models degrades as the
window size increases (e.g., BERT-NS and BERT-
GCN drop nearly 15% F1 score from 5 to 10 win-
dow size settings). Instead, our proposed model
has the smallest performance drop (only nearly 3%
F1 score) on both edge prediction and dependency
relation classification when the window size is re-
duced. Comparing with current related works, the
contextual dependency structure (discourse struc-
ture) features are utilized to assist the inference of
detecting dependency relations between sentences.
The experimental results can evaluate the advan-
tages of our model with structure-aware attention
module in handling long-range inter-sentence de-
pendency recognition.

Model COR MAM

BERT-NS 43.14 29.73
RoBERTa 42.99 39.65
RoBERTa 42.99 39.65

BERT-GCN 58.13 63.75
RoBERTa-GCN 61.44 65.73

BERT-GAT 41.93 62.18
RoBERTa-GAT 24.74 59.55

BERT+SBil 46.76 58.21

Ours 69.57 67.58

Table 7: The Experimental Results (F1 scores) of Edge
Prediction Task on COR and MAM Datasets.

Furthermore, to evaluate the domain general-
ization ability of our model, another two public
datasets (i.e., COR in recipe domain and MAM
in the maintenance domain) are used to conduct
the comparative experiments. As shown in Table
7, our model obtains the best performance with a
large margin than all related works on both datasets.
The experimental results evaluate that our proposed
model can effectively identify sequential depen-
dency between sentences and have a better domain
generalization ability.

4.3.3 Analysis for Each Dependency Relation

Figure 4 shows the comparative experiments on
extracting each type of dependency relations be-
tween sentences. Compared with the related works,
our model can obtain the highest F1 scores on all
dependency relation types. Note that due to the im-
balance in the number of existing and non-existing
edges between sentences in procedural documents,
current existing methods are prone to recognize the
inter-sentences as None dependency and have low
performance in the three dependency relations (i.e.,
Next-Action, Sub-Action and Constraint).
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Figure 5: The heatmap of the weight distributions for
each word measured by Multi-Query Syntactic-Aware
Attention.

4.3.4 Ablation Study
As shown in Table 5, the ablation experiments are
conducted to evaluate the effectiveness of the de-
signed modules (i.e., SynEncoder, MultiQAtt and
SAtt). The ablation experimental results can eval-
uate that both the syntactic information and dis-
course structure benefit the dependency relation
detection. Specifically, both the SynEncoder and
MultiQAtt modules can effectively capture the syn-
tactic features and assist the dependency relation
detection. Moreover, the performance of our model
can be improved effectively when the discourse-
structure features are embedded by the structure
aware attention module.

4.4 Visualization

As shown in Figure 5, we show the weight dis-
tributions of each word measured by the Multi-
Query Syntactic Aware Attention Module. We
can observe that the phrases with the syntactic

pattern “VB
obj−→NN” (e.g„ “cut→hole” in S1 and

“use→cup” in S2) obtain the higher weight values
than other words, which indicates the sentences as
operational sentences. Moreover, the token “Then”
in S3 of Figure 5 is measured as the highest weight
value, which indicates the sentence has the “Next-
Action” dependency relation with previous sen-
tences. The visualization analyse can evaluate the
effectiveness of our proposed module Multi-Query
Syntactic Aware Attention.

5 Conclusion

In this paper, we explore a problem of automati-
cally generating procedural graphs with multiple
dependency relations for procedural documents.
Existing procedural knowledge structured methods
mainly focus on constructing action flows with the
sequential dependency from procedural texts but
neglect another two important dependencies: inclu-
sion dependency and constraint dependency which
are helpful for the procedural text understanding

and reasoning. To solve this problem, we build a
new procedural text dataset with multiple depen-
dency relations and propose a procedural graph
construction method by utilizing syntactic and dis-
course structure features. Extensive experiments
are conducted and evaluate the effectiveness of our
proposed model.

6 Limitations

In this section, we draw conclusions for the limi-
tations of our proposed model in this paper. Our
proposed model mainly focuses on the sentence-
level procedural graph construction. The scenario
that two actions in the same sentence cannot be
considered in our proposed model. It is challeng-
ing to handle multi-grained (i.e., entity-level and
sentence-level) dependencies between actions. We
will consider this limitation as our future work.
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