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Abstract

We present a large-scale video subtitle translat-
ion dataset, BIGVIDEO, to facilitate the study
of multi-modality machine translation. Com-
pared with the widely used HOW2 and VATEX
datasets, BIGVIDEO is more than 10 times
larger, consisting of 4.5 million sentence pairs
and 9,981 hours of videos. We also introduce
two deliberately designed test sets to verify the
necessity of visual information: AMBIGUOUS
with the presence of ambiguous words, and
UNAMBIGUOUS in which the text context
is self-contained for translation. To better
model the common semantics shared across
texts and videos, we introduce a contrastive
learning method in the cross-modal encoder.
Extensive experiments on the BIGVIDEO
show that: a) Visual information consistently
improves the NMT model in terms of BLEU,
BLEURT, and COMET on both AMBIGUOUS
and UNAMBIGUOUS test sets. b) Visual
information helps disambiguation, compared
to the strong text baseline on terminology-
targeted scores and human evaluation. Dataset
and our implementations are available at
https://github.com/DeepLearnXMU/BigVideo-
VMT.

1 Introduction

Humans are able to integrate both language and vi-
sual context to understand the world. From the
perspective of NMT, it is also much needed to
make use of such information to approach human-
level translation abilities. To facilitate Multimodal
Machine Translation (MMT) research, a number
of datasets have been proposed including image-
guided translation datasets (Elliott et al., 2016;
Gella et al., 2019; Wang et al., 2022) and video-
guided translation datasets (Sanabria et al., 2018;
Wang et al., 2019; Li et al., 2022b).

*Equal contribution. Work was done while Liyan Kang
was interning at ByteDance.

†Corresponding author.

Source Subtitle: Clear shot could also get you used 

to the air flow of the courts.

Ground Truth: 高远球也可以让你习惯场馆的空
气阻力。
System w/o Video: 清晰的镜头也可以让你习惯法

庭的气流。
System w/ Video: 清晰的击球也会让你习惯球场的

气流。

Figure 1: An example with semantic ambiguity in
BIGVIDEO. The phrases with semantic ambiguity are
highlighted in red. The wrong translations are in blue
and the correct translations are in yellow.

However, the conclusion about the effects of
visual information is still unclear for MMT re-
search (Caglayan et al., 2019). Previous work
has suggested that visual information is only
marginally beneficial for machine translation (Li
et al., 2021; Caglayan et al., 2021), especially when
the text context is not complete. The most possi-
ble reason is that existing datasets focus on cap-
tions describing images or videos, which are not
large and diverse enough. The text inputs are of-
ten simple and sufficient for translation tasks (Wu
et al., 2021). Take the widely used Multi30K as
an example. Multi30K consists of only 30K image
captions, while typical text translation systems are
often trained with several million sentence pairs.

We argue that studying the effects of visual con-
texts in machine translation requires a large-scale
and diverse data set for training and a real-world
and complex benchmark for testing. To this end,
we propose BIGVIDEO, a large-scale video subtitle
translation dataset. We collect human-written subti-
tles from two famous online video platforms, Xigua
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and YouTube. BIGVIDEO consists of 155 thousand
videos and 4.5 million high-quality parallel sen-
tences in English and Chinese. We highlight the
key features of BIGVIDEO as follows: a) The size
of BIGVIDEO bypasses the largest available video
machine translation dataset HOW2 and VATEX by
one order of magnitude. b) To investigate the need
for visual information, two test sets are annotated
by language experts, referred as AMBIGUOUS and
UNAMBIGUOUS. In AMBIGUOUS, the source input
is not sufficient enough and requires videos to dis-
ambiguate for translation. The experts also labelled
unambiguous words to help evaluate whether the
improvement comes from visual contexts. In UN-
AMBIGUOUS, actions or visual scenes in the videos
are mentioned in the subtitles but source sentences
are self-contained for translation.

To make the most of visual information for
MMT, we propose a unified encoder-decoder
framework for MMT. The model has a cross-modal
encoder that takes both videos and texts as inputs.
Motivated by recent work on cross-modal learn-
ing (Li et al., 2020; Qi et al., 2020; Xia et al., 2021),
we also introduce a contrastive learning objective
to further bridge the representation gap between the
text and video and project them in a shared space.
As such, the visual information can potentially con-
tribute more to the translation model.

We conduct extensive experiments on the pro-
posed benchmark BIGVIDEO and report the results
on BLEU (Papineni et al., 2002), BLEURT (Sel-
lam et al., 2020), COMET (Rei et al., 2020),
terminology-targeted metrics and human evalua-
tion. We also introduce the large scale WMT19
training data, which contains 20.4M parallel sen-
tences to build the strong baseline model. The
experiments show that visual contexts consistently
improve the performance of both the AMBIGUOUS

and UNAMBIGUOUS test set over the strong text-
only model. The finding is slightly different with
previous studies and address the importance of a
large scale and high-quality video translation data.
Further, the contrastive learning method can fur-
ther boost the translation performance over other
visual-guided models, which shows the benefits of
closing the representation gap of texts and videos.

2 Related Work

Video-guided Machine Translation. The VATEX
dataset has been introduced for video-guided ma-
chine translation task (Wang et al., 2019). It con-

tains 129K bilingual captions paired with video
clips. However, as pointed out by Yang et al.
(2022), captions in VATEX have sufficient informa-
tion for translation, and models trained on VATEX
tend to ignore video information. Beyond captions,
Sanabria et al. (2018) considers video subtitles to
construct the HOW2 dataset. HOW2 collects in-
structional videos from YouTube and obtains 186K
bilingual subtitle sentences. To construct a chal-
lenging VMT dataset, Li et al. (2022b) collect 39K
ambiguous subtitles from movies or TV episodes
to build VISA. However, both HOW2 and VISA
are limited on scale and diversity, given the training
needs of large models. In contrast, we release a
larger video subtitle translation dataset, with mil-
lions of bilingual ambiguous subtitles, covering all
categories on YouTube and Xigua platforms.

To leverage video inputs in machine transla-
tion models, Hirasawa et al. (2020) use pretrained
models such as ResNet (He et al., 2016), Faster-
RCNN (Ren et al., 2015) and I3D (Carreira and
Zisserman, 2017). An additional attention mod-
ule is designed in the RNN decoder to fuse visual
features. To better learn temporal information in
videos, (Gu et al., 2021) propose a hierarchical
attention network to model video-level features.
Different from previous work, we use a unified en-
coder to learn both video and text features. Specifi-
cally, a contrastive learning objective is adopted to
learn cross-modal interaction.

Image-guided Machine Translation. Images as
additional inputs have long been used for machine
translation (Hitschler et al., 2016). For neural mod-
els, several attempts have been focused on enhanc-
ing the sequence-to-sequence model with strong
image features (Elliott and Kádár, 2017; Yao and
Wan, 2020; Lin et al., 2020; Yin et al., 2020; Su
et al., 2021; Li et al., 2022a; Lin et al., 2020; Zhu
et al., 2022; Lan et al., 2023). However, Li et al.
(2021) and Wu et al. (2021) point out that images in
Multi30K provide little information for translation.
In this work, we focus on videos as additional vi-
sual inputs for subtitle translation. Videos illustrate
objects, actions, and scenes, which contain more
information compared to images. Subtitles are of-
ten in spoken language, which contains inherent
ambiguities due to multiple potential interpreta-
tions (Mehrabi et al., 2022). Hence, our dataset can
be a complement to existing MMT datasets.
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Dataset Text Video
# Sent Len. # Video # Clip Sec.

VISA 35K 7.0 2K 35K 10.0
VATEX 129K 15.2 25K 25K 10.0
HOW2 186K 20.6 13K 186K 5.8
BIGVIDEO 4.5M 22.8 156K 4.5M 8.0

Table 1: Statistics of the BIGVIDEO and existing
video-guided machine translation datasets. The size
of the BIGVIDEO bypasses the size of largest available
datasets by one order of magnitude. For the text length
(Len.), we report average length of source sentences (En-
glish) for fair comparison. For the video length (Sec.),
we report average seconds of videos for fair comparison.

3 Dataset

We present BIGVIDEO, consisting of 150 thou-
sand unique videos (9,981 hours in total) with both
English and Chinese subtitles. The videos are col-
lected from two popular online video platforms,
YouTube and Xigua. All subtitles are human-
written. Table 1 lists statistics of our dataset and
existing video-guided translation datasets. Among
existing datasets, our dataset is significantly larger,
with more videos and parallel sentences.

3.1 BIGVIDEO Dataset
To obtain high-quality video-subtitle pairs, we col-
lect videos with both English and Chinese subtitles
from YouTube1 and Xigua2. Both two platforms
provide three types of subtitles: 1) creator which
is uploaded by the creator, 2) auto-generate which
is generated by the automatic speech recognition
model and 3) auto-translate which is produced
by machine translation model. We only consider
videos with both English and Chinese subtitles up-
loaded by creators in order to obtain high-quality
parallel subtitles. These videos and subtitles are of-
ten created by native or fluent English and Chinese
speakers. In total, we collect 13K videos (6K hours
in total) from YouTube and 2K videos from Xigua
(3.9K hours in total).
Preprocessing. We first re-segment English sub-
titles into full sentences. To ensure the quality of
parallel subtitles, we use quality estimation scores
(e.g., the COMET score) to filter out low-quality
pairs. More details are provided in Appendix B.1.
Ultimately, 3.3M sentences paired with video clips
are kept for YouTube, and 1.2M for Xigua. The
average lengths of English and Chinese sentences

1https://www.youtube.com
2https://www.ixigua.com

Source Fluency↑ Translation
Quality↑

YOUTUBE 4.81 4.11
XIGUA 4.60 4.20

Table 2: Human evaluation results on BIGVIDEO. The
fluency score (1-5) measures whether source sentences
(English) are fluent and error-free and the translation
quality (1-5) measures whether sentence pairs are equiv-
alent in meaning. Inter-annotator agreement with Krip-
pendorf’s α for all columns: 0.76, 0.82.
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Figure 2: The numbers of unique n-grams and POS tags
in BIGVIDEO exceed existing VMT datasets by one
order. Our dataset is lexically richer than VATEX and
HOW2. For all datasets, we report statistics of source
sentences (English) for fair comparison.

are 17.6 and 15.4 words for YouTube, 37.7 and
32.4 words for Xigua.

3.2 Dataset Analysis

Quality Evaluation. To assess the quality of text
pairs, we randomly select 200 videos from each
source and recruit seven annotators to rate the qual-
ity of subtitles pairs. For each video, we randomly
select at most 20 clips for evaluation. All anno-
tators are fluent in English and Chinese. After
watching video clips and subtitles, human annota-
tors are asked to rate subtitle pairs from 1 (worst)
to 5 (best) on fluency–whether the source sentence
(English) is fluent and grammatically correct, and
translation quality–whether the Chinese subtitle
is semantically equivalent to the English subtitle.
Detailed guidelines are provided in Appendix F.

From Table 2, English sentences from both
YouTube and Xigua have an average of 4.8 and
4.6 fluency scores, which shows that English sub-
titles are fluent and rarely have errors. In terms of
translation quality, we find more than 96 percent of
the pairs are equivalent or mostly-equivalent, with
only minor differences (e.g., style).
Diversity Evaluation. In addition to the size and
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Test set Number Length # phrases

AMBIGUOUS 877 28.61 745
UNAMBIGUOUS 1,517 27.22 —

Table 3: Statistics of our test sets. We report number
of samples, average length and number of ambiguous
terms in two test sets.

quality, diversity is also critical for modeling align-
ments between parallel texts (Tiedemann, 2012).
Prior work calculates unique n-grams and part-of-
speech (POS) tags to evaluate linguistic complex-
ity (Wang et al., 2019). Besides word-level metrics,
we use video category distribution to assess video-
level diversity.

Since the source text of our dataset, VATEX and
HOW2 are in English, we compare unique n-grams
and POS tags on the source texts. For unique POS
tags, we compare four most common types: verb,
noun, adjective and adverb. In Figure 2, our data
from both XIGUA and YOUTUBE have substan-
tially more unique n-grams and POS tags than VA-
TEX and HOW2. Evidently, our dataset covers a
wider range of actions, objects and visual scenes.

To evaluate video-level diversity, we compare
category distributions among three datasets. The
YouTube platform classifies videos into 15 cate-
gories. Since videos collected from the Xigua plat-
form do not have category labels, we train a clas-
sifier on the YouTube data to label them. Details
of the classifier are in Appendix B.2. Figure 3 de-
picts the distributions of three datasets. While both
VATEX and HOW2 have a long-tail distribution on
several categories (e.g., “Nonprofits & Activism”
and “News & Politic”), BIGVIDEO has at least
1,000 videos in each category, which forms a more
diverse training set.

3.3 Test Set Annotation Procedure

Subtitles often contain semantic ambiguities (Gu
et al., 2021), which can be potentially solved by
watching videos. In order to study “How visual
contexts benefit machine translation”, we create
two test sets: AMBIGUOUS contains ambiguous
subtitles that videos provide strong disambigua-
tion signal, while UNAMBIGUOUS consists of self-
contained subtitles that videos are related but subti-
tles themselves contain enough context for transla-
tion. Statistics of two test sets are listed in Figure 3.

We randomly sample 200 videos from each of
Xigua and YouTube and hire four professional

102 103 104

Number of videos

People & Blogs
Entertainment
Howto & Sytle

Education
Travel & Events

Music
Gaming

Sports
Science & Technology

Comedy
Film & Animation

Pets & Animals
News & Politics

Autos & Vehicles
Nonprofits & Activism

BigVideo
VaTeX
How2

Figure 3: Category distribution on BIGVIDEO, VATEX
and HOW2. BIGVIDEO covers a wide range of domains.

English Subtitle: ……That 's a good chip .

Chinese Subtitle: ……那款玉米片很好吃。
Ambiguous Annotation:  chip → 玉米片

Figure 4: An example from our AMBIGUOUS test set.
The ambiguous term “chip” is in red.

speakers in both English and Chinese to annotate
the test set. Annotators are first asked to remove
sentences which are not related to videos. In this
step, we filter out about twenty percent of sen-
tences. Annotators are then asked to re-write the
Chinese subtitle if it is not perfectly equivalent to
the English subtitle. Next, we ask the annotators to
distinguish whether the source sentence contains
semantic ambiguity. Specifically, annotators are
instructed to identify ambiguous words or phrases
in both English and Chinese sentences, as illus-
trated in Figure 4. We finally obtain 2394 samples
in our test set. 36.6% of the sentences are in the
AMBIGUOUS and 63.4% of the sentences are in the
UNAMBIGUOUS. In the AMBIGUOUS, we anno-
tate 745 ambiguous terms. The statistics indicate
that videos play important roles in our dataset. An-
notation instructions and detailed procedures are
provided in Appendix F.
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4 Method

4.1 Model

To better leverage videos to help translation,
we present our video-guided machine translation
model, as displayed in Figure 5. Our model can
be seamlessly plugged into the pretrained NMT
model, which can benefit from large-scale parallel
training data. Importantly, we design a contrastive
learning objective to further drive the translation
model to learn shared semantics between videos
and text.

Cross-modal Encoder. Our model takes both
videos and text as inputs. Text inputs are first repre-
sented as a sequence of tokens x and then converted
to word embeddings through the embedding layer.
Video inputs are represented as a sequence of con-
tinuous frames v. We use a pretrained encoder to
extract frame-level features, which is frozen for
all experiments. Concretely, we apply the linear
projection to obtain video features with the same di-
mension as text embeddings. To further model tem-
poral information, we add positional embeddings to
video features, followed by the layer normalization.
Video features vemb and text embeddings xemb are
then concatenated and fed into the Transformer
encoder.

Text Decoder. Our decoder is the original Trans-
former decoder, which generates tokens autoregres-
sively conditioned on the encoder outputs. We
consider the cross entropy loss as a training objec-
tive:

LCE = −
N∑

i

logP (yi|vi,xi), (1)

where yi denotes the text sequence in the target lan-
guage for the i-th sample in a batch of N samples.

4.2 Contrastive Learning Objective

In order to learn shared semantics between videos
and text, we introduce a cross-modal contrastive
learning (CTR)-based objective. The idea of the
CTR objective is to bring the representations of
video-text pairs closer and push irrelevant ones
further.

Formally, given a positive text-video pair
(xi,vi), we use remaining N − 1 irrelevant text-
video pairs (xi,vj) in the batch as negative samples.

Cross-modal Encoder

Decoder

Cross Entropy Loss

Video 

Embedder

Text 

Embedder

∙∙∙∙∙∙ ∙∙∙∙∙∙

Average Pooling

MLP MLP

Contrastive Loss

Feature 

Extractor

That’s a good 

chip.

E
x
am

p
le

Positive Pair

Negative Pair

Figure 5: An illustration of our machine translation sys-
tem. An example of our contrastive learning is presented
in the blue box.

The contrastive learning objective (Sohn, 2016) is:

LCTR = −
N∑

i=1

log
exp(sim(xp

i ,v
p
i )/τ)

N∑

j=1,j ̸=i

exp(sim(xp
i ,v

p
j )/τ)

,

(2)
where xp

i and vp
i are representations for the text

and video, sim(·) is the cosine similarity function
and the temperature τ is used to control the strength
of penalties on hard negative samples (Wang and
Liu, 2021).
Text and Video Representations. Importantly,
since videos and subtitles are weakly aligned on the
temporal dimension (Miech et al., 2019), we first
average video embeddings and text embeddings in
terms of the time dimension. Concretely, we apply
two projection heads ("MLP" in Figure 5) to map
representations to the same semantic space (Chen
et al., 2020).

In the end, we sum up the two losses to obtain
the final loss:

L = LCE + αLCTR, (3)

where α is a hyper-parameter to balance the two
loss items.

5 Experiments

5.1 Experimental Setup

Implementation Details. We evaluate our method
on three video translation datasets: VATEX, HOW2
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System
BLEU COMET BLEURT

All Amb. Unamb. All Amb. Unamb. All Amb. Unamb.
w/o pretraining
TEXT-ONLY 43.97 43.59 44.19 37.31 33.06 39.77 61.11 59.68 61.93

GATED FUSHION 44.33 44.12 44.45 37.88 34.47 39.85 61.25 60.19 61.86

SELECTIVE ATTN 44.39 44.20 44.51 38.48 34.84 40.59 61.37 60.30 62.07

Ours
+ VIT 44.26 44.10 44.37 38.13 34.75 40.08 61.24 60.29 61.78

+ SLOWFAST 44.21 44.12 44.26 37.81 34.99 39.44 61.22 60.28 61.77

+ VIT + CTR 44.45 44.48 44.40 38.15 35.76 39.54 61.36 60.72 61.73

+ SLOWFAST + CTR 44.44 44.20 44.58 38.37 35.18 40.22 61.31 60.41 61.82

w/ pretraining
TEXT-ONLY 44.45 43.89 44.79 38.36 33.40 41.23 61.41 59.85 62.31

+ VIT + CTR 44.83 44.62 44.96 39.44 36.42 41.19 61.76 60.75 62.34

+ SLOWFAST + CTR 44.77 44.43 44.97 39.26 36.03 41.12 61.71 60.52 62.40

Table 4: sacreBLEU(%), COMET(%) and BLEURT(%) scores on BIGVIDEO testset. We report results on
AMBIGUOUS (Amb.), UNAMBIGUOUS (Unamb.) and whole test set (All). “+ CTR” denotes our cross-model
framework with the contrastive learning objective. All results are mean values of five different random seeds.
Complete results with standard deviations can be seen in Appendix A. The Best result in each group is in bold. The
Best result in each column is in red .

and our proposed dataset BIGVIDEO. More dataset
details can be found in Appendex C.1.

Our code is based on the fairseq toolkit (Ott
et al., 2019). The Transformer-base model follows
(Vaswani et al., 2017). Both encoder and decoder
have 6 layers, 8 attention heads, hidden size = 512,
and FFN size = 2048. We utilize post-layer normal-
ization for all models. On VATEX, we follow the
Transformer-small setting from Wu et al. (2021) for
better performance, 6 layers for encoder/decoder,
hidden size = 512, FFN size = 1024 and attention
heads = 4.

All experiments are done on 8 NVIDIA V100
GPUS with mixed-precision training (Das et al.,
2018), where the batch assigned to each GPU con-
tains 4,096 tokens. More training details can be
found in Appendix C.2. We stop the training if the
performance on the validation set does not improve
for ten consecutive epochs. The running time is
about 64 GPU hours for our system. During the
inference, the beam size and the length penalty are
set to 4 and 1.0. We apply byte pair encoding (BPE)
with 32K merge operations to preprocess sentences
of our dataset. During training and testing, we
uniformly sample a maximum of 12 frames as the
video input. The text length is limited to 256. For
the contrastive learning loss, we set α to 1.0 and τ
to 0.002. The choices of hyper-parameters are in
Appendix D.

For video features, we extract 2D features and
3D features to compare their effects. Concretely,
we experiment with two pretrained models to
extract the video feature: a) The vision transo-
former (VIT) (Dosovitskiy et al., 2021) which
extracts frame-level features. b) The SlowFast
model (SLOWFAST) which extracts video-level fea-
tures (Feichtenhofer et al., 2019). For 2D features,
we first extract images at a fixed frame rate (3
frames per second). Then we utilize pretrained
Vision Transformer3 (ViT) to extract 2D video fea-
tures into 768-dimensional vectors. Here the rep-
resentation of [CLS] token is considered as the
global information of one frame. For 3D features,
we extract 2304-dimensional SlowFast4 features at
2/3 frames per second.
Baselines and Comparisons. For baselines, we
consider the base version of the Transformer
(TEXT-ONLY), which only takes texts as inputs. For
comparisons, since most recent MMT studies focus
on image-guided machine translation, we imple-
ment two recent image-based MMT models: a) The
gated fusion model (GATED FUSION) which fuses
visual representations and text representations with
a gate mechanism (Wu et al., 2021). b) The se-
lective attention model (SELECTIVE ATTN) which
uses a single-head attention to connect text and im-

3The model architecture is vit_base_patch16_224.
4SLOWFAST_8x8_R50.

8461



age representations (Li et al., 2022a). We extract
image features using ViT and obtain the visual fea-
ture by averaging image features on the temporal
dimension. The visual feature is then fused with
the text representations which is the same as orig-
inal GATED FUSION and SELECTIVE ATTN. For
HOW2 and VATEX, we additionally include the
baseline models provided by the original paper.
Evaluation Metrics. We evaluate our results
with the following three metrics: detokenized
sacreBLEU5, COMET6 (Rei et al., 2020) and
BLEURT7 (Sellam et al., 2020). In order to evalu-
ate whether videos are leveraged to disambiguate,
we further consider three terminology-targeted met-
rics (Alam et al., 2021):

• Exact Match: the accuracy over the annotated
ambiguous words. If the correct ambiguous
words or phrases appear in the output, we
count it as correct.

• Window Overlap: indicating whether the am-
biguous terms are placed in the correct context.
For each target ambiguous term, a window is
set to contain its left and right words, ignor-
ing stopwords. We calculate the percentage
of words in the window that are correct. In
practice, we set window sizes to 2 (Window
Overlap-2) and 3 (Window Overlap-3).

• Terminology-biased Translation Edit Rate (1-
TERm): modified translation edit rate (Snover
et al., 2006) in which words in ambiguous
terms are set to 2 edit cost and others are 1.

6 Results

6.1 Main Results

Videos Consistently Improve the NMT Model.
As displayed in Table 4, on BIGVIDEO, our mod-
els equipped with videos obtain higher automatic
scores. This indicates the benefit of using videos
as additional inputs. Notably, our model trained
with the additional contrastive learning objective
yields better scores compared to the variant trained
only with the cross entropy loss. This signifies that
our contrastive learning objective can guide bet-
ter acquisition of video inputs. Furthermore, we

5https://github.com/mjpost/sacrebleu.
Signature: BLEU+case.mixed+numrefs.1+smooth.exp+
tok.zh+version.1.5.1 (Post, 2018)

6https://github.com/Unbabel/COMET. We use the default
wmt20-comet-da.

7https://github.com/google-research/bleurt. We use the
BLEURT-20.

System Exact Window Window 1-TERm
Match Overlap-2 Overlap-3

w/o pre-training

TEXT-ONLY 23.03 14.22 14.28 49.50

GATED FUSHION 23.68 14.60 14.76 49.68

SELECTIVE ATTN 23.66 14.95 15.08 49.77

Ours
+ VIT 24.27 15.09 15.27 49.78

+ SLOWFAST 24.05 14.97 15.13 49.32

+ VIT + CTR 25.02 15.56 15.77 49.91

+ SLOWFAST + CTR 24.08 15.04 15.12 49.32

w/ pre-training

TEXT-ONLY 22.71 14.35 14.37 49.73

+ VIT + CTR 24.30 15.17 15.39 50.28

+ SLOWFAST + CTR 23.62 14.76 14.90 50.04

Table 5: Terminology-targeted evaluation on AMBIGU-
OUS test set. Complete results with standard deviations
can be seen in Appendix A.

find image-based pretrained model VIT and video-
based pretrained model SLOWFAST yield compa-
rable results, indicating that two vision features
perform equally well on BIGVIDEO.

Noticeably, compared to the text-only baseline,
our models trained with the CTR objective achieves
larger gain on AMBIGUOUS than that on UNAM-
BIGUOUS. This demonstrates that it is more diffi-
cult to correctly translate sentences of AMBIGU-
OUS, while taking videos as additional inputs can
help the model generate better translations.

To better study the role of videos in translation,
we introduce additional training data to build a
stronger NMT baseline. We introduce the WMT19
Zh-En dataset with 20.4M parallel sentences for
pretraining. We aim to answer: how will the model
perform if more text data are included?

As displayed in Table 4, Model with video inputs
outperforms the strong NMT baseline. Pretraining
on large corpus benefits models on BIGVIDEO.
However, we find improvements mainly come from
the UNAMBIGUOUS. This shows that videos play
more crucial roles in AMBIGUOUS, which suggests
that BIGVIDEO can serve as a valuable benchmark
for studying the role of videos in MMT research.
Videos Help Disambiguation. We further evaluate
the model ability of disambiguation. We present
results on terminology-targeted metrics in Table 5.
First, our systems with video features achieve con-
sistent improvements both on exact match and win-
dow overlap metrics compared to the text-only vari-
ant, indicating that models augmented by video
inputs correctly translate more ambiguous words

8462

https://github.com/mjpost/sacrebleu
https://github.com/Unbabel/COMET
https://github.com/google-research/bleurt


Systems Score Win ↑ Tie Lose ↓
AMBIGUOUS

TEXT-ONLY 3.48 — — —
+ VIT + CTR 3.53 19.3% 65.3% 15.3%

UNAMBIGUOUS

TEXT-ONLY 3.71 — — —
+ VIT + CTR 3.72 24% 51.3% 21.7%

Table 6: Human evaluation results on randomly sampled
set. “Win”/“Tie”/“Lose” stands for the percentage of
translations where our system is better than, tied with, or
worse than the text-only system. Inter-annotator agree-
ment with Krippendorf’s α for the translation quality
score is 0.53.

and place them in the proper contexts. It is also
worth noticing that our system with pretraining
achieves better scores compared to the strong text
baseline, which further highlights the importance
of video inputs. Moreover, we find it hard to cor-
rectly translate ambiguous words since the best
exact match score is 25.02%, which suggests that
our AMBIGUOUS set is challenging.

Video-augmented Model Improves Translation
Quality. We further conduct human evaluation
to analyze the translation quality. We randomly
pick 100 sentences from the AMBIGUOUS and the
UNAMBIGUOUS respectively and recruit three hu-
man judges for evaluation. For each sentence, the
judges read the source sentence and two candidate
translations, which are from TEXT-ONLY and our
model + VIT + CTR. The judges are required to
rate each candidate on a scale of 1 to 5 and pick the
better one. Detailed guidelines are in Appendix G.

From Table 6, we can see our system with video
inputs are more frequently rated as better transla-
tion than the text-only model on both AMBIGUOUS

and UNAMBIGUOUS test sets. This echoes auto-
matic evaluations and implies that taking videos
as inputs improve translation quality. Moreover,
overall scores on UNAMBIGUOUS are better than
those on AMBIGUOUS, which demonstrates that
AMBIGUOUS is more challenging.

6.2 Incongruent Decoding

In this section, we explore whether visual in-
puts contribute to the translation model. Follow-
ing (Caglayan et al., 2019; Li et al., 2022a), we use
incongruent decoding to probe the need for visual
modality on BIGVIDEO. During the inference, we
replace the original video with a mismatched video

Congruent Incongruent
Ambiguous

10

15

20

25

30

35

40

45 44.48
42.78

35.76

31.11

25.02
23.33

15.56
13.95

BLEU COMET Match Overlap

Congruent Incongruent
Unambiguous

10

15

20

25

30

35

40

45 44.40 43.50

39.54
37.73

Figure 6: The results of incongruent decoding of the +
VIT + CTR model. “Congruent” denotes the original
results and “Icongruent” denotes the results of incongru-
ent decoding where videos are replaced by wrong ones.
“Match” represents the exact match score and “Overlap”
stands for the “Window Overlap-2”.

for each sentence. As shown in Figure 6, on AM-
BIGUOUS and UNAMBIGUOUS, we observe that
all automatic metrics of our system drop signifi-
cantly with incongruent decoding, suggesting the
effectiveness of leveraging videos as inputs. Inter-
estingly, we also find that the drop of the BLEU and
COMET scores is larger on AMBIGUOUS than that
on UNAMBIGUOUS, which further proves our point
that videos are more crucial for disambiguation.

6.3 Results on Public Datasets

Next, we conduct experiments on public datasets,
VATEX and HOW2. Results are displayed in
Table 7. On HOW2, our best system achieves
higher BLEU score compared to the text-only
model. However, the text-only model achieves best
COMET and BLEURT, compared to all systems
that take videos as inputs. On VATEX, our model
with SLOWFAST features also achieves the highest
scores on three evaluation metrics, compared to
the text-only model and comparisons. Notably, the
model with SLOWFAST features is significantly bet-
ter than models with VIT features, which is prob-
ably because VATEX focuses on human actions
and the SLOWFAST model is trained on the action
recognition dataset. However, the performance gap
between the TEXT-ONLY and our model + SLOW-
FAST + CTR is marginal. After we introduce 20M
external MT data, we observe that the TEXT-ONLY

and our best system are comparable on automatic
metrics. Since the cross-modal encoder often re-
quires large-scale paired videos and text to train
robust representations, our model does not achieve
huge performance gain on VATEX and HOW2. We
hope our BIGVIDEO dataset can serve as a comple-
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System BLEU COMET BLEURT

HOW2

w/o pretraining

TEXT-ONLY 57.57 65.95 72.52

Sanabria et al. (2018) 54.40 — —

GATED FUSHION 57.65 65.12 72.26

SELECTIVE ATTN 57.51 65.77 72.35

Ours

+ VIT + CTR 57.95 65.53 72.46

+ SLOWFAST + CTR 57.78 65.58 72.41

VATEX

w/o pretraining

TEXT-ONLY 35.01 15.32 56.99

Wang et al. (2019) 30.11 4.50 53.85

GATED FUSHION 33.79 13.55 55.66

SELECTIVE ATTN 34.25 13.55 56.80

Ours

+ VIT + CTR 34.84 12.44 56.25

+ SLOWFAST + CTR 35.15 15.65 57.06

w/ pretraining

TEXT-ONLY 37.57 25.22 59.33

+ ViT + CTR 37.34 24.07 58.87

+ SLOWFAST + CTR 37.58 25.05 59.20

Table 7: Experimental results on HOW2 and VATEX.
Complete results with standard deviations can be seen
in Appendix A.

ment to existing video-guided machine translation
datasets.

7 Conclusion

In this paper, we present BIGVIDEO ——a large-
scale video subtitle Translation dataset for multi-
modal machine translation. We collect 155 thou-
sand videos accompanied by over 4.5 million bilin-
gual subtitles. Specially, we annotate two test sub-
sets: AMBIGUOUS where videos are required for
disambiguation and UNAMBIGUOUS where text
contents are self-contained for translation. We also
propose a cross-modal encoder enhanced with a
contrastive learning objective to build cross-modal
interaction for machine translation. Experimental
results prove that videos consistently improve the
NMT model in terms of the translation evaluation
metrics and terminology-targeted metrics. More-
over, human annotators prefer our system outputs,
compared to the strong text-only baseline. We hope
our BIGVIDEO dataset can facilitate the research
of multi-modal machine translation.

Limitations

BIGVIDEO is collected from two video platforms
Xigua and YouTube. All videos are publicly avail-
able. However, some videos may contain user in-
formation (e.g., portraits) or other sensitive infor-
mation. Similar to VATEX and HOW2, we will
release our test set annotation and the code to re-
produce our dataset. For videos without copyright
or sensitive issues, we will make them public but
limit for research, and non-commercial use (We
will require dataset users to apply for access). For
videos with copyright or sensitive risks, we will
provide ids, which can be used to download the
video. This step will be done under the instruction
of professional lawyers.

Though we show that our model with video in-
puts helps disambiguation, we find that our model
could yield incorrect translation due to the lack
of world knowledge. For example, model can not
distinguish famous table tennis player Fan Zheng-
dong and give correct translation. We find this is
due to video pretrained models are often trained
on action dataset (e.g., Kinetics-600 (Long et al.,
2020)) and hardly learn such world knowledge. In
this work, we do not further study methods that
leverage world knowledge.

Ethical Considerations

Collection of BIGVIDEO. We comply with the
terms of use and copyright policies of all data
sources during collection from the YouTube and
Xigua platform. User and other sensitive informa-
tion is not collected to ensure the privacy of video
creators. The data sources are publicly available
videos and our preprocessing procedure does not
involve privacy issues. For all annotation or human
evaluation mentioned in the paper, we hire seven
full-time professional translators in total and pay
them with market wage. All of our annotators are
graduates.
Potential Risks of BIGVIDEO and our model.
While BIGVIDEO consists of high-quality paral-
lel subtitles, we recognize that our data may still
contain incorrect samples. Our model may as well
generate degraded or even improper contents. As
our dataset is based on YouTube or Xigua videos,
models trained on our dataset might be biased to-
wards US or Chinese user perspective, which could
yield outputs that are harmful to certain popula-
tions.
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A Complete Results

The Complete results with standard deviations can
be found in Table 8, Table 9 and Table 10.

B Data Collection

B.1 Preprocessing

Subtitles are organized as a list of text chunks. Each
chunk contains both English and Chinese lines and
a corresponding timestamp. To obtain complete
sentences, we start processing subtitles by merg-
ing chunks. Since English subtitles are often with
strong punctuation marks, we greedily merge con-
tinuous segments (The start time of the second
segment and the end time of the first segment are
within 0.5 seconds) until an end mark is met at the
end of the segment. To preserve context, we keep
merging continuous sentences until a maximum
time limit of 15 seconds is reached. Finally, we
pair each merged segment with the video clip from
the time interval corresponding to the segment.

English sentences from both YouTube and Xigua
have an average of 4.6 fluency score, which shows
that English subtitles are fluent and rarely have
errors. In terms of translation quality, subtitles
collected from Xigua have an average of 4.2 trans-
lation quality score, which indicates most of the
subtitle pairs are equivalent or near-equivalent. In
YouTube data, we find about 20 percent of sentence
pairs are not equivalent or have major errors such
as mistranslation or omission.

To remove low-quality pairs, we try three
commonly-used quality estimation scores: 1) the
COMET score, 2) the Euclidean distance based on
the multilingual sentence embedding (Artetxe and
Schwenk, 2019), and 3) the round-trip translation
BLEU score (Moon et al., 2020). We filter out pairs
if more than one score is lower than the threshold
(set to 0.1, 4 and 20, respectively). On annotated
samples, the average translation quality reaches 4.1
after cleaning.

B.2 Video Category Classifier Details

To construct a large-scale video-guided dataset, we
collect videos from a variety of domains and cate-
gorized them into 15 classes based on their video
categories in YouTube. We use the official youtube-
dl8 toolkit to retrieve video categories and other
metadata from YouTube. To ensure consistency

8https://youtube-dl.org
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System
BLEU COMET BLEURT

ALL AMBIGUOUS UNAMBIGUOUS ALL AMBIGUOUS UNAMBIGUOUS ALL AMBIGUOUS UNAMBIGUOUS

w/o pre-training
TEXT-ONLY 43.970.10 43.590.29 44.190.20 37.310.34 33.060.24 39.770.56 61.110.09 59.680.21 61.930.13

GATED FUSHION + VIT 44.330.13 44.120.33 44.450.12 37.880.32 34.470.62 39.850.35 61.250.07 60.190.08 61.860.08

SELECTIVE ATTN +VIT 44.390.13 44.200.22 44.510.10 38.480.19 34.840.39 40.590.32 61.370.10 60.300.24 62.070.13

Ours
+ VIT 44.260.20 44.100.24 44.370.21 38.130.65 34.750.79 40.080.71 61.240.17 60.290.30 61.780.20

+ SLOWFAST 44.210.17 44.120.27 44.260.27 37.810.38 34.990.25 39.440.53 61.220.09 60.280.08 61.770.17

+ VIT + CTR 44.450.13 44.480.16 44.400.11 38.150.56 35.760.42 39.540.75 61.360.17 60.720.21 61.730.16

+ SLOWFAST + CTR 44.440.12 44.200.12 44.580.17 38.370.41 35.180.71 40.220.53 61.310.10 60.410.09 61.820.14

w/ pre-training
TEXT-ONLY 44.450.11 43.890.19 44.790.16 38.360.33 33.400.29 41.230.54 61.410.13 59.850.16 62.310.19

+ VIT +CTR 44.830.09 44.620.10 44.960.11 39.440.51 36.420.41 41.190.89 61.760.08 60.750.12 62.340.17

+ SLOWFAST + CTR 44.770.31 44.430.15 44.970.45 39.260.31 36.030.52 41.120.76 61.710.17 60.520.11 62.400.25

Table 8: Complete sacreBLEU(%), COMET(%) and BLEURT(%) scores on BIGVIDEO testset. “+ CTR” denotes
our cross-model framework with contrastive learning loss. “ALL” represents the results on the whole test set. All
results are mean values of five different random seeds. The best result in each group is in bold.

System
Exact Window Window

1-TERm
Match Overlap-2 Overlap-3

w/o pre-training
TEXT-ONLY 23.030.67 14.220.41 14.280.42 49.500.13

GATED FUSHION 23.680.52 14.600.56 14.760.47 49.680.19

SELECTIVE ATTN 23.660.47 14.950.76 15.080.65 49.770.22

Ours
+ VIT 24.270.37 15.090.47 15.270.50 49.780.41

+ SLOWFAST 24.050.58 14.970.77 15.130.85 49.320.44

+ VIT + CTR 25.020.74 15.560.65 15.770.55 49.910.20

+ SLOWFAST +CTR 24.080.31 15.040.14 15.120.17 49.320.18

w/ pre-training
TEXT-ONLY 22.710.72 14.350.54 14.370.61 49.730.21

+ VIT + CTR 24.300.67 15.170.58 15.390.52 50.280.39

+ SLOWFAST + CTR 23.620.58 14.760.48 14.900.36 50.040.13

Table 9: Complete terminology-targeted results on
BIGVIDEO test set. All results are mean values of five
different random seeds with standard deviations as sub-
scripts. The Best result in each group is in bold.

between YouTube and Xigua videos, we train a cat-
egory classifier to classify the video category tags
of Xigua videos and those YouTube videos whose
category information are missing. We train the
category classifier using the English subtitles and
category information of pre-labeled videos and use
it to predict the category tags for the rest of the un-
labeled videos. Specifically, we first group consec-
utive subtitles in a video by 5 and then concatenate
them as input for the classifier. During inference,
we predicted the category tags of groups in each
video and obtain the video’s label by voting. The
category classifier model was fine-tuned based on
the pre-trained XLNet-large-cased model, which
performed well on other classification tasks such
as XNLI (Yang et al., 2019; Conneau et al., 2018).
A statistical summary of the video categories of the
train set can be found in Figure 3.

In addition, we also count the category tags of
the videos in the test set, as listed in Table 11. Sim-

System BLEU COMET BLEURT
HOW2

w/o pretraining
TEXT-ONLY 57.570.26 65.950.71 72.520.24

Sanabria et al. (2018) 54.40 — —
GATED FUSHION 57.650.35 65.120.43 72.260.27

SELECTIVE ATTN 57.510.20 65.770.93 72.350.23

Ours
+ VIT + CTR 57.950.24 65.530.68 72.460.25

+ SLOWFAST +CTR 57.780.09 65.580.71 72.410.15

VATEX
w/o pretraining
TEXT-ONLY 35.010.14 15.320.45 56.990.307

Wang et al. (2019) 30.110.72 4.500.81 53.850.55

GATED FUSHION 33.790.14 13.550.42 55.660.11

SELECTIVE ATTN 34.250.30 13.550.10 56.800.11

Ours
+ VIT + CTR 34.840.25 12.440.64 56.250.25

+ SLOWFAST + CTR 35.150.24 15.650.35 57.060.06

w/ pretraining
TEXT-ONLY 37.570.35 25.220.66 59.330.09

+ ViT + CTR 37.340.14 25.071.21 58.870.33

+ SLOWFAST + CTR 37.580.15 25.050.58 59.200.13

Table 10: Complete experimental results on HOW2 and
VATEX. All results are mean values of five different
random seeds with standard deviations as subscripts.
The Best result in each group is in bold.

ilar to the train set, we directly obtain the cate-
gory tags for most YouTube videos directly from
YouTube and predict the tags of the remaining
videos using the category classifier mentioned ear-
lier. The statistics for video categories show that
the videos in our dataset are diverse in terms of
domain, both in the training and test sets. These
statistics for the video categories provide a more
comprehensive view of BIGVIDEO.
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Category Xigua YouTube All

People & Blogs 15 29 44
Entertainment 48 14 62
Howto & Sytle 11 37 48
Education 33 3 36
Travel & Events 14 4 18
Music 0 0 0
Gaming 13 6 19
Sports 5 1 6
Science & Tech 30 2 32
Comedy 0 3 3
Film & Animation 3 1 4
Pets & Animals 12 6 18
News & Politics 1 1 2
Autos & Vehicles 9 2 11
Activism 0 2 2

All 194 111 305

Table 11: Video category tags of our test set. For most
of the YouTube videos, we obtain the category tags from
YouTube official. For the rest of the YouTube videos
and all of the Xigua videos, we train a classifier and
predict the category tags according to the subtitles.

Hyperparameters BIGVIDEO HOW2 VATEX

GPUs 8 2 1
Batch Size 4,096 4,096 4,096
Dropout 0.1 0.3 0.3
Weight Decay 0.1 0.1 0.1
Learning Rate 7e-4 5e-4 1e-3
Warmup Steps 4000 4000 2000
Layer Normalization PostNorm PostNorm PostNorm

Table 12: Training hyperparameters details.

C Experimental Detatils

C.1 Dataset

We additionally conduct experiments on two public
video-guided translation datasets, VATEX (Wang
et al., 2019) and HOW2 (Sanabria et al., 2018).
The HOW2 dataset is a collection of instructional
videos from Youtube. The corpus contains 184,948
English-Portuguese pairs for training, each associ-
ated with a video clip. We utilize val (2,022) as
the validation set and dev5 (2,305) as the testing
set. The VATEX dataset is a video-and-language
dataset containing over 41,250 unique videos. The
released version of the bilingual collection includes
129,955 sentence pairs for training, 15,000 sen-
tence pairs for validation, and 30,000 for testing.
Since the testing set is not publicly available, we
split the original validation set into two halves for
validation and testing. Some video clips of VA-
TEX are no longer available on the Youtube. So
after removal, the used corpus contains 115,480
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Figure 7: Bleu scores on BIGVIDEO validation, test and
AMBIGUOUS sets. The x-axis is the choice of the differ-
ent temperatures for the contrastive learning objective.
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Figure 8: Bleu scores on BIGVIDEO validation, test and
AMBIGUOUS sets. The x-axis is the choice of different
weights for the contrastive learning objective.

sentence pairs for training, 6,645 sentence pairs
for validation, and 6,645 sentence pairs for testing,
each associated with a video clip.

C.2 Training and Implementation Details

More training details can be found in Table 12.
For the pretraining on WMT19 Zh-En dataset, we
utilize the same training parameters as that on
BIGVIDEO and train the model for 300k steps.

D The Choice of Hyper-parameters

Temperature for contrastive learning objective.
Performances of different temperature are pre-
sented in Figure 7. Here we fix the weight for
contrastive learning objective to 1. On the valida-
tion set, there exists no significant difference in
BLEU scores among choices of temperature. For
better translation performance, a small temperature
is more suitable.
Weight for contrastive learning objective. We
fix the τ = 0.002 and adjust the weight from 0.5
to 1.5. We can observe that contrastive learning
objective with varying weights benefits the model
to different degrees. 1.0 is the most suitable weight
for our system.
Length of Video Frames. To investigate how the
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Figure 9: Bleu scores on BIGVIDEO validation, test and
AMBIGUOUS sets. The x-axis is the length of video
frames for our system.

Source Subtitle: ……Number one drive shot requir-

es smaller swing but more focus.

Target Subtitle: ……第一、抽球。挥杆幅度要小，
但是要集中力量。
System w/o Video: ……第一个驾驶镜头需要较小

的挥杆，但更多的焦点。
System w/ Video: ……第一，抽球需要更小的挥

杆动作，但要集中注意力

Figure 10: A case. The phrases with semantic ambiguity
are highlighted in red. The wrong translations are in
blue and the correct translations are in yellow.

length of video frames affects translation, we adjust
the number of sampled video frames in [1,12,36].
Figure 9 depicts their performances. Here the video
features we use are 2D features extracted by ViT.
We can observe that when only one video frame
is sampled, the video degrades into one image and
its positive impact on the system is reduced. A
maximum of 12 video frames achieves the best
performance.

E Case Study

We additionally present two cases in the appendix.
In figure 10, the phrase “drive shot” is better trans-
lated by our system by understanding the meaning
of “shot”. In Figure 11, we can find both the text-
only baseline and our system fail to correctly trans-
late the source title. The objects in the video are
cards of Duel Monsters, which need world knowl-
edge to understand. So the source title is compli-
cated for text-only and our system.

Source Subtitle: I spent And there we go , a 

Blackfeather Darkrage Dragon , which is like 

Black Winged Dragon.

Ground Truth: 好了,玄翼龙黑羽，就像黑翼龙。
System w/o Video: 好了，黑羽毛darkragedragon就

像黑风龙。
System w/ Video:这是黑羽毛的龙龙，就像黑窗龙。

Figure 11: A case. The phrases with semantic ambiguity
are highlighted in red. The wrong translations are in
blue and the correct translations are in yellow.

F Annotation Guidelines

We hire seven full-time annotators who are fluent
in both Chinese and English. They are recruited
to annotate translation data or conduct human eval-
uations. The annotators are shown one English
and corresponding Chinese subtitle of the given
video clip. After watching videos and reading sub-
titles, they are required to decide whether videos
are related to subtitles. If not, the sample will be
discarded. Then the annotators are required to rate
on three aspects:

• Fluency Score (1-5, 1 is the worst and 5 is
the best): If the audio is in English, the anno-
tators will need to check whether the English
subtitle is the transcript of the audio. If the
audio is not in English, the annotators will
need to rate if the sentence is grammatically
correct.

• Translation Quality (1-5, 1 is the worst and
5 is the best): Whether the Chinese subtitle is
equivalent in meaning to the English Subtitle.

• Ambiguous (0/1): The annotators need to de-
cide whether the video information is required
to complete the translation. "1" means "the
video information is required" and otherwise
"0".

G Human Evaluation Guidelines

We hire three annotators to conduct the human
evaluation. Each annotator is required to rate 100
samples from AMBIGUOUS and 100 samples from
UNAMBIGUOUS on translation quality and rank

8470



two systems. The definition of the translation
quality is the same as that in annotation guidelines.
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