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Abstract

Most text-to-SQL models, even though based
on the same grammar decoder !, generate the
SQL structure first and then fill in the SQL
slots with the correct schema items. This sec-
ond step depends on schema linking: aligning
the entity references in the question with the
schema columns or tables. This is generally
approached via Exact Match based Schema
Linking (EMSL) within a neural network-
based schema linking module. EMSL has
become standard in text-to-SQL: many state-
of-the-art models employ EMSL, with perfor-
mance dropping significantly when the EMSL
component is removed. In this work, however,
we show that EMSL reduces robustness, ren-
dering models vulnerable to synonym substi-
tution and typos. Instead of relying on EMSL
to make up for deficiencies in question-schema
encoding, we show that using a pre-trained lan-
guage model as an encoder can improve per-
formance without using EMSL, giving a more
robust model. We also study the design choice
of the schema linking module, finding that a
suitable design benefits performance and inter-
pretability. Finally, based on the above study
of schema linking, we introduce the grammar
linking to help model align grammar references
in the question with the SQL keywords.?

1 Introduction

Recent years have seen great progress on the text-
to-SQL problem, i.e. translating a natural language
(NL) question into a SQL query (Dong and La-
pata, 2018; Yu et al., 2018b; Zhong et al., 2017,
Gan et al., 2021a; Guo et al., 2019; Bogin et al.,
2019; Wang et al., 2020), with neural networks
the de facto approach. To achieve good perfor-
mance on text-to-SQL tasks, a neural model needs
to correlate natural language queries with the given

'The decoder will repeat the following two steps until
a complete SQL is generated: (1) generates a SQL clause
keyword; (2) fills in corresponding schema items.

2Our code and data are available at Github.
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database schema, a process called schema linking.

Previous work often explicitly designs a module

to perform the schema linking, which we term Ex-

act Match based Schema Linking (EMSL) (Guo

et al., 2019; Bogin et al., 2019; Wang et al., 2020).

Specifically:

* Schema linking is the alignment between the
entity references in the question and the schema
columns or tables.

* A schema linking module is a trainable compo-
nent that learns to perform schema linking, based
on features that relate word tokens in the question
to schema items.

* A schema linking feature encodes this relational
information; e.g., it can represent the similarity
between words in the question and schema items.

¢ Exact match based schema linking (EMSL)
is a type of schema linking feature obtained by
the exact lexical match between the words in the
question and words in schema items.

Figure 1 presents an example of schema link-
ing and the EMSL feature matrix. Most previous
work relies on this exact lexical matching to ob-
tain schema linking features. Following the work
of (Krishnamurthy et al., 2017; Guo et al., 2019;
Bogin et al., 2019), EMSL is used in many subse-
quent works (Wang et al., 2020; Cai et al., 2021;
Xu et al., 2021; Lei et al., 2020; Yu et al., 2021;
Shi et al., 2021) and has been shown to be effective.
For example, the ablation study in Guo et al. (2019)
shows that removing the schema linking module
incurs the most significant performance decrease.

Although EMSL has been widely used and helps
models obtain the state-of-the-art performance on
some text-to-SQL benchmarks (Yu et al., 2018b;
Zhong et al., 2017), in this work, we show that
EMSL renders models vulnerable to noise in the
input, particularly synonym substitution and typos.
We then investigate whether text-to-SQL models
can preserve good prediction performance without
EMSL. Previous ablation studies (Guo et al., 2019;
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Wang et al., 2020) claiming the necessity of the
schema linking module were conducted without
pretrained language models (PLMs) such as BERT.
In fact, we find that when a pretrained language
model is used as a model encoder, removing EMSL
has very little impact on the performance of the
model. This observation is consistent for different
model architectures and training schemes, such as
RATSQL (Wang et al., 2020), GNN (Bogin et al.,
2019), and GAP (Shi et al., 2021). Based on this
finding, we introduce a more reasonable text-to-
SQL encoder design.

We evaluate the models in three settings: the
original Spider benchmark without input noise (Yu
et al., 2018b), the Spider-Syn version with syn-
onym substitution (Gan et al., 2021a), and a new
typo injection setting. Results show that the use
of a PLM can provide the same performance ben-
efit as EMSL, while achieving better robustness
against synonym substitution and typos. Removing
EMSL also allows the model to obtain better re-
sults when training with synonym substitution sam-
ples. We also show that MAS (Multi-Annotation
Selection, Gan et al., 2021a), a method designed
to improve model robustness with EMSL, can also
improve models without EMSL. In conclusion, we
demonstrate EMSL is no longer a necessary build-
ing block of text-to-SQL models.

The EMSL and pretrained language models are
part of the schema linking module that learns a
score to decide which schema item to select. There
are two design choices to compute this score: the
first sees it as a direct relation between the question
and schema items (Bogin et al., 2019); while the
second considers the question and schema items
together (Wang et al., 2020). We show that our best
model employing the first design choice achieves
the state-of-the-art performance, while its schema
linking scores are also more interpretable than mod-
els with the second design.

Despite the shortcomings of EMSL, it still signif-
icantly improves previous models: without a clear
idea of how to align the entity references in the
question and the schema columns or tables, EMSL
plays an important role in alignment. Inspired by
EMSL, we propose instead Exact Match Grammar
Linking (GL), which improves the model’s ability
to generate correct SQL keywords.

In short, this work investigates the role of the
schema linking module for text-to-SQL models,
regarding its effect on model performance and ro-

Question: How many singers do we have
chema linking
SQL: SELECT Count(*) FROM Singer
| schoma linking features
How many singers do we have
singer 0 ) 1 0 0 0
Schema concert 0 (] 0 0 0 0
tables s::ﬁi;,';‘ 0 0 0.33 0 0 0
Schema singer id 0 L] 0.5 0 0 0
columns {

Figure 1: An example of schema linking and exact
match based schema linking (EMSL) feature matrix.

bustness. We summarize our key findings below:

* EMSL is not a necessary building block of text-
to-SQL models. A reasonable text-to-SQL en-
coder design can replace EMSL and make the
model more robust.

» Compared to the cross relation score between
the question and schema items together, a direct
relation score between the question and schema
items is more interpretable and can improve the
performance of a state-of-the-art model.

* When it is unclear how to design the optimal
encoder, EMSL improves the model performance
significantly. Inspired by EMSL, we introduce
Exact Match Grammar Linking (GL) to generate
better SQL keywords.

2 Proposal I: Construct the Schema
Linking without the EMSL

Our first proposal is that the schema linking should
not include EMSL. Schema linking itself is essen-
tial for text-to-SQL models, but EMSL can be re-
placed with a better mechanism.

2.1 Schema Linking Feature

Figure 1 presents an example of schema linking
features. The word ‘singers’ in the question ex-
actly matches (modulo stemming) the schema ta-
ble name ‘singer’, giving feature value 1. It does
not match the table ‘concert’, giving value 0; and
matches one of the three words in ‘singer in con-
cert’, giving value 0.33. Such type of schema
linking mechanism based on exact lexical match-
ing (EMSL) is the most common used in existing
text-to-SQL models (Guo et al., 2019; Bogin et al.,
2019; Wang et al., 2020; Cai et al., 2021; Xu et al.,
2021; Lei et al., 2020; Yu et al., 2021; Shi et al.,
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2021).

Schema linking has been shown to be essen-
tial for achieving good performance (Guo et al.,
2019; Wang et al., 2020). For example, Wang et al.
(2020) consider that the representations produced
by vanilla self-attention were insensitive to textual
matches even though their initial representations
were identical, i.e., EMSL is needed for textual
matches. Some works add ConceptNet (Speer and
Havasi, 2012) to get more linking features (Guo
et al., 2019; Tan et al., 2021) and thus improve
the model performance. However, we argue that a
well-designed encoder can solve this problem, and
note that the feature values in Figure 1 are equal to
the average dot product results when using lemma
one-hot embeddings, suggesting that a proper em-
bedding can replace EMSL. Appendix E provides
previous ablation study on EMSL. We test our new
proposal experimentally in Section 5.3.

2.2 Text-to-SQL Encoder Design

For a text-to-SQL encoder, we expect that the cor-
rect schema item vectors obtained from the en-
coder are as close to the question vector as possible.
The SQL cares about which schema item to use
instead of the words in the schema item. There-
fore, unlike keeping every question word vector,
only one vector is used to present the schema item
even if it contains multiple words. Since both the
encoder mechanics and content style are different
between question and schema, many models (Yu
et al., 2018a; Guo et al., 2019; Wang et al., 2020)
uses different encoders to encode the question and
schema separately. The upper part of Figure 2
shows a design case, which is the structure of the
RATSQL model (Wang et al., 2020) containing
three encoders with similar structure and size.

We believe that the shortcoming of the origi-
nal RATSQL design is the use of three encoders.
For example, in the initial state, the parameters of
the three encoders are different. Therefore, even
though the word ‘singers’ appears in the question,
the vector vg initially generated by the table en-
coder is probably irrelevant to all vectors output by
the sentence encoder. If using EMSL, this does not
matter: in both training and evaluation we can link
vg to vy through EMSL. However, without EMSL,
we need to relate vg from the table encoder to the
vectors from the question encoder, which is more
challenging to train than using only one encoder,
as shown in the lower part of Figure 2. Since the

Original RATSQL Encoder:
v v D @

[ Tablefencoder { |

How many singers do we have T D (D @
Vs

® ©

‘ Column | Encoder} ‘

Our Modified RATSQL Encoder:
Vo Vi v, Vo Vs Ve v, v V.
I N SO Sl S P —— 1
Vi Ve Vogr Ve | Ve Verere | Vger Vi Vesere [ Vooe | =
How many singer do we have | sing;r |concert | singer in concert | name |.....
Figure 2: The original RATSQL encoder struc-

ture (Wang et al., 2020) and our modified version.

output of our modification is the same as the origi-
nal, it can be easily replaced and connected to the
subsequent modules.

In the lower part of Figure 2, our modification is
inspired by several text-to-SQL models with BERT,
including RATSQL+BERT (Wang et al., 2020; Guo
et al., 2019; Zhang et al., 2019). In our modifica-
tion, RATSQL uses only one encoder instead of
three. We believe using three encoders is one of
the main reasons why the base RATSQL perfor-
mance significantly drops when removing EMSL.
For the convenience of discussion, we named our
modified RATSQL as RATSQL, where O means
one encoder.

RATSQL( uses only one encoder whose struc-
ture and size are the same as the original question
encoder. For the schema item representation, RAT-
SQL takes the hidden state after all the words of the
entire schema item are encoded, while RATSQLo
takes the average of all word encodings. The advan-
tage of our RATSQL( is that vg, v, and v initially
have a certain similarity, which benefits the schema
linking in both single and multi words. RATSQLo
also deals with words outside the embedding vo-
cabulary better than RATSQL. Suppose the word
concert and name are outside the vocabulary: vy
and vg from the RATSQL table encoder will be the
same since their inputs are the same UNK vector.
However, the RATSQL encoder will output dif-
ferent vectors for v; and vg, as the contexts before
and after the word concert and name are different.
In this way, even if there are multiple UNK words,
the RATSQL encoding vector will be different.

3 Proposal II: Schema Linking Module
Design Choice

We believe that a text-to-SQL model with good
performance can ignore the schema linking fea-
ture, but it must include a schema linking module.
While implementation details of such models differ,
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Labels SQL Keywords Matching Rules

DB WHERE The words exact match to the database value.

BCOL WHERE Words to successfully build the EMSL to Boolean-like columns
COL, TABLE NONE Words to successfully build the EMSL.

AGG Aggregation Function Matching words: average, maximum, minimum, etc.

PDB WHERE Matching words in quotes.

GRSM >, < Matching words: before, after, greater, smaller, etc.

JIS max(), min(), limit Extracted from POS Tags, matching the superlative adjective
SDB WHERE Match person name, place name, organization name, etc.

UDB WHERE Match capitalized words.

DATE,.NUM,YEAR WHERE Matching: words in time format, numbers, years

NOT I=, except, not in Matching words: not, no, n’t, never, without, etc.

IN, at, as WHERE Matching: preposition, subordinating conjunction, and words at and as.
each GROUP BY Exact matching the word each.

# NONE Words that cannot match the above labels.

Table 1: Exact Match Grammar Linking labels. SQL keywords indicate which keyword the label is extracted from,
but it does not mean that the corresponding keyword must appear in the target SQL when the label appears.

The First Design Choice

Vectors of Question

Vectors of Tables
( Vectors of Columns )

The Second Design Choice

Vectors of Question

Vectors of Tables

Attention Weights

uoTIUIIIY

UOTIUSIRY

Vectors of Columns
Attention Weights

Vectors of Tables

( Vectors of Columns )

Figure 3: Two text-to-SQL schema linking design
choices.

the common factor is the calculation of a similar-
ity score between each question word and schema
item: correct schema items should obtain higher
similarity scores.

Schema linking modules output attention scores
from computing the schema linking feature and
word embeddings. There are currently two atten-
tion mechanism designs. The first calculates a
score that relates the question on one side, to the
schema items on the other. The second approach
also considers the attention scores between differ-
ent schema items (Guo et al., 2019), thus it takes
the question and schema items together as input
to produce the attention scores. In Figure 3, we
elucidate the inputs and outputs associated with the
two types of attention computations.

Both designs have their own rationale, but the

Question with its grammar linking labels and SQL
Example 1-

What is the average horsepower of the cars before 1980 ?
# # % AGG coL # # TABLE GRSM YEAR #

SELECT avg(horsepower) FROM CARS_DATA WHERE YEAR < 1980

Example 2°
What is the name of stadiums with highest average attendance
# # # COL # TABLE IN 1S coL #
SELECT name FROM stadium ORDER BY average DESC LIMIT 1

Figure 4: Two text-to-SQL examples with generated
grammar linking labels.

first design is more interpretable: it requires the
model to infer the correct schema item from the
question, so you can see which part of the question
is related to each selected schema item. With the
second design, it is sometimes difficult to explain
why the specific schema item is chosen due to the
presence of some other schema items. For ease of
understanding, we show and discuss the attention
and interpretability of an example under different
design choices in Appendix B; we test the effects
on performance in Section 5.4.

4 Proposal III: Exact Match Grammar
Linking (GL)

The mechanisms of existing models limit their per-
formance in some specific situations discussed in
Section 4.2 and Appendix C. Our third proposal is
GL which can provide ideas for addressing these
limitations.

4.1 Overview

We propose GL, inspired by the EMSL and the
NL question label generation method (Ma et al.,
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2020). EMSL attempts to match the words in the
question with the schema item words, with the
matching result then used as a feature to help the
model generate the correct schema items. Simi-
larly, GL matches the words in the question with
those related to the SQL keywords. Considering
that the number of SQL keywords is limited, GL
can be implemented by matching words to specific
categories/labels.

In general, GL has two main steps in the text-to-
SQL process: (1) identify the label of each word,
as shown in Figure 4; (2) input both label and word
embeddings into the encoder. Formally, given a nat-
ural language question ) = q1..q¢, we generate a
label I; to each g;, as shown in Figure 4. There are
different embeddings for /; and ¢;, where the [; em-
beddings Emb; is randomly initialized while the g;
embeddings E'mb, can obtain from GLOVE (Pen-
nington et al., 2014) or PLMs. The encoder input
X is the sum of embeddings of ¢; and [;:

X = (Embi(lo) + Embg(qo), ..., Embi(lg) + Embe(qq))

Specifically, Emb;(l;) does not enforce binding
to specific SQL keywords. We expect the model to
learn the meaning of GL label embeddings.

Before we can use GL for text-to-SQL, we need
to define the labels and match rules. We use the
method of information extraction combined with
manual annotation to collect the words related to
SQL keywords. We remove the words that match
the schema items and then use the tf-idf (term
frequency-inverse document frequency) score to
extract the words that are highly relevant to the
target SQL keyword. After manual correction and
adding words of the same type, such as synonyms,
we obtain the word categories/labels corresponding
to the SQL keywords. Table 1 presents all labels
with their matching rules used by this work.

In Table 1, uppercase labels match a class of
words, while lowercase labels only match words
with the same name as the label, such as ‘at’ and
‘each’ labels. The order of the labels in Table 1 is
sorted by their priority. We start matching from
the highest priority label and end once the match
is successful. Taking Figure 4 as an example, the
label for the word ‘average’ in example 1 is ‘AGG’,
but that in example 2 is ‘COL’. Because the two
examples belong to different domains where the
database of the second example contains a column
named ‘average’ that can be built an EMSL with the
question word ‘average’. Therefore, although the

‘average’ in example 2 satisfies both the matching
rules of the ‘AGG’ and ‘COL’ labels, its generated
label is ‘COL’ instead of ‘AGG’ since the priority
in the ‘COL’ label is higher.

4.2 Benefits from GL

Existing models (Bogin et al., 2019; Guo et al.,
2019; Wang et al., 2020; Cao et al., 2021) tend
to output the incorrect SQL clause ‘ORDER BY
avg(average)’ instead of ‘ORDER BY average’ for
the second example in Figure 4, even though their
generation process is based on the same decoder.
This error states that the ‘average’ word is used
twice in generating the ‘average’ column and the
‘avg’ function. Utilizing GL can help existing mod-
els solve this problem. When training with GL, the
model will learn that most of the examples gen-
erating ‘avg’ function require the ‘AGG’ label of
GL. Therefore, since there is no ‘AGG’ label in
example 2, the model will not tend to generate the
‘avg’ function. For other benefits from GL, please
refer to Appendix C.

S Experiments

5.1 Generating Typos

To evaluate robustness against typos, we randomly
insert a letter into the correct schema annotation
word. (This is enough to break EMSL, so we do
not also modify the question words). We generated
three typo development sets, named Spider-T1 to
Spider-T3. The typos in Spider-T1 are generated by
randomly inserting a letter at any position except
the end. In contrast, Spider-T2 appends a random
letter at the end of the schema annotation words.
We examine these separately: the BERT tokenizer
may be able to split Spider-T2 typos into a correct
word and a suffix, but is less likely to split the
Spider-T1 typos well. We convert every schema
annotation word in Spider-T1 and T2 to typos when
word length is greater than five letters; typos are
generally more likely to occur in longer words, and
words with more than five letters account for about
40% of the dataset. Spider-T3 is then the same
as Spider-T1, but only converts the most frequent
schema item words to typos. While Spider-T1 and
T2 simulate the impact of large numbers of typos
in extreme cases, Spider-T3 evaluates the impact
of a more realistic, smaller number of typos. Other
typos are possible, e.g. by deleting and swapping
letters; we discuss these in Appendix D.
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5.2 Experimental Setup

We evaluate the previous state-of-the-art models on
Spider (Yu et al., 2018b), Spider-T, and Spider-Syn
(Gan et al., 2021a) datasets. All results report their
maximum value. All experiments were performed
on a machine with an Intel i5 9600 3.1GHz proces-
sor and a 24GB RTX3090 GPU. Since the Spider
test set is not publicly accessible and Spider-Syn
and Spider-T do not contain test sets, our evalua-
tion is based on the development sets. The Spider-
Syn benchmark contains three development sets:
Spider-Syn, ADVgEgRT, and ADV g1 ovE, for eval-
uating model robustness against synonym substitu-
tion. Therefore, we have the following evaluation
sets:

* Spider: The original Spider development set
with 1,034 examples.

e Spider-T1, T2 and T3: Three development sets
that replace the correct word with typos, intro-
duced in Section 5.1.

* Spider-Syn: The human-curated development
set built upon Spider, for evaluating synonym
substitution in real-world question paraphrases.

* ADVgEgRT: The set of adversarial examples gen-
erated by BERT-Attack (Li et al., 2020).

* ADV¢grovE: The set of adversarial examples
generated using the nearest GLOVE word vector
(Pennington et al., 2014; Mrksi¢ et al., 2016).
Our evaluation is based on the exact match met-

ric defined in the original Spider benchmark. This

metric measures whether the syntax tree of the pre-
dicted query without condition values is the same
as that of the gold query. Our experiment setting is

consistent with the ablation study in Appendix E.

Following the encoder design in Section 2.2, we

evaluate different variants of the RATSQL model:

* RATSQL: The base RATSQL+GLOVE model
trained on Spider using EMSL in training and
evaluation (Wang et al., 2020).

* RATSQL: Our modified RATSQL+GLOVE
model trained on Spider using EMSL in training
and evaluation, discussed in Section 2.2.

* RATSQLg: The RATSQL+BERT model trained
on Spider using EMSL in training and evalua-
tion. (Note that RATSQLo+BERT is just RAT-
SQL+BERT: using BERT means that the BERT
encoder will replace all encoders in Figure 2).

* RATSQLgs: RATSQL+BERT trained on
Spider-Syn using EMSL (Gan et al., 2021a).

* RATSQLG: RATSQL+GAP trained on Spider
using EMSL (Shi et al., 2021).

Model Spider
RATSQL 62.7%
RATSQL w/o EMSL 51.9%
RATSQLo 62.2%
RATSQLo w/o EMSL 58.4%

Table 2: Accuracy of two RATSQL ablations on the
development set.

* w/o EMSL: Models without EMSL in training
and evaluation, consistent with Tables 9 and 10.

e ManualMAS (Gan et al., 2021a): Schema anno-
tations include synonyms used in Spider-Syn.

¢ AutoMAS (Gan et al., 2021a): Schema annota-
tions include synonyms generated according to
the nearest GLOVE word vector.

5.3 Experiment on EMSL (Proposal I)
5.3.1 Evaluation on Spider

Table 2 presents the exact matching accuracy of
models trained on the Spider training set. With-
out EMSL, our RATSQL model significantly im-
proves over RATSQL. Models with PLMs also
obtained similar results with RATSQLp, which
also supported our proposal to remove the EMSL.
Detailed experimental results and discussion are
shown in Appendix E. Furthermore, we conduct an
error analysis in Appendix F.

5.3.2 Robustness Evaluation

Typo Results Table 3 presents the robustness
evaluation results on several datasets. For typos,
GLOVE will treat them as UNK words, so the
RATSQL and RATSQL cannot obtain good per-
formance on Spider-T1 and T2 due to too many
UNK words. The RATSQL without EMSL sig-
nificantly outperforms the RATSQL without EMSL
in Spider-T3, which is another evidence that the
RATSQL is better in handling UNK words. After
using PLMs, the performance on typos has been
significantly improved, especially on Spider-T2.
Spider-T3 contains only a few typos, i.e., it is close
to the Spider to some extent. Thus, the T3 result
characteristics are close to Spider, i.e., their per-
formance gap between with and without EMSL is
close. With the increase of typos, the performance
gap will be expanded, where the model+PLM with-
out EMSL will be better.

Synonym Substitution Results Gan et al.
(2021a) propose three development sets for eval-
vating the robustness of text-to-SQL models
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Approach ‘ Spider ‘ Spider-T1 Spider-T2 Spider-T3 ‘ Spider-Syn ADVgrove ADVBgrT
RATSQL 62.7% 23.9% 26.4% 51.2% 33.9% 30.9% 37.1%
RATSQL w/o EMSL 51.9% 20.8% 21.7% 44.1% 39.1% 38.1% 40.9%
RATSQLo 62.2% 22.8% 25.7% 51.6% 32.1% 32.7% 36.3%
RATSQLo w/o EMSL 58.4% 20.8% 23.3% 51.5% 42.6% 38.6% 43.8%
RATSQLp 69.7 % 30.9% 54.8% 63.2% 48.2% 38.0% 48.8%
RATSQL g w/o EMSL 69.3% 32.3% 66.2% 63.0% 52.7% 45.4% 54.3%
RATSQLgg 68.1% 33.6% 58.1% 62.7% 58.0% 47.7% 55.7%
RATSQLpgg w/o EMSL | 69.7% 38.1% 66.4% 65.0% 60.4% 51.0% 58.8%
RATSQLg 71.8% 48.1% 64.6% 68.0% 54.6% 46.6% 54.8%
RATSQL; w/o EMSL 71.7% 53.4% 67.6% 68.6% 58.7 % 49.4% 57.3%
S2SQL (Hui et al., 2022) | 76.4% - - - 51.4% - -

Table 3: Exact match accuracy on original (Spider), typos (Spider-T1 to T3), and synonym substitution (Spider-Syn,
ADVgrove, and ADVggrr) development sets. S2SQL results are quoted from Hui et al. (2022).

Approach

RATSQL + ManualMAS

RATSQL + ManualMAS w/o EMSL
RATSQL 5 + AutoMAS

RATSQL + AutoMAS w/o EMSL
RATSQL s + ManualMAS
RATSQL g5 + ManualMAS w/o EMSL
RATSQL 55 + AutoMAS

RATSQL s + AutoMAS w/o EMSL

Spider
67.4%
68.6%
68.7%
68.9%
65.6%
68.7%
66.8%
69.2%

Spider-Syn ADVgrove ADVBgrT
62.6% 34.2% 44.5%
58.9% 43.6% 53.1%
56.0% 61.2% 52.5%
55.3% 62.1% 54.7%
59.5% 46.9% 51.7%
61.7% 50.3% 58.8%
57.5% 61.0% 55.7%
59.4% 63.2% 59.0%

Table 4: Evaluation on the combination of MAS with
RATSQL 5 and RATSQL g respectively.

against synonym substitution, including: Spider-
Syn, ADVRERT, and ADV g ovg. Table 3 shows
that models without EMSL consistently outper-
form those with EMSL when evaluated against
Spider-Syn, ADV g ove and ADVggrr. When us-
ing PLMs, RATSQLg5 and RATSQLg without
EMSL show a huge performance improvement
on these three development sets with only a tiny
performance loss on Spider. RATSQL without
EMSL consistently outperforms RATSQL without
EMSL, which means a reasonable design can re-
duce reliance on EMSL. Unlike other models, the
RATSQL g without EMSL outperforms that with
EMSL in all evaluation sets. We discuss this in Ap-
pendix A. Although the S2SQL (Hui et al., 2022)
model achieves pretty good performance in the
Spider, its EMSL module causes its performance
on Spider-Syn to be much worse than that of the
RATSQLg without EMSL.

MAS Results Gan et al. (2021a) also propose a
MAS method to improve the robustness of text-to-
SQL models. MAS provides multiple annotations
to repair the breaking of EMSL due to synonym
substitutions. Although we advocate not relying on
EMSL, MAS can still improve the performance of
models without EMSL, as shown in Table 4. Com-
paring the data in Table 3 and Table 4, Manual-
MAS improves the performance of RATSQL 5 and
RATSQLpg with and without EMSL on Spider-

Model Spider
RATSQL}, 70.2%
RATSQLZ 71.8%
RATSQLZ with NatSQL (Ganetal.,2021b)  73.7%
LGESQL + ELECTRA (Cao et al., 2021) 75.1%
RATSQL}, with NatSQL 75.5%
RATSQL}, with NatSQL and GL 76.4%
TS5 Rerankers + PICARD (Zeng et al., 2022) 76.4%
S2SQL (Hui et al., 2022) 76.4%

Table 5: Exact match accuracy on Spider development
set. The superscript number of RATSQL indicates the
design choice introduced in Section 3 (Proposal II). The
results are compared with the top two published models
on the Spider leaderboard.

Syn development set since the ManualMAS pro-
vide synonym annotations appearing in the Spider-
Syn. In the same way, AutoMAS has also improved
their performance on ADVgLove. Experimental
results show that although MAS is designed to re-
pair EMSL, it is still effective for models without
EMSL. Besides, based on MAS, the overall per-
formance of the model without EMSL is still bet-
ter than that with EMSL. In general, even though
EMSL is not used, a reasonable annotation is still
essential to the text-to-SQL problem.

5.3.3 Discussion

We introduce RATSQL», an enhanced text-to-SQL
encoder design, challenging the need for Exact
Match Schema Linking (EMSL) assumed by pre-
vious research. RATSQL offers an alternative
perspective, arguing that the benefit of consolidat-
ing the encoder actually promotes schema linking.
As a result, relying solely on PLM can only ad-
dress certain issues. For instance, PLMs have input
limitations that may suffice for current text-to-SQL
benchmarks with small-scale schemas. However,
for large-scale schemas, modifications to the PLM
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Question:

What is the name and capacity for the stadium with the highest average attendance ?

RATSQL¢ N with GL:  SELECT name , capacity FROM stadium ORDER BY average DESC LIMIT 1 v
S2SQL+ELECTRA:  SELECT name , capacity FROM stadium GROUP BY average ORDER BY avg(average) DESC LIMIT 1 X
LGESQL+ELECTRA: SELECT name , capacity FROM stadium GROUP BY Highest ORDER BY avg(average) DESC LIMIT 1 X
RATSQLGN w/o GL:  SELECT name , capacity FROM stadium GROUP BY stadium_id ORDER BY avg(average) DESC LIMIT 1 X
Question: Give the names of countries with English and French as official languages .
_— . SELECT Name FROM ... WHERE Language = "English" AND IsOfficial = "T" INTERSECT

RATSQLGy with GL: gpy BT Name FROM ... WHERE Language = "French" AND IsOfficial = "T" v

SELECT Name FROM ... WHERE Language = "value" INTERSECT

2! .

SSQLAELECTRA: SELECT Name FROM ... WHERE Language = "value" X

~ SELECT Name FROM ... WHERE Language = "value" INTERSECT
LGESQLAELECTRA: SELECT Name FROM ... WHERE Language = "value" X

~ SELECT Name FROM ... WHERE Language = "English" INTERSECT

RATSQLGN W/o GL: - gpy BT Name FROM ... WHERE Language = "French” X

Table 6: Two examples related to the discussion in Section 4.2 and Appendix C. RATSQLgy indicate the
RATSQLG+NatSQL model. We selected the current top 2 opensource models in the exact match metric of Spider

leaderboard to compare with RATSQL g .

encoding method are necessary. If the PLM were
to encode the question and schema separately, the
EMSL would still be required.

5.4 Experiment on Schema Linking Module
Design Choices (Proposal II)

As discussed in Section 3, there are two design
choices for the schema linking module. The first
calculates a score that relates the question on one
side, to the schema items on the other. The sec-
ond approach assumes the attention between one
schema item and others is needed, and it therefore
takes question and schema items together as input
to produce the score. The original RATSQL chose
the 2nd design, named it RATSQL%V here. We
modify the RATSQL according to the 1st design,
named it RATSQL.., and observe that its perfor-
mance drops slightly, as shown in Table 5. Error
analysis shows that RATSQLé tends to use the
schema items mentioned in the question and is not
so good at dealing with implicit schema items.
Although the performance of the RATSQL%;
is slightly worse, we found that its schema link-
ing performance is not inferior. The accuracy of
the SELECT clause is the best way to measure
the schema linking performance because every
SQL contains at least one SELECT clause that
only contains schema items. The SELECT ac-
curacy of the RATSQLé is slightly (0.4%) bet-
ter than the RATSQL%;, which inspired us that
the RATSQLIG is likely to perform well if remov-
ing the implicit schema items. Fortunately, we
found NatSQL, an SQL intermediate representa-
tion that removes many implicit schema items from
the SQL (Gan et al., 2021b). Experiments show
that the performance of RATSQL1G+NatSQL is bet-

ter than the RATSQL%;+NatSQL. Table 5 gives
a detailed performance comparison, from which
it can be found that by replacing the design, the
RATSQLg+NatSQL is improved to the second
place, evaluated on the development set, which is
close to the current best published model. It should
be noted that RATSQL;+NatSQL does not use
the complex graph neural network as S2SQL and
LGESQL, nor does it use the ELECTRA, which is
shown to be better than GAP (Clark et al., 2020;
Cao et al., 2021; Hui et al., 2022).

5.5 Experiment on GL (Proposal III)

We assemble GL onto RATSQL;+NatSQL, ob-
taining 0.9% absolute improvement, rising from
75.5% to 76.4%, which improves the performance
of the RATSQL model to be consistent with
the best-published model, as shown in Table 5.
Although the performance improvement of GL
is less apparent than that of the EMSL in pre-
vious ablation studies, GL is an indispensable
module for solving specific problems. We com-
pared the RATSQLs+NatSQL+GL with S2SQL
and LGESQL, where S2SQL and LGESQL are the
current top 2 opensource models in the exact match
metric of the Spider leaderboard. Table 6 presents
the output of these models for two examples in the
Spider development set. No models without GL, in-
cluding RATSQL;+NatSQL, generate the correct
SQL. We discuss how GL can help the model gen-
erate correct SQL in Section 4.2 and Appendix C,
respectively.

During our experiment, we faced a number of
challenges with using the GL. Unlike schema link-
ing, which creates a direct link from question to-
kens to a schema item, GL doesn’t establish a sim-
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ilar connection. In GL, it just identifies question
tokens related to SQL keywords based on rules
defined in Table 1. GL requires the neural model
to find out which SQL keywords it’s connected to
by training. However, we found this difficult to
accomplish when in scenarios involving complex
SQL queries, the model struggled to accurately
connect GL with the appropriate SQL keywords.
To address this, we opted for using NatSQL from
Spider-SS (Gan et al., 2022) in our (RATSQL1G
with NatSQL and GL) model, rather than the orig-
inal version. The benefit of Spider-SS is that it
breaks down SQL/NatSQL according to question
clauses. This means the model rarely comes across
complex SQL/NatSQL during training, simplify-
ing the task of associating GL with the proper SQL
keywords. To further increase the chances of suc-
cess with GL, we also made slight adjustments to
NatSQL, which you can find in Appendix C. We
ran ablation studies to check if NatSQL modifi-
cation or the use of Spider-SS data impacted the
results. Experiments showed that without GL, the
outcomes using Spider-SS data remained consistent
with those using Spider. Similarly, the performance
of the adjusted NatSQL, when used without GL, is
also consistent with the original NatSQL.

6 Related Work

Schema Linking Schema linking has been an
important design choice for existing text-to-SQL
models (Guo et al., 2019; Bogin et al., 2019; Wang
etal., 2020; Chen et al., 2020; Cao et al., 2021). Be-
sides designing new models, some works focus on
investigating the effect of schema linking. Lei et al.
(2020) demonstrate that more accurate schema link-
ing conclusively leads to better text-to-SQL parsing
performance. To support further schema linking
studies, Lei et al. (2020) and Taniguchi et al. (2021)
invest human resources to annotate schema linking
corpus, respectively. Guo et al. (2019) and Wang
et al. (2020) conducted an ablation study on EMSL,
respectively, and the results show that removing the
EMSL would lead to the greatest decrease in model
performance. These studies have influenced many
follow-up works to use EMSL (Cai et al., 2021;
Xu et al., 2021; Lei et al., 2020; Yu et al., 2021;
Shi et al., 2021). Moreover, in the ablation study
of BRIDGE (Lin et al., 2020), its performance de-
clines notably when the PLM is removed, as it does
not utilize EMSL. Our work found that existing
text-to-SQL models with EMSL tend to overly rely

on this schema linking module, which degrade their
robustness. Meanwhile, more advanced pretrained
language models can replace EMSL and thus im-
prove the model robustness, without notably de-
grading the performance.

Robustness of Text-to-SQL  Existing works on
improving the robustness of the text-to-SQL model
are mainly through adversarial training, data aug-
mentation, and repairing EMSL. Xiong and Sun
(2019) and Radhakrishnan et al. (2020) propose
data augmentation techniques for improving the
generalization in cross-domain text-to-SQL and in
search-style questions resepctivly. However, these
approaches only support SQL queries executed on
a single table, e.g., WikiSQL. Zeng et al. (2020)
introduce a Spideryy,, dataset that includes orig-
inal Spider (Yu et al., 2018b) examples and some
untranslatable questions examples. Spideryry,,
can be used to evaluate whether the text-to-SQL
model can distinguish the untranslatable NL ques-
tion. Gan et al. (2021a) investigate the robustness
against synonym substitution for cross-domain text-
to-SQL translation and found that synonym sub-
stitution would break EMSL, giving a significant
drop in performance; to solve this problem, they
proposed the MAS method to repair the broken
EMSL. Following (Gan et al., 2021a), our work
found that the EMSL can be replaced by better
encoding, and models without EMSL has better
generalization ability.

7 Conclusion

In this work, we investigate the role of schema
linking for text-to-SQL models regarding model
performance and robustness. In particular, we
demonstrate that by leveraging pretrained language
models, EMSL is no longer a necessary building
block to ensure a high performance on text-to-SQL
benchmarks. We observe that when EMSL is used,
models become overly reliant on it, making them
vulnerable to attacks that break the exact-match as-
sumptions of EMSL. Beyond this, by studying dif-
ferent schema linking module designs we find that
a direct relation between the question and schema
items is more interpretable and works well with in-
termediate representation SQL. Finally, inspired by
EMSL, we introduce Exact Match Grammar Link-
ing for dealing with some examples where existing
models can easily make mistakes.
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8 Limitation

We notice that there are some works based on pre-
trained large language models has obtained good
performance (Scholak et al., 2021; Li et al., 2023).
Due to limited computing resources, our evaluation
mainly focuses on model architectures specially
designed for text-to-SQL problems, and we did not
conduct experiments on recent pretrained large lan-
guage models, such as TS (Raffel et al., 2020) and
GPT3 (Brown et al., 2020), due to limited com-
puting resources. However, note that most models
with top text-to-SQL performance still employ spe-
cialized architecture design, e.g., with EMSL. We
consider extending our study to recent pretrained
large language models as future work.
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we we we we we we
have nave have have have have
2 2 2 2 2 2
['stadium’] — [stadium] 4m ['stadium’] ['stadium’] ['stadium] ['stadium]
['singer] ['singer] ['singer] [singer] 4m ['singer] \ ['singer]
[concert] ['concert] [concert] [concert] [concert] A

Ex 2: RATSQL+BERT, trained with EMSL, run without EMSL:
how how how how how how
many many many many many many
singers singers singers singers singers. singers
do do do do do do
e we e we wo. wo
have have have have have have
2 2 2 2 2 2
[stadium] > [stadium] 4m [stadium] [stacium] [stadium] [stadium]
['singer] ['singer] ['singer] ~ [singer] 4m ['singer] ['singer
[concert] [concert] [concert] [<concert] [concert] |

Ex 3: RATSQL+BERT, trained without EMSL, run without EMSL:

how how how

many many many
singers singers singers.
do do do

we we we we we

have have
v 2
[stadium’] [stadium] 4m
[singer] [singer]
[concert] [concert]

Figure 5: Examples of the question-table attention. The
darker the color, the greater the attention score. The
first two examples are extracted from RATSQL 5, while
the last one is from RATSQL g without EMSL. Each
attention subgraph represents the attention between only
one table schema and other words.

A Further Discussion on EMSL

The text-to-SQL model can quickly locate the cor-
rect schema items through EMSL, but this ad-
vantage will cause the models to not work prop-
erly when EMSL fails. To better understand
the impact of EMSL on text-to-SQL models, we
present the question-table attention 3 extracted
from RATSQL p with and without EMSL in Fig-
ure 5. In the first example, we can see that the align-
ment score between table singer and question word
singer is the biggest, while we can not observe a
clear connection between other tables and question
word singer. However, when removing the EMSL
in the second example, the alignment score be-
tween table singer and question word singer drop
clearly, and the connection between other tables
and question word singer becomes clear. It can be
seen that under other conditions unchanged, only
removing EMSL has a considerable impact on the
model trained with EMSL.

The third example is extracted from RATSQLp
without EMSL. Different from the RATSQL 5 with
EMSL, the singer table has a high alignment score
not only with the word singer but also with the
whole sentence. Since the loss function only cal-
culates whether the output schema items are cor-
rect, the model does not care which question word

3Tt is named m2t_align_mat in the code:
//github.com/microsoft/rat-sql/blob/master/
ratsql/models/spider/spider_enc_modules.py
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Figure 6: The attention weight of the schema table un
darker the color, the greater the attention score.

the correct schema item is linked to. Therefore,
the attention of the RATSQL 5 without EMSL is
quite different from that with EMSL. The signifi-
cant difference of the trained models may be one
of the reasons why the overall performance of
RATSQL gg without EMSL is better than that with
EMSL. Because the training data in RATSQLpg
contain many synonym substitution examples, and
these examples do not have EMSL features, it re-
quires the model to find a balance between states
shown in examples 1 and 3 of Figure 5, which
increases the difficulty of training.

B Attention Visualization of Different
Schema linking Module Design Choices

Figure 6 presents the attention weight of schema
tables and illustrates why the first design choice
is more interpretable. The SQL for the question
in Figure 6 is ‘SELECT T1.City FROM Airports
AS T1 JOIN Flights AS T2 ON T1.AirportCode =
T2.DestAirport GROUP BY T1.City ORDER BY
count(*) DESC LIMIT 1°. So, the table ‘airports’
and ‘flights’ are needed. Although models under
both design choices predict this example correctly,
their attention scores are quite different. We ob-
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der different schema linking module design choices. The

Question with its grammar linking labels and NatSQL

Sentence: 'How many official languages does Afghanistan have ?
# 8 BCOL TABLE # DB # @

Original  SELECT COUNT(language.*) WHERE country.Name
NatSQL: = “Afghanistan” AND language.IsOfficial = "I

SELECT COUNT(language.*)
BCOL language.IsOfficial
WHERE country.Name = “Afghanistan”

New
NatSQL:

Figure 7: An text-to-SQL examples with grammar link-
ing labels and newly designed NatSQL.

serve that the attention under the first design can
locate the proper question words. However, the at-
tention of the table ‘flights’ can not locate any ques-
tion words when using the second design choice,
which is difficult to explain why the ‘flights’ table
was selected instead of the ‘airlines’ table with sim-
ilar attention. It should be noted that the ‘flights’
table is mentioned implicitly, but it does not pre-
vent the first design choice from giving it the proper
attention.

C More Benefits from GL

It is difficult for existing models (Bogin et al., 2019;
Guo et al., 2019; Wang et al., 2020; Cao et al.,
2021) to generate the “WHERE isOfficial = “T" ’

847



clause in Figure 7 since there are no similar exam-
ples in the training data. This example requires
the model to generate the WHERE condition based
on a single NL word ‘official’. The word ‘official’
partly exactly matches the column ‘isOfficial’ and
implicitly mentions the WHERE condition value.
The implicit WHERE condition value challenges
existing models since most WHERE condition val-
ues are explicitly mentioned in the training data. It
is difficult for models to understand this implicit
expression. Hence, models tend to regard the word
‘official’ as an occasionally mentioned column, and
the WHERE condition will not be generated. GL
can solve this special problem by giving a new la-
bel BCOL to the word ‘official’, different from the
common exact match schema linking labels: COL
and TABLE. Figure 8 presents two more examples
with the BCOL label and newly designed NatSQL.

We found that the type of column in these special
WHERE conditions is Boolean-like. For example,
the ‘isOfficial’ column only contain the ‘T” and ‘F’
values, and some others Boolean-like column only
contain the ‘0’ and ‘1’ values. Therefore, we first
analyze the database data and mark the columns
with Boolean-like type. When generating the GL la-
bels, if the word matches a schema column marked
as Boolean-like type, give ita ‘BCOL’ label instead
of ‘COL’. However, the addition of ‘BCOL’ only
cannot solve this problem, i.e., the model still does
not generate the ‘isOfficial’ condition. We found
that training data make models tend to give fewer
WHERE conditions to simpler questions. To avoid
conflicts with other simple questions, we move the
WHERE condition of Boolean-like type to a BCOL
clause, as shown in the new NatSQL of Figure 7
The BCOL clause in this newly designed NatSQL
is finally converted to a WHERE condition. At this
point, with the BCOL label and clause, our method
can generate correct SQL for questions similar to
Figure 7.

D More Typos

Besides generating typos by inserting a letter, we
also generate typos by deleting a letter and swap-
ping the letter position, named the generated devel-
opment set Spider-T4 and Spider-T5, respectively.
Like Spider-T1 and T2, here we only convert the
words whose length is greater than five letters to ty-
pos. Table 7 presents the exact match accuracy on
Spider-T4 and Spider-T5 development sets. Since
PLM handles typos in Spider-T4 and T5 similar to

Question with its grammar linking labels and NatSQL

Sentence: Count the number of customers who be active .
# # AGG #  TABLE

# # BCOL #

Original ~ SELECT COUNT(customer.*) WHERE

NatsQrL:  customer.active =1

New q
NatSQL: SELECT COUNT(customer.*) BCOL customer.active

Sentence: How many users are logged in ?
# # TABLE #  BCOL BCOL #

Original ~ SELECT COUNT(users.*) WHERE users.user_login
NatSQL: =1

New 3
NatSan: SELECT COUNT(users.*) BCOL users.user_login

Figure 8: Two text-to-SQL examples with BCOL labels
and newly designed NatSQL.

Approach Spider-T4 Spider-T5
RATSQL 29.0% 28.6%
RATSQL w/o EMSL 32.8% 30.1%
RATSQLo 27.6% 26.5%
RATSQLy w/o EMSL 34.5% 31.2%
RATSQLp 34.9% 32.6%
RATSQL 3 w/o EMSL 38.8% 35.0%
RATSQL g 35.6% 32.6%
RATSQL s w/o EMSL 40.3% 38.2%
RATSQL 46.7% 46.8%
RATSQL w/o EMSL 50.6 % 50.7 %

Table 7: Exact match accuracy on Spider-T4 and Spider-
T5 development sets.

Spider-T1, their evaluation results are also similar.
Besides, we observe that the results of models us-
ing GLOVE in Spider-T4 are the best, followed by
in T5, then in T2, and finally in T1. To understand
this phenomenon, we found that although the num-
ber of generated typos is the same among these
datasets, Spider-T1 has the most GLOVE UNK
words, followed by T2, then T5, and T4 contains
the least UNK words. It can be seen that in the case
of fewer UNK words, the model+GLOVE can gen-
erate better encoding so that the model+GLOVE
without EMSL surpasses that with EMSL in Spider-
T4 and T5.

E Ablation Study on EMSL

Table 9 presents the ablation study results of three
base models. The results of RATSQL here are dif-
ferent from that of (Wang et al., 2020) because
Wang et al. (2020) remove the cell value linking
first and then EMSL. According to the magnitude
of the decline, our results are similar to theirs. Ac-
cording to (Wang et al., 2020; Guo et al., 2019),
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Number of errors Number of example with errors
Approach Multi words Single word UNK word | Multi words Single word UNK word
RATSQL 118 57 13 112 (10.8%) 54 (5.2%) 12 (1.2%)
RATSQL w/o EMSL 178 107 33 170 (16.4%) 93 (9.0%) 30 (2.9%)
RATSQLo 136 51 11 125 (12.1%) 50 (4.8%) 11 (1.1%)
RATSQLo w/o EMSL 152 63 15 141 (13.6%) 59 (5.7%) 14 (1.4%)
RATSQLp 55 38 - 53 (5.1%) 37 (3.6%) -
RATSQL g w/o EMSL 65 34 - 65 (6.3%) 34 (3.3%) -

Table 8: Statistics of the types of error column predictions of different models evaluated on the Spider development

set. The larger the number, the worse the performance.

Model Exact Match Acc Model Exact Match Acc
GNN 47.6% GNN+BERT 49.3%
GNN w/o EMSL 24.99% GNN+BERT w/o EMSL 47.1%
IRNet 48.5% RATSQL+BERT 69.7%
IRNet w/o EMSL 40.5% RATSQL+BERT w/o EMSL 69.3%
RATSQL 62.7% RATSQL+GAP 71.8%
RATSQL w/o EMSL 51.9% RATSQL+GAP w/o EMSL 71.7%

Table 9: Accuracy of three based models ablations on
the development set. EMSL means schema linking fea-
ture based on the exact lexical match. The IRNet results
are copied from the original paper (Guo et al., 2019),
while others are conducted by ourselves.

they observe the biggest performance degradation
by removing EMSL. Since then, EMSL has be-
come a necessary module for most researchers to
build text-to-SQL models.

We want to challenge this view and carry out the
comparative experiment in Table 10. Comparing
Table 9 and Table 10, it can be found that PLMs
compensate for the function of EMSL, i.e., the
performance in Table 10 is less degraded than that
in Table 9 after removing EMSL.

From another perspective, BERT and its sub-
sequent pretrained language model significantly
improve the performance of models that do not
use EMSL, which explains why some models can
achieve higher performance improvements through
BERT. For example, EditSQL (Zhang et al., 2019)
does not use EMSL, while it obtains the highest
performance improvement by extending BERT, as
shown on the Spider leaderboard *.

F Further Discussion on Section 5.3.1

F.1 BERT vs GLOVE

The base RATSQL uses GLOVE (Pennington et al.,
2014) for word embedding. There are two main
reasons why BERT (Devlin et al., 2019) is better

4https ://yale-lily.github.io/spider

Table 10: Accuracy of three models with PLM ablations
on the development set. The GAP (Shi et al., 2021) is a
pretrained model based on RoBERTa (Liu et al., 2019)

than GLOVE at schema linking. The first reason is
that BERT can better deal with out-of-vocabulary
words. BERT converts these words into subwords,
so BERT makes sure different word is represented
by a unique vector. However, GLOVE cannot han-
dle out of vocabulary words. Researchers generally
replace them with a custom unknown (UNK) word
vector. Suppose there are multiple words outside
the GLOVE vocabulary in one schema. In that
case, it is equivalent to multiple schema items be-
ing annotated as UNK, which will cause the model
without EMSL to be unable to distinguish different
schema items due to the same word vector.

The second reason is that GLOVE is not as good
as BERT in the face of schema items containing
multi-words. As opposed to static embeddings pro-
vided by GLOVE, BERT provides dynamic lexical
representations generated by analyzing the context.
Take the bandmate id column in the Spider dataset
as an example. The cosine of the vectors for the
two words bandmate and id in GLOVE is negative,
which means if we sum these two vectors together
to represent the bandmate id column, the sum vec-
tor will inevitably lose some information. The word
vector output by BERT is calculated based on the
context, so although adjacent words may be unre-
lated in word meaning, their word vectors will still
be highly correlated. Figure 9, generated by the
bertviz (Vig, 2019), presents the BERT head view
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of attention patterns in the one transformer layer
where the word bandmate clearly links to the word

id.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 9: The BERT head view of attention patterns of
word bandmate and id in the one transformer layer.

F.2 Error Analysis

Table 8 presents the error type statistics in the error
column prediction. We count the prediction errors
of single words, multiple words, and words out-
side the GLOVE vocabulary (UNK word) when
the predicted SQL structure is correct. As BERT
does not share GLOVE’s vocabulary limitations,
the UNK entry for RATSQL 5 is empty. Random
initialization means that model results after each
training may vary slightly, so we only focus on the
more salient features.

Although the results of RATSQL and RATSQLo
are similar, RATSQL consistently outperforms
RATSQL in three error types when EMSL is re-
moved; this supports the view we discuss in Sec-
tion 2.2. More importantly, the single-word per-
formance of RATSQL without EMSL is close to
that of RATSQL and RATSQL. As discussed in
Appendix F.1, the representation ability on multi-
word of GLOVE is worse than that of BERT. The
results support this view where the performance of
RATSQLo and RATSQL on multi-word is worse
than that on single-word. When replacing the
GLOVE with BERT, due to the improvement of its
multi-word representation ability, the performance
of RATSQL g with and without EMSL are close in
single and multiple words. From the right side of
Table 8, it can also be found that the BERT brings
around 5% absolute improvement on multi-word,
while that on single-word is only 2%.
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