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Abstract

Large language models (LLMs) exploit in-
context learning (ICL) to solve tasks with only
a few demonstrations, but its mechanisms are
not yet well-understood. Some works sug-
gest that LLMs only recall already learned con-
cepts from pre-training, while others hint that
ICL performs implicit learning over demon-
strations. We characterize two ways through
which ICL leverages demonstrations. Task
recognition (TR) captures the extent to which
LLMs can recognize a task through demonstra-
tions — even without ground-truth labels — and
apply their pre-trained priors, whereas rask
learning (TL) is the ability to capture new
input-label mappings unseen in pre-training.
Using a wide range of classification datasets
and three LLM families (GPT-3, LLaMA and
OPT), we design controlled experiments to dis-
entangle the roles of TR and TL in ICL. We
show that (1) models can achieve non-trivial
performance with only TR, and TR does not
further improve with larger models or more
demonstrations; (2) LLMs acquire TL as the
model scales, and TL’s performance consis-
tently improves with more demonstrations in
context. Our findings unravel two different
forces behind ICL and we advocate for dis-
criminating them in future ICL research due
to their distinct nature.!

1 Introduction

Large language models (LLMs) have demonstrated
the ability to perform in-context learning (ICL),
i.e., “learning” to perform a task purely from ex-
amples in the context without any parameter up-
dates (Brown et al., 2020). This powerful and
flexible phenomenon enables LLMs to be used as
general-purpose models that can perform any task
with a small set of labeled examples.

However, there is still no consensus on how in-
context learning works. Some previous work hy-

'Our code is publicly available at https://github.com/
princeton-nlp/WhatICLLearns.
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Figure 1: We perform experiments in three settings:
RANDOM (top), ABSTRACT (middle), and GOLD (bot-
tom). Our experiments demonstrate that fask recog-
nition (TR; shown by RANDOM) does not scale with
model sizes and number of demonstrations, while rask
learning (TL; shown by ABSTRACT) does.

pothesizes that during pre-training, LLMs implic-
itly learn tasks required for downstream applica-
tions, and the in-context demonstrations merely
provide information that allow the model to rec-
ognize which task is required (Xie et al., 2022).
Min et al. (2022) show empirical evidence of this
hypothesis by demonstrating that ICL performance
is insensitive to the usage of ground-truth labels.

On the other hand, Akyiirek et al. (2023);
von Oswald et al. (2022) construct theories that
Transformer-based models may perform implicit
gradient descent to update an “inner-model”, and
Dai et al. (2023) demonstrate similarities between
in-context learning and explicit fine-tuning through
a series of metrics on real-world datasets. Such hy-
potheses assume the correct input-output mappings
are important and ICL actually performs implicit
learning over demonstrations.

In this paper, we disentangle ICL into task
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recognition (TR), which recognizes the task from
demonstrations and applies LLMs’ pre-trained pri-
ors, and task learning (TL), which learns a new
input-label mapping from demonstrations. In com-
mon ICL scenarios where ground-truth labels are
provided, TR and TL take effect simultaneously.
We propose two settings to tease them apart: 1)
RANDOM, where the labels are uniformly sampled
from the label space (Min et al., 2022), in order
to restrict LLMs to only apply TR; 2) ABSTRACT,
where the labels are replaced with abstract symbols
(e.g., numbers or letters) that never co-occurred
with the inputs in pre-training. We focus on how
the two abilities in ICL evolve with two factors —
model sizes and numbers of demonstrations, which
have been neglected in related literature.

Through extensive experiments with a series
of classification datasets on GPT-3 (Brown et al.,
2020), LLaMA (Touvron et al.,, 2023), and
OPT (Zhang et al., 2022), we find:

* The gap between GOLD and RANDOM is small
with smaller models, corroborating with Min et al.
(2022). However, with larger models and more
examples, the gap becomes larger. This suggests
TR plays a significant role in ICL, but it does not
scale with increasing parameters or examples.

e LLMs also perform TL, which emerges with
larger models and more demonstrations. With
the largest model and more than 16 examples,
ABSTRACT outperforms RANDOM, pointing to a
paradigm shift in in-context learning at scale.

Together, our findings provide a better way to un-
derstand ICL behaviors.?

2 Task Recognition and Task Learning

An LLM (parameterized by #) performs ICL by
conditioning on the input-label pair demonstra-
tions Dgemo = (T1,Y1,%2,Y2,--.,TK, YK ) and
the test input 25 to predict the label yiest ~ po(y |
Dédemo s Trest)s Where the demonstrations elicit a
mapping f : X — Y,z € X,y € Y. We de-
lineate two ways an LLLM can leverage in-context
demonstrations: task recognition and task learning.

Task recognition (TR) represents models’ ability
to recognize the mapping f purely by observing
the input distribution {x;}/, and the label distri-
bution {y; }X£,, without the provided (z;, y;) pairs.

2We discuss the differences between our work and Min
et al. (2022); Yoo et al. (2022) in Section 5, detailing how our
findings deviate and converge with existing results.

The LLM then applies its pre-trained priors to the
recognized f. Formally, when only TR is enabled,

Po(y ’ Ltest, {l’i, yi}{il)
_ K K
—p9<y ’ Ttest {1'1'}1‘:1: {yi}i:1)7

which suggests TR does not rely on the pair infor-
mation. For example, an input distribution of movie
reviews and a label distribution of “The sentiment
is positive/negative” can be easily recognized as a
sentiment classification task due to their prevalence
during pre-training, and LL.Ms can make reason-
able predictions without explicitly “learning” the
task via ground-truth demonstrations. This leads to
observations that the model can still perform well
even when we provide wrong input-label mappings,
e.g., “The movie is great. The sentiment is nega-
tive” (Min et al., 2022). Task learning (TL), on the
other hand, characterizes how the model learns a
new mapping from the input-label pairs through
demonstrations. Unlike TR, TL allows models to
learn novel mappings and thus correct input-label
pairs will be crucial.

We posit that the two mechanisms occur un-
der separate conditions, as recognizing an already
learned task is easier than learning a new mapping.
Models are able to perform TR at a small scale,
but this ability does not drastically improve with
increasing model sizes and demonstrations; on the
other hand, TL improves significantly when model
sizes and numbers of demonstrations increase. To
show the above phenomenon, we disentangle TR
and TL through label space manipulation, includ-
ing three different setups (examples in Figure 1):

* GOLD: the standard ICL setting where we use
natural prompts and gold input-label pairs. This
setup reflects both TR and TL abilities.

¢ RANDOM: similar to Min et al. (2022), we use
the same natural prompts as GOLD and sample
demonstration labels uniformly at random from the
label space. This setup reflects TR only.

e ABSTRACT: we use minimal prompts (which
provide no task information) and characters with
no clear semantic meanings (e.g. numbers, letters,
and random symbols) as the label for each class.
We found that even abstract labels may have biases
in pre-training, e.g., “0” is biased towards nega-
tive. Hence, for each prompt x1,y1,...,2K, YK,
we randomly sample a 1-1 mapping ¢ : Y — Y*
to avoid any bias, and no task-specific information
is leaked in either the prompt template or the label
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Figure 2: Averaged accuracy across 16 datasets for GPT-3 (left), LLaMA (middle), and OPT (right). Top graphs
plot model sizes from small to large against performance, using 32 examples. Variance is calculated across three
prompts. Bottom graphs plot #demonstrations against performance for davinci, LLaMA-65B, and OPT-66B.

space. To evaluate the model’s ABSTRACT perfor-
mance, we measure its accuracy using @ (Yest) as
target labels. Since these input-label mappings are
never seen in pre-training, it reflects the TL ability.

In the following sections, we conduct comprehen-
sive experiments with the above three different set-
tings under two axes — model sizes and numbers of
demonstrations — and show how TR and TL mani-
fest under different conditions.

3 Experimental Setup
3.1 Datasets

We experiment on 16 classification datasets across
4 type of tasks: sentiment analysis, toxicity detec-
tion, natural language inference/paraphrase detec-
tion, and topic/stance classification. All datasets
and references are in Appendix A. Our dataset se-
lection largely follows Min et al. (2022), but we
exclude multi-choice datasets since it is difficult to
apply our ABSTRACT experiments on them.

3.2 Models

We use three state-of-the-art LLM families: GPT-
3 (Brown et al., 2020), LLaMA (Touvron et al.,
2023), and OPT (Zhang et al., 2022). We use

GPT-3 ada (350M), babbage (1.3B), curie (6.7B),
and davinci (175B) via the OpenAl API. For
OPT, we use checkpoints from the Transformers li-
brary (Wolf et al., 2020), with model sizes of 350M,
2.7B, 6.7B, 13B, 30B, and 66B parameters. For
LLaMA, we use model sizes of 7B, 13B, 33B, and
65B parameters.’

3.3 Task Setup

We adopt the sample-based evaluation protocol:
for each test example, we sample a different set
of demonstrations from the training set. We man-
ually design 3 prompt templates for each type of
classification tasks in a similar style to the prompts
from Min et al. (2022). We report the mean by
averaging across datasets and prompts, and stan-
dard variation across different prompts for each
datapoint. For GPT-3, we sample 150 examples for
each dataset. We use fewer examples due to bud-
get constraints, and GPT-3 presents lower variance
than other model families. For OPT and LLaMA,
we sample 1,350 examples for all datasets.

3For GPT-3, we use the non-instruction legacy models
for fair comparison to OPT and LLaMA models. We did
not run experiments on the largest OPT-175B model due to
computational constraints.
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We design two kinds of prompts: natural lan-
guage prompts (Table 1), which are similar to the
manual prompts in Min et al. (2022), and minimal
prompts (Table 3), which remove any natural lan-
guage instructions for the task. For ABSTRACT,
we tested three types of label choices: numbers
(0,...,N — 1, where N is the number of classes),
letters (N letters from A, B, C, .. .), and symbols
(first N symbols of “@”, “#”, “$”, "%”, “*”, and
“A”). For each test example, we randomly sample a
new mapping between labels and abstract charac-
ters. We report the number abstract labels in all the
main results and compare the three forms in §4.2.

4 Results

Figure 2 shows our main results with GPT-3,
LLaMA, and OPT with our 3 settings: GOLD,
RANDOM, and ABSTRACT. Below we summarize
the trends of TR and TL across different conditions.

4.1 Main Results

Summary of overall trends. We first verify that
GOLD consistently performs the best across model
families and number of demonstrations, which is
expected given that the GOLD setting provides the
model with all information. Overall, the RANDOM
curves do not increase with either model sizes or
number of demonstrations, remaining largely flat;
considering the scenario with small model sizes
and few examples (K = 8), there is an insignificant
gap between RANDOM and GOLD. Meanwhile,
the ABSTRACT curves demonstrate an increasingly
steep slope as the model sizes and the number of
demonstrations grow; with small models or small
K, ABSTRACT mostly underperforms RANDOM,
whereas ABSTRACT with largest models and K =
32 performs well above RANDOM (and may even
be competitive with GOLD). We note that the OPT
curves demonstrate significant variance, which we
hypothesize to be a result of the models potentially
being under-trained. We elaborate the takeaways
on TR and TL below.

Task recognition is a broader capability across
scales. For all model families, the RANDOM set-
ting shows similar performance at all sizes and
numbers of demonstrations. Moreover, TR perfor-
mance is significantly stronger than the random
baseline, even with small models and few exam-
ples. For instance, even the smallest 350M param-
eter models are able to recognize the task using
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Figure 3: Performance of three types of ABSTRACT
labels: numbers, letters, and symbols on davinci and
OPT-66B.
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Figure 4: Average results of sentiment analysis datasets
(left) vs. natural language inference datasets (right) on
GPT-3 models, with K = 32.

just 8 examples, drawing around 10 points of aver-
age performance lead against the random baseline
for GPT-3 ada and 5 points for OPT-350M. This
shows that task recognition from in-context exam-
ples does not drastically scale with model sizes or
numbers of examples.

Task learning is enabled with scale. We observe
that TL is dependent on model sizes: smaller mod-
els perform roughly the same across all numbers
of demonstrations (see Figure 6). On the other
hand, larger models can utilize the provided map-
ping information and perform TL, as ABSTRACT
(TL) performance increases drastically with larger
sizes (first row of Figure 2). When using a larger
model, the results also improve as the number of
demonstration increases (second row of Figure 2).
With only 16 examples, OPT-66B and davinci are
able to match the performance of GOLD while us-
ing a new label mapping. While LLaMA-65B’s
ABSTRACT is not as competitive as its GOLD, the
trend of improving ABSTRACT performance with
larger size s or larger K is clear. This suggests that
TL is only enabled by scales and further improves
with more demonstrations.
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4.2 Further Analysis

The trends for task learning generalize across
different types of abstract labels. In Figure 3,
we show ABSTRACT results with number, letter,
and symbol labels respectively. We observe that all
three versions show a similar trend and coincide
with our main results. Numbers and letters perform
consistently better than symbols. This may be be-
cause letters and numbers appear more frequently
in the pre-training corpus, and therefore make for a
more "natural” label space.

Task difficulty affects the trends. We notice that
ABSTRACT scales better with sizes and examples
when the task is simpler. In Figure 4 we compare
two types of tasks: sentiment analysis and natu-
ral language inference (NLI). Since NLI is more
difficult, we observe that it produces a flatter AB-
STRACT curve, suggesting that the model relies
more on the natural prompts and pre-training pri-
ors to solve those tasks. We demonstrate the full
task-type breakdown results in §C.

5 Related Work

Many works have attempted to deepen empirical
or theoretical understanding of ICL since its emer-
gence in Brown et al. (2020). For instance, Xie
et al. (2022) present a theoretical framework where
latent “concepts” parameterize each document in
pre-training. They posit that all concepts have been
learned in pre-training; thus, ICL is the result of
implicit Bayesian inference, where the LM uses in-
context demonstrations as evidence to identify the
correct concept. Min et al. (2022) present empirical
evidence for this framework by showing that only
limited information, rather than true input-label
mappings, is needed to perform ICL.

Other works investigate the impact of the pre-
training corpus on ICL. Chan et al. (2022) identify
properties of the pre-training distribution that en-
able ICL behavior, including burstiness, label mul-
tiplicity, and a long-tailed class distribution — all of
which are satisfied by natural language. Razeghi
et al. (2022) show that the frequencies of terms
in the pre-training corpora is positively correlated
with model performance. Kirsch et al. (2022) show
that both a rich training distribution and a suffi-
ciently large model are critical to the development
of in-context learning abilities.

More recently, several works have explored theo-
retical frameworks in which ICL can be seen as im-

plicit gradient descent, treating a forward pass over
the in-context demonstrations as an “update” to an
implicit internal model. (Akyiirek et al., 2023; von
Oswald et al., 2022; Dai et al., 2023). For mech-
anistic perspectives on ICL, Olsson et al. (2022)
and Bansal et al. (2022) identify induction heads
(subnetworks that perform in-context pattern recog-
nition) in small and large models, respectively.

While our conclusions align with aspects of pre-
vious studies, our work contributes novel insights
on multiple axes. Min et al. (2022) also show that
even small models can perform TR and argue that
the performance gap between GOLD and RANDOM
is consistently small, but most of their experiments
are on <13B models with 16 demonstrations; we
show that as model sizes scale, GOLD tends to
improve while RANDOM does not. Thus, the per-
formance deficit of RANDOM grows as models be-
come larger. Yoo et al. (2022) also perform similar
experiments to RANDOM and ABSTRACT, but they
do not deeply investigate the effect of model sizes
or numbers of demonstrations. Contemporary work
Wei et al. (2023) obtain similar results; additionally,
they show that instruction-tuning strengthens the
model’s semantic priors more than it improves TL.
However, they primarily focus on closed-source
models, whereas we also conduct experiments on
public models such as LLaMA and OPT. Collec-
tively, our findings offer a comprehensive under-
standing of how ICL works across scales.

6 Conclusion

While previous work often studies ICL as an um-
brella term, regardless of model sizes and numbers
of examples, we argue that there are two distinct
characterizations of ICL — task recognition and task
learning — and demonstrate that they emerge under
different conditions. Even small models are capa-
ble of performing TR, but this ability does not scale.
On the other hand, TL is an emergent ability of
large models; small models are unable to perform
TL even when provided with more demonstrations,
whereas large models can leverage more demonsta-
tions to improve their TL performance. We suggest
that future work on ICL should distinguish the two
phenomena and clearly state the conditions under
which the experiments are conducted.

Limitations

Though LLMs with in-context learning are capable
of all kinds of NLP tasks, this work is limited to
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classification tasks because they are easier to be
adapted to our RANDOM and ABSTRACT setup.
We leave other types of NLP tasks as future work.

Another limitation of our work lies in the defi-
nition and discussion of task learning. Though we
empirically show that large models are capable of
acquiring a novel mapping to abstract labels like
numbers or letters, how models “learn” mechanis-
tically is still elusive. As suggested in previous
work, LLMs may conduct implicit gradient descent
over demonstrations, or they may alternatively map
the patterns shown in the demonstrations back to
concepts learned in pre-training. To some extent,
these mechanisms could be considered an advanced
form of “task recognition”. This work only designs
experiments to better observe and disentangle TR
and TL, and we look forward to further studies that
reveal more insights about the mechanistic inner-
workings of these phenomena in ICL.
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A Datasets

We use a total of 16 datasets. Sentiment anal-
ysis includes SST-2 (Socher et al., 2013), finan-
cial_phrasebank (Malo et al., 2014), emotion (Sar-
avia et al., 2018), and poem_sentiment (Sheng
and Uthus, 2020) Topic/stance classification
includes TREC (Voorhees and Tice, 2000),
tweet_eval_atheist, and tweet_eval_feminist (Mo-
hammad et al.,, 2018; Basile et al., 2019).
Toxicity detection includes tweet_eval_hate,
ethos_race, ethos_gender, ethos_national_origin,
and ethos_religion (Mollas et al., 2020) Natu-
ral language inference/paraphrase detection in-
cludes SICK (Marelli et al., 2014), SNLI (Bowman
et al., 2015), WNLI (Levesque et al., 2012), and
MRPC (Dolan and Brockett, 2005).

We sample from the training set to construct
the prompts; following Min et al. (2022), we use
the development set for evaluation, using sampled
max (1350, dataset_size) examples.

B Prompt Templates

For each task category (e.g. sentiment classifica-
tion, topic detection), we manually design three
natural language templates. Depending on exact
specifications for the dataset, templates may be
adjusted to better reflect the task (e.g. "Is this athe-
ist?" for tweet_eval_atheist). We apply these tem-
plates to the natural language label sets (GOLD and
RANDOM). All prompts are presented in Table 1.

We also design two task-agnostic variations on
three minimal templates for ABSTRACT: one for
single-sentence tasks and one for multi-sequence
tasks (e.g. NLI tasks). We use these minimal tem-
plates on the abstract language label sets in order to
prevent the model from being exposed to any infor-
mation regarding the task from the prompt design.
All minimal templates are presented in Table 3

All prompts are designed to be answered
with single-token responses (e.g. "Yes/No",
"True/False", "positive/negative/neutral”, "0/1/2",
"A/B/C") so that we can directly check models’
last token prediction results instead of applying
decoding methods.

C More Results

We demonstrate average model performance with
respect to number of parameters in Figure 5. It
is clear that small models struggle to perform
ABSTRACT, regardless of how many examples,

whereas the largest models (especially GPT-3
Davinci and OPT-66B) are able to perform AB-
STRACT. Additionally, their performance improves
even more when more demonstrations are provided.

We demonstrate average model performance
with respect to numbers of demonstrations in Fig-
ure 6. We can see a clear trend that RANDOM (TR)
does not change much but ABSTRACT improves
drastically with more examples, especially for GPT-
3 Davinci and OPT-66B.

Figure 7 shows all the ABSTRACT results and
demonstrates a similar trend to what §4.2 describes.

Figure 8, Figure 9, Figure 10, and Figure 11
show task-type breakdown results. Though indi-
vidual task-type results are more noisy, we can
make a similar observation compared to the main
result — ABSTRACT (TL) scales better with sizes
and numbers of examples compared to RANDOM
(TR).
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Type Template # Example
1 <s>
The sentiment is <positive/negative>
Sentiment
. 2 <s5>
Analysis . . . .
Sentiment: <positive/negative>
3 <s>
The sentiment of the text is <positive/negative>
1 <s>
Is this hate speech? <Yes/No>
Hate Speech 2 <>
Is the sentence hateful? <Yes/No>
3 <>
The sentence contains hate speech. True or False?
The answer is <True/False>
1 <s>
The stance is feminist. True or False?
The answer is <True/False>
Stance
Detection 2 <5> L
Does the sentence express a feminist view? <Yes/No>
3 <s>
Is the stance feminist? <Yes/No>
1 <s>
The topic is <label>
Topic
DeI:ection 2 D .
The sentence is about <label>
3 <s>
Sentence topic: <label>

Table 1: Natural prompts used as input in GOLD and RANDOM settings for single-sentence datasets. <s> denotes
the input sequence; labels are illustrated in red.
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Type Temp. # Example

<sl>

The question is: <s2>?

True or False?

The answer is <True/False>
Hypothesis: <s/>

Premise: <s2>?

Do the sentences show entailment?
<Yes/No>

The hypothesis is: <s/>

3 The premise is: <s2>?

Is this entailment?

<Yes/No>

<sI>

I The question is: <s2>

True, False, or Unknown?

The answer is <True/False/Unknown>
Hypothesis: <s/>

Premise: <s2>?

Given the premise, is the hypothesis true? Yes, No, or Unknown?
The answer is: <Yes/No/Unknown>
The hypothesis is: <s/>

3 The premise is: <s2>?

According to the premise, the hypothesis is true. True, False, or Unknown?
The answer is: <True/False/Unknown>
<sI>

1 The question is: <s2>

True or False?

The answer is: <True/False/>
Sentence 1: <s/>

Entailment 2

NLI 2

Paraphrase ) Sentence 2: <s2>
Detection These sentences are paraphrases. True or False?
The answer is: <True/False/>
Text: <s/>
3 Consider this sentence: <s2>

Does it paraphrase the text?
<Yes/No>

Table 2: Natural prompts used as input in GOLD and RANDOM settings for multi-sentence datasets. <s/> and <s2>
denote the input sequences; labels are illustrated in red.

Type Template # Example
<sentence>
1 <label>
Minimal
(single 2 <sentence>
sentence) Label: <label>
Sentence: sentence>
3 Label: <label>
<sentencel> [SEP] <sentence2>
1 <label>
Minimal
(multiple 2 <sentencel> [SEP] <sentence2>
sentences) Label: <label>
Sentence 1: <sentencel>
3 Sentence 2: <sentence2>
Label: <label>

Table 3: Minimal prompts used for ABSTRACT.
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Figure 5: Averaged accuracy across 16 datasets for GPT-3 (top), LLaMA (middle), and OPT (bottom). X-axis
shows model sizes from small to large. We run experiments with 8 (left), 16 (middle), and 32 (right) demonstrations
respectively. Variance is calculated across three prompts.

tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.52 0.51 0.54 0.45 0.23 04 0.4 0.38 0.41 0.44 0.34 0.43
babbage 0.51 0.52 0.54 0.38 0.37 043 0.46 0.29 0.49 0.53 0.34 0.57
curie 0.55 0.54 0.6 0.28 0.33 0.32 0.39 0.32 0.4 0.56 0.36 0.56
davinci 0.56 0.55 0.59 0.34 0.33 0.33 0.4 0.4 0.38 0.4 0.39 0.44
financial_phrasebank ethos_race ethos_gender ethos_religion
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.23 0.4 0.4 0.38 0.41 0.44 0.34 0.43 0.56 0.39 0.64 0.62
babbage 0.37 0.43 0.46 0.29 0.49 0.53 0.34 0.57 0.45 0.39 0.55 0.54
curie 0.33 0.32 0.39 0.32 0.4 0.56 0.36 0.56 0.54 0.42 0.63 0.53
davinci 0.33 0.33 04 04 0.38 04 0.39 0.44 04 0.56 0.44 0.52
ethos_national_origin snli sst2 trec
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 041 0.44 0.34 0.43 0.56 0.39 0.64 0.62 0.52 0.71 0.62 0.57
babbage 0.49 0.53 0.34 0.57 0.45 0.39 0.55 0.54 0.51 0.52 0.58 0.56
curie 04 0.56 0.36 0.56 0.54 0.42 0.63 0.53 0.52 0.6 0.48 0.54
davinci 0.38 0.4 0.39 0.44 04 0.56 0.44 0.52 0.51 0.54 0.47 0.52
rte wnli mrpc poem

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold

ada 0.56 0.39 0.64 0.62 0.52 0.71 0.62 0.57 0.76 0.68
babbage 0.45 0.39 0.55 0.54 0.51 0.52 0.58 0.56 0.62 0.63
curie 0.54 0.42 0.63 0.53 0.52 0.6 0.48 0.54 0.55 0.56
davinci 0.4 0.56 0.44 0.52 0.51 0.54 0.47 0.52 0.5 0.48

0.54

0.51
0.6

0.53

0.74
0.61
0.54
0.62

Table 4: Single dataset accuracies across the GPT-3 model family, using 8 examples.

8308
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Figure 6: Averaged accuracy across 16 datasets for GPT-3 (top), LLaMA (middle), and OPT (bottom). x-axis
shows number of demonstrations in the prompt. For each model, we run experiments for RANDOM (left), AB-
STRACT(middle), and GOLD (right) demonstrations. Variance is calculated across three templates.
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Figure 7: Performance of three types of ABSTRACT labels: numbers, letters, and symbols on OPT and GPT-3
models.
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Figure 8: Average performance of sentiment analysis datasets.
tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.51 0.51 0.52 0.44 0.37 0.48 0.4 0.42 0.41 0.37 0.44 0.44
babbage 0.48 0.54 0.55 0.36 0.41 0.31 0.44 0.33 0.48 0.54 0.38 0.54
curie 0.54 0.58 0.62 0.28 0.48 0.3 0.33 0.38 0.32 0.56 0.41 0.56
davinci 0.56 0.6 0.64 0.34 0.42 0.39 0.29 0.44 0.38 0.46 0.49 0.49
financial_phrasebank ethos_race ethos_gender ethos_religion
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.37 0.48 0.4 0.42 0.41 0.37 0.44 0.44 0.54 0.53 0.67 0.68
babbage 0.41 0.31 0.44 0.33 0.48 0.54 0.38 0.54 0.43 0.53 0.63 0.56
curie 0.48 0.3 0.33 0.38 0.32 0.56 0.41 0.56 0.5 0.55 0.71 0.54
davinci 0.42 0.39 0.29 0.44 0.38 0.46 0.49 0.49 0.38 0.63 0.49 0.51
ethos_national_origin snli sst2 trec
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.41 0.37 0.44 0.44 0.54 0.53 0.67 0.68 0.52 0.76 0.68 0.52
babbage 0.48 0.54 0.38 0.54 0.43 0.53 0.63 0.56 0.53 0.61 0.58 0.54
curie 0.32 0.56 0.41 0.56 0.5 0.55 0.71 0.54 0.56 0.55 0.49 0.55
davinci 0.38 0.46 0.49 0.49 0.38 0.63 0.49 0.51 0.6 0.56 0.5 0.57
rte wnli mrpc poem
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.54 0.53 0.67 0.68 0.52 0.76 0.68 0.52 0.75 0.69 0.57 0.77
babbage 0.43 0.53 0.63 0.56 0.53 0.61 0.58 0.54 0.61 0.55 0.54 0.62
curie 0.5 0.55 0.71 0.54 0.56 0.55 0.49 0.55 0.59 0.49 0.55 0.59
davinci 0.38 0.63 0.49 0.51 0.6 0.56 0.5 0.57 0.59 0.54 0.67 0.63

Table 5: Single dataset accuracies across the GPT-3 model family, using 16 examples.
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Figure 9: Average performance of natural language inference/paraphrase detection datasets.
tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.48 0.52 0.53 04 0.37 0.42 0.41 0.38 0.42 0.24 0.45 0.27
babbage 0.53 0.58 0.52 0.32 0.38 0.35 0.42 0.35 0.38 0.44 0.4 0.5
curie 0.54 0.59 0.66 0.26 0.47 0.31 0.38 0.4 0.43 0.57 0.41 0.57
davinci 0.57 0.64 0.66 0.29 0.51 0.37 0.28 0.49 0.37 0.43 0.52 0.49
financial_phrasebank ethos_race ethos_gender ethos_religion
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.37 0.42 041 0.38 0.42 0.24 0.45 0.27 0.55 0.56 0.69 0.66
babbage 0.38 0.35 0.42 0.35 0.38 0.44 0.4 0.5 0.51 0.58 0.65 0.51
curie 0.47 0.31 0.38 04 0.43 0.57 0.41 0.57 0.52 0.56 0.71 0.51
davinci 0.51 0.37 0.28 0.49 0.37 0.43 0.52 0.49 0.35 0.68 0.5 0.63
ethos_national_origin snli sst2 trec
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.42 0.24 0.45 0.27 0.55 0.56 0.69 0.66 0.55 0.73 0.69 0.61
babbage 0.38 0.44 0.4 0.5 0.51 0.58 0.65 0.51 0.57 0.63 0.6 0.59
curie 043 0.57 041 0.57 0.52 0.56 0.71 0.51 0.59 0.65 0.5 0.61
davinci 0.37 0.43 0.52 0.49 0.35 0.68 0.5 0.63 0.6 0.63 0.51 0.62
rte wnli mrpc poem
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
ada 0.55 0.56 0.69 0.66 0.55 0.73 0.69 0.61 0.73 0.65 0.63 0.77
babbage 0.51 0.58 0.65 0.51 0.57 0.63 0.6 0.59 0.64 0.57 0.56 0.65
curie 0.52 0.56 0.71 0.51 0.59 0.65 0.5 0.61 0.63 0.44 0.61 0.69
davinci 0.35 0.68 0.5 0.63 0.6 0.63 0.51 0.62 0.65 0.6 0.7 0.71

Table 6: Single dataset accuracies across the GPT-3 model family, using 32 examples.
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Figure 10: Average performance of toxicity detection datasets.
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Figure 11: Average performance of topic/stance classification datasets.
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tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold

OPT-350M 0.49 0.51 0.53 0.43 0.34 0.48 041 0.31 0.45 0.33 0.34 0.29
OPT-2.7B 0.52 0.55 0.56 0.43 0.36 0.45 0.47 0.34 0.5 0.52 0.34 0.55
OPT-6.7B 0.53 0.53 0.57 0.26 0.33 0.27 0.33 0.39 0.36 0.46 0.36 0.48
OPT-13B 0.55 0.52 0.61 04 0.35 0.4 0.49 0.35 0.47 0.36 0.3 0.37
OPT-30B 0.52 0.54 0.55 0.28 0.24 0.35 04 0.34 0.46 0.53 0.31 0.55
OPT-66B 0.52 0.55 0.53 0.29 0.38 0.32 0.44 0.37 0.42 0.44 0.36 0.47
financial_phrasebank ethos_race ethos_gender ethos_religion

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.34 0.48 041 0.31 0.45 0.33 0.34 0.29 0.48 0.36 0.48 0.6
OPT-2.7B 0.36 0.45 0.47 0.34 0.5 0.52 0.34 0.55 0.54 0.42 0.56 0.49
OPT-6.7B 0.33 0.27 0.33 0.39 0.36 0.46 0.36 0.48 0.63 0.44 0.74 0.55
OPT-13B 0.35 0.4 0.49 0.35 047 0.36 0.3 0.37 0.59 0.44 0.69 0.62
OPT-30B 0.24 0.35 04 0.34 0.46 0.53 0.31 0.55 0.56 043 0.61 0.44
OPT-66B 0.38 0.32 0.44 0.37 0.42 0.44 0.36 0.47 0.33 0.44 0.46 0.45

ethos_national_origin snli sst2 trec

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.45 0.33 0.34 0.29 0.48 0.36 0.48 0.6 0.49 0.66 0.65 0.51
OPT-2.7B 0.5 0.52 0.34 0.55 0.54 0.42 0.56 0.49 0.53 0.49 0.51 0.56
OPT-6.7B 0.36 0.46 0.36 0.48 0.63 0.44 0.74 0.55 0.54 0.59 0.53 0.57
OPT-13B 0.47 0.36 0.3 0.37 0.59 0.44 0.69 0.62 0.53 0.63 0.55 0.53
OPT-30B 0.46 0.53 0.31 0.55 0.56 0.43 0.61 0.44 0.49 0.42 0.46 0.57
OPT-66B 0.42 0.44 0.36 0.47 0.33 0.44 0.46 0.45 0.55 0.53 0.44 0.55

rte wnli mrpc poem

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.48 0.36 0.48 0.6 0.49 0.66 0.65 0.51 0.71 0.66 0.53 0.73
OPT-2.7B 0.54 0.42 0.56 0.49 0.53 0.49 0.51 0.56 0.52 0.48 0.51 0.5
OPT-6.7B 0.63 0.44 0.74 0.55 0.54 0.59 0.53 0.57 0.61 0.53 0.52 0.62
OPT-13B 0.59 0.44 0.69 0.62 0.53 0.63 0.55 0.53 0.61 0.55 0.52 0.62
OPT-30B 0.56 043 0.61 0.44 0.49 0.42 0.46 0.57 0.47 0.46 0.51 0.46
OPT-66B 0.33 0.44 0.46 0.45 0.55 0.53 0.44 0.55 0.38 0.49 0.55 0.56

Table 7: Single dataset accuracies across the OPT model family, using 8 examples.
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tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.52 0.53 0.55 0.47 0.37 0.49 0.42 042 0.44 0.33 0.36 0.35
OPT-2.7B 0.52 0.56 0.58 0.44 0.44 0.47 0.51 0.39 0.46 0.55 0.39 0.57
OPT-6.7B 0.52 0.57 0.57 0.22 0.39 0.28 0.39 0.43 0.41 0.48 0.42 0.54
OPT-13B 0.58 0.54 0.62 0.32 0.44 0.38 0.41 0.39 0.41 0.36 0.4 0.36
OPT-30B 0.51 0.57 0.57 0.34 0.4 0.35 041 0.32 0.5 0.55 0.45 0.56
OPT-66B 0.5 0.57 0.54 0.25 0.47 0.31 0.47 0.44 0.48 0.49 0.38 0.51

financial_phrasebank ethos_race ethos_gender ethos_religion

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.37 0.49 0.42 0.42 0.44 0.33 0.36 0.35 0.45 0.4 0.47 0.65
OPT-2.7B 0.44 0.47 0.51 0.39 0.46 0.55 0.39 0.57 0.53 0.5 0.58 0.45
OPT-6.7B 0.39 0.28 0.39 0.43 0.41 0.48 0.42 0.54 0.66 0.53 0.8 0.59
OPT-13B 0.44 0.38 041 0.39 041 0.36 0.4 0.36 0.6 0.53 0.72 0.54
OPT-30B 04 0.35 0.41 0.32 0.5 0.55 0.45 0.56 0.56 0.52 0.64 0.35
OPT-66B 0.47 0.31 0.47 0.44 0.48 0.49 0.38 0.51 0.3 0.57 0.49 0.44

ethos_national_origin snli sst2 trec

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.44 0.33 0.36 0.35 0.45 04 047 0.65 0.52 0.71 0.71 0.52
OPT-2.7B 0.46 0.55 0.39 0.57 0.53 0.5 0.58 0.45 0.59 047 041 0.62
OPT-6.7B 0.41 0.48 0.42 0.54 0.66 0.53 0.8 0.59 0.56 0.71 0.62 0.61
OPT-13B 0.41 0.36 04 0.36 0.6 0.53 0.72 0.54 0.53 0.62 0.5 0.55
OPT-30B 0.5 0.55 0.45 0.56 0.56 0.52 0.64 0.35 0.57 043 0.38 0.63
OPT-66B 0.48 0.49 0.38 0.51 0.3 0.57 0.49 0.44 0.59 0.51 0.4 0.6

rte wnli mrpc poem

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.45 04 0.47 0.65 0.52 0.71 0.71 0.52 0.76 0.73 0.51 0.76
OPT-2.7B 0.53 0.5 0.58 0.45 0.59 0.47 041 0.62 0.52 0.45 0.54 0.54
OPT-6.7B 0.66 0.53 0.8 0.59 0.56 0.71 0.62 0.61 0.69 0.64 0.61 0.74
OPT-13B 0.6 0.53 0.72 0.54 0.53 0.62 0.5 0.55 0.58 0.55 0.53 0.58
OPT-30B 0.56 0.52 0.64 0.35 0.57 0.43 0.38 0.63 0.5 041 0.59 0.51
OPT-66B 0.3 0.57 0.49 0.44 0.59 0.51 0.4 0.6 0.46 0.46 0.59 0.55

Table 8: Single dataset accuracies across the OPT model family, using 16 examples.
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tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold

OPT-350M 0.53 0.53 0.55 0.42 0.35 0.42 0.43 0.33 0.4 0.36 0.34 0.35
OPT-2.7B 0.51 0.59 0.59 0.31 0.42 0.42 0.43 0.39 0.42 0.53 0.4 0.57
OPT-6.7B 0.55 0.59 0.6 0.26 0.29 0.24 0.4 0.39 0.42 0.49 0.44 0.53
OPT-13B 0.56 0.58 0.59 0.25 0.45 0.36 0.39 0.38 0.42 0.4 0.38 0.37
OPT-30B 0.52 0.59 0.57 0.32 0.47 0.42 0.47 0.42 0.47 0.54 0.45 0.6
OPT-66B 0.48 0.58 0.51 0.27 0.5 0.26 0.4 0.46 0.5 0.45 0.43 0.47
financial_phrasebank ethos_race ethos_gender ethos_religion

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.35 0.42 0.43 0.33 0.4 0.36 0.34 0.35 0.44 0.38 0.44 0.67
OPT-2.7B 0.42 0.42 0.43 0.39 0.42 0.53 0.4 0.57 0.51 0.56 0.58 0.46
OPT-6.7B 0.29 0.24 0.4 0.39 0.42 0.49 0.44 0.53 0.68 0.61 0.82 0.63
OPT-13B 0.45 0.36 0.39 0.38 0.42 0.4 0.38 0.37 0.61 0.6 0.72 0.48
OPT-30B 0.47 0.42 0.47 0.42 0.47 0.54 0.45 0.6 0.57 0.57 0.7 0.4
OPT-66B 0.5 0.26 0.4 0.46 0.5 0.45 0.43 0.47 0.37 0.64 0.57 0.41

ethos_national_origin snli sst2 trec

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.4 0.36 0.34 0.35 0.44 0.38 0.44 0.67 0.51 0.73 0.71 0.51
OPT-2.7B 0.42 0.53 0.4 0.57 0.51 0.56 0.58 0.46 0.55 0.49 0.43 0.6
OPT-6.7B 0.42 0.49 0.44 0.53 0.68 0.61 0.82 0.63 0.65 0.74 0.62 0.65
OPT-13B 0.42 0.4 0.38 0.37 0.61 0.6 0.72 0.48 0.56 0.57 0.44 0.64
OPT-30B 0.47 0.54 0.45 0.6 0.57 0.57 0.7 0.4 0.55 0.42 0.36 0.66
OPT-66B 0.5 0.45 0.43 0.47 0.37 0.64 0.57 0.41 0.63 0.52 0.36 0.67

rte wnli mrpc poem

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
OPT-350M 0.44 0.38 0.44 0.67 0.51 0.73 0.71 0.51 0.77 0.74 0.52 0.79
OPT-2.7B 0.51 0.56 0.58 0.46 0.55 0.49 0.43 0.6 0.54 0.41 0.56 0.48
OPT-6.7B 0.68 0.61 0.82 0.63 0.65 0.74 0.62 0.65 0.78 0.65 0.64 0.77
OPT-13B 0.61 0.6 0.72 0.48 0.56 0.57 0.44 0.64 0.5 0.45 0.53 0.5
OPT-30B 0.57 0.57 0.7 0.4 0.55 0.42 0.36 0.66 0.46 0.4 0.71 0.54
OPT-66B 0.37 0.64 0.57 0.41 0.63 0.52 0.36 0.67 0.49 0.4 0.69 0.56

Table 9: Single dataset accuracies across the OPT model family, using 32 examples.

tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.59 0.53 0.64 0.33 0.31 0.37 0.41 0.43 0.45 0.32 0.36 0.38
13B 0.63 0.53 0.65 0.31 0.34 0.28 0.43 0.34 0.44 0.39 0.41 0.41
30B 0.64 0.58 0.72 0.38 0.47 0.52 0.57 0.49 0.65 0.37 0.43 0.41
65B 0.69 0.58 0.72 04 0.42 0.58 0.54 0.42 0.58 0.38 0.46 0.41

financial_phrasebank ethos_race ethos_gender ethos_religion

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.31 0.37 0.41 0.43 0.45 0.32 0.36 0.38 0.64 0.4 0.7 0.65
13B 0.34 0.28 0.43 0.34 0.44 0.39 0.41 0.41 0.42 0.35 0.61 0.61
30B 0.47 0.52 0.57 0.49 0.65 0.37 0.43 0.41 0.65 0.38 0.79 0.69
65B 0.42 0.58 0.54 0.42 0.58 0.38 0.46 0.41 0.6 0.44 0.83 0.69

ethos_national_origin snli sst2 trec

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.45 0.32 0.36 0.38 0.64 0.4 0.7 0.65 0.56 0.73 0.61 0.53
13B 0.44 0.39 0.41 0.41 0.42 0.35 0.61 0.61 0.52 0.66 0.59 0.5
30B 0.65 0.37 0.43 0.41 0.65 0.38 0.79 0.69 0.52 0.76 0.65 0.52
65B 0.58 0.38 0.46 0.41 0.6 0.44 0.83 0.69 0.55 0.75 0.65 0.56

rte wnli mrpc poem

Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.64 0.4 0.7 0.65 0.56 0.73 0.61 0.53 0.7 0.71 0.52 0.78
13B 0.42 0.35 0.61 0.61 0.52 0.66 0.59 0.5 0.64 0.71 0.54 0.78
30B 0.65 0.38 0.79 0.69 0.52 0.76 0.65 0.52 0.77 0.67 0.56 0.86
65B 0.6 0.44 0.83 0.69 0.55 0.75 0.65 0.56 0.77 0.73 0.6 0.87

Table 10: Single dataset accuracies across the LLaMA model family, using 8 examples.
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tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.61 0.58 0.66 0.33 0.49 0.37 0.41 0.35 0.45 0.31 0.43 0.36
13B 0.6 0.58 0.66 0.27 0.5 0.34 0.4 0.34 0.42 0.37 0.42 0.41
30B 0.67 0.67 0.74 0.37 0.54 0.53 0.47 0.5 0.62 0.36 0.51 0.42
65B 0.66 0.62 0.73 0.37 0.56 0.6 0.52 0.53 0.6 0.38 0.55 0.42
financial_phrasebank ethos_race ethos_gender ethos_religion
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.49 0.37 0.41 0.35 0.45 0.31 0.43 0.36 0.65 0.46 0.72 0.6
13B 0.5 0.34 0.4 0.34 0.42 0.37 0.42 0.41 0.41 0.39 0.59 0.56
30B 0.54 0.53 0.47 0.5 0.62 0.36 0.51 0.42 0.64 0.49 0.84 0.6
65B 0.56 0.6 0.52 0.53 0.6 0.38 0.55 0.42 0.56 0.54 0.87 0.62
ethos_national_origin snli sst2 trec
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.45 0.31 0.43 0.36 0.65 0.46 0.72 0.6 0.53 0.72 0.57 0.59
13B 0.42 0.37 0.42 0.41 0.41 0.39 0.59 0.56 0.51 0.66 0.59 0.5
30B 0.62 0.36 0.51 0.42 0.64 0.49 0.84 0.6 0.58 0.74 0.6 0.65
65B 0.6 0.38 0.55 0.42 0.56 0.54 0.87 0.62 0.58 0.75 0.66 0.65
rte wnli mrpc poem
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.65 0.46 0.72 0.6 0.53 0.72 0.57 0.59 0.67 0.65 0.59 0.78
13B 0.41 0.39 0.59 0.56 0.51 0.66 0.59 0.5 0.73 0.69 0.54 0.78
30B 0.64 0.49 0.84 0.6 0.58 0.74 0.6 0.65 0.74 0.65 0.64 0.85
65B 0.56 0.54 0.87 0.62 0.58 0.75 0.66 0.65 0.78 0.73 0.64 0.85
Table 11: Single dataset accuracies across the LLaMA model family, using 16 examples.
tweet_eval_hate tweet_eval_atheism tweet_eval_feminist sick
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.58 0.58 0.64 0.33 0.51 0.35 0.4 0.38 0.47 0.36 0.46 0.4
13B 0.6 0.59 0.68 0.3 0.46 0.37 0.41 0.42 0.46 0.36 0.42 0.42
30B 0.65 0.64 0.73 0.32 0.53 0.6 0.48 0.51 0.63 0.35 0.55 0.42
65B 0.64 0.68 0.78 0.38 0.51 0.6 0.45 0.49 0.63 0.36 0.62 0.43
financial_phrasebank ethos_race ethos_gender ethos_religion
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.51 0.35 0.4 0.38 0.47 0.36 0.46 0.4 0.64 0.5 0.74 0.61
13B 0.46 0.37 0.41 0.42 0.46 0.36 0.42 0.42 0.38 0.38 0.56 0.65
30B 0.53 0.6 0.48 0.51 0.63 0.35 0.55 0.42 0.61 0.61 0.88 0.66
65B 0.51 0.6 0.45 0.49 0.63 0.36 0.62 0.43 0.52 0.66 0.88 0.59
ethos_national_origin snli sst2 trec
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.47 0.36 0.46 04 0.64 0.5 0.74 0.61 0.59 0.67 0.47 0.62
13B 0.46 0.36 0.42 0.42 0.38 0.38 0.56 0.65 0.53 0.73 0.67 0.57
30B 0.63 0.35 0.55 0.42 0.61 0.61 0.88 0.66 0.6 0.74 0.55 0.6
65B 0.63 0.36 0.62 0.43 0.52 0.66 0.88 0.59 0.63 0.76 0.58 0.66
rte whali mrpc poem
Random Abstract Gold Random Abstract Gold Random Abstract Gold Random Abstract Gold
7B 0.64 0.5 0.74 0.61 0.59 0.67 0.47 0.62 0.69 0.65 0.64 0.79
13B 0.38 0.38 0.56 0.65 0.53 0.73 0.67 0.57 0.76 0.7 0.62 0.83
30B 0.61 0.61 0.88 0.66 0.6 0.74 0.55 0.6 0.8 0.57 0.65 0.82
65B 0.52 0.66 0.88 0.59 0.63 0.76 0.58 0.66 0.77 0.63 0.73 0.87

Table 12: Single dataset accuracies across the LLaMA model family, using 32 examples.
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