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Abstract

We propose reconstruction probing, a new anal-
ysis method for contextualized representations
based on reconstruction probabilities in masked
language models (MLMs). This method relies
on comparing the reconstruction probabilities
of tokens in a given sequence when conditioned
on the representation of a single token that
has been fully contextualized and when con-
ditioned on only the decontextualized lexical
prior of the model. This comparison can be
understood as quantifying the contribution of
contextualization towards reconstruction—the
difference in the reconstruction probabilities
can only be attributed to the representational
change of the single token induced by contex-
tualization. We apply this analysis to three
MLMs and find that contextualization boosts
reconstructability of tokens that are close to the
token being reconstructed in terms of linear and
syntactic distance. Furthermore, we extend our
analysis to finer-grained decomposition of con-
textualized representations, and we find that
these boosts are largely attributable to static
and positional embeddings at the input layer.

1 Introduction

Model building in contemporary Natural Language
Processing usually starts with a neural network pre-
trained on the objective of context reconstruction
(“language modeling”). Contextualized representa-
tions of complex linguistic expressions from such
models have been shown to encode rich lexical
and structural information (Tenney et al., 2019b;
Rogers et al., 2020), making these models an effec-
tive starting point for downstream applications.

Probing pretrained language models aims to un-
derstand the linguistic information they encode,
and how well it aligns with our understanding
of human language (see Belinkov 2022 for a re-
view). The methodologies employed include super-
vised classifiers targeting specific linguistic prop-
erties of interest (Ettinger et al. 2016; Giulianelli

et al. 2018; Tenney et al. 2019a; Conia and Navigli
2022), similarity-based analyses (Garí Soler and
Apidianaki, 2021; Lepori and McCoy, 2020), cloze-
type tests (Goldberg, 2019; Pandit and Hou, 2021),
and causal intervention-based methods (Vig et al.,
2020; Elazar et al., 2021; Geiger et al., 2021). This
methodological diversity is beneficial given the
high variability of conclusions that can be drawn
from a study using a single method (Warstadt et al.,
2019)—converging evidence is necessary for a
more general picture.

We contribute to this line of research with a new
analysis method that we name reconstruction prob-
ing, which relies on token probabilities obtained
from context reconstruction, applicable to models
pretrained on objectives of this kind.1 Our method
is characterized by two core properties. First, it is
causal: rather than asking “what features can we ex-
tract from the contextualized representations?”, we
ask “what effect does contextual information have
on the model predictions?” through intervention at
the input level. Second, our method is behavioral:
it relies on the context reconstruction objective that
the model was trained on. This obviates the need to
train specialized probes, which can be difficult to
interpret due to the added confound of task-specific
supervision.

Our method aims to probe how much informa-
tion the contextualized representation of a single
token contains about the other tokens that co-occur
with it in a given sequence in masked language
models. Our approach is to measure the differ-
ence between the reconstruction probability of a
co-occurring token in the sequence given the full
contextualized representation being probed, and the
reconstruction probability of the same co-occurring
token only from the lexical priors of the model.
This method can be generalized to compare two
arbitrary representations where one representation

1Code and data available at https://github.com/
najoungkim/mlm-reconstruction.
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Figure 1: (Left) How the probability of chased from only the lexical priors of the model is obtained. The input
to the model is a sequence of masked tokens of the same length as the original sentence, without any positional
embeddings. (Right) How the probability of chased given a fully contextualized representation of the token Buddy
is computed (see Figure 2 for more details). The reconstruction probabilities from (Left) and (Right) are compared
using log odds ratio (LOR; Eq. 1).

is expected to contain strictly more features than
the other (e.g., a static embedding of a token vs. an
embedding of the same token created by summing
the static embedding and its positional embedding
in context). Any difference between the recon-
struction probabilities can be attributed to the pres-
ence/absence of those features.

Using this method, we find that the contextual-
ized representation of a token contains more in-
formation about tokens that are closer in terms of
linear and syntactic distance, but do not necessar-
ily encode identities of those tokens. A follow-up
analysis that decomposes contextualized represen-
tations furthermore shows that the gains in recon-
structability we find are largely attributable to static
and positional embeddings at the input layer.

2 Proposed Approach

Pretrained Transformer models such as BERT (De-
vlin et al., 2019) learn to construct contextual rep-
resentations through context reconstruction objec-
tives like masked language modeling (MLM; e.g.,
predicting the token in place of [MASK] in The
[MASK] sat on the mat). Often, the models are
also trained to reconstruct a randomly substituted
token (e.g., predicting the token in place of door in
The cat sat door the mat, created by randomly sub-
stituting a word in The cat sat on the mat). The clas-
sifier that makes these predictions can only make
use of a single token representation from the final
layer, meaning these representations are optimized
to contain information about other tokens of the

sequence and the position of the token itself insofar
as this information can help to resolve the iden-
tity of the token. Our approach aims to quantify
how much the contextualization of these tokens
contributes to changing the MLM predictions.

2.1 Metric

We operationalize contextual informativeness of
a token representation as its contribution to pre-
dicting other tokens in the same sequence—i.e.,
the contribution to the MLM probability, or recon-
struction probability. We quantify the contribution
of a more informative token representation j++

towards reconstructing a different token i, by com-
paring the reconstruction probability P (i|j++) to
the reconstruction probability of i given a less in-
formative token representation j, P (i|j).

For example, you can obtain the contextu-
alized representation of Buddy in the input
sequence Buddy chased Cookie by passing this
through a model. If Buddycontextual encodes
information helpful for predicting chased,
the masked language modeling probability
P (chased|C[[MASK]1,Buddycontextual]) would
be higher than P (chased|C[[MASK], ∅])—the
lexical prior of the model for chased.2 The
difference between these probabilities is measured

2We use C[[MASK]pos, SOURCE] to refer to the contextu-
alized representation of the [MASK] token at position pos at
the output layer of the model, which is the input to the final
classifier that produces the probability distribution for masked
token prediction. See Section 2.2 for a full description of how
we compute reconstruction probabilities.
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Figure 2: Diagram of the fully contextualized reconstruction setting, providing more details about how the right
hand side of Figure 1 is implemented.

in terms of the log odds ratio given the base
reconstruction probability q (predicting from less
context) and the contextualized reconstruction
probability p (predicting from more context):

LOR(p, q) = ln

(
p/(1− p)

q/(1− q)

)
(1)

The probabilities p and q are defined with respect to
SOURCE and RECONSTRUCTION (shortened as RE-
CON) tokens. SOURCE tokens refer to tokens that
are revealed to the model at prediction time (e.g.,
Buddy in the running example). RECON tokens are
tokens in the original sequence the model is asked
to predict (e.g., chased in the running example). In
obtaining probabilities p and q, the RECON tokens
are replaced with [MASK] tokens, only leaving
the SOURCE token revealed to the model (more de-
tailed description is given in Section 2.2). MLM
probability of the token in the original sequence
is computed for each [MASK] token in the probe
input—for instance, for Buddycontextual [MASK]
[MASK], we compute the probability of chased
at position 1 given this sequence, and Cookie at
position 2 given this sequence. We compute Eq. 1
for every pair of tokens (ti, tj) in a given sequence,
where ti is SOURCE and tj is RECON. This value
represents the degree of change in the probabil-
ity of the reconstruction token tj induced by the
contextualization of the source token ti.

2.2 Obtaining the Reconstruction
Probabilities

We use the metric proposed above to gauge the
contribution of a contextualized representation of a
single token in reconstructing its context, over and
above the lexical prior (i.e., completely context-
independent) of the model as illustrated in Figure 1.
We describe below how the reconstruction probabil-
ities from a fully contextualized representation and
from the lexical prior of the model are obtained.

Fully Contextualized To obtain a fully contex-
tualized representation of a token in a particular
sequence (e.g., Buddy chased Cookie), we first pass
the original, unmasked sequence of tokens through
a masked language model. Here, we save each con-
textualized token representation at each layer of
the model (e.g., BuddyL1, BuddyL2, . . . , BuddyLm
where m is the number of layers). Then, we create
n (n = |seq|) versions of the input sequence where
only a single token is revealed (Buddy [MASK]
[MASK], [MASK] chased [MASK], [MASK]
[MASK] Cookie). We pass each sequence through
the same masked language model, but at each layer,
we replace the representation of the unmasked to-
ken with the stored contextualized representation
of that token (see Figure 2 for an illustration).
Then, in order for the masked language model-
ing head to predict each [MASK] token in the se-
quence, it can only rely on the information from
the representation of the single unmasked token
(SOURCE), where the SOURCE token representa-
tion is contextualized with respect to the original,
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Figure 3: Reconstructibility boost by syntactic relation measured by log odds ratio.

fully unmasked sequence. For each [MASK] to-
ken in the sequence, we take the probability of
the token in the same position in the original se-
quence as the reconstruction probability. For exam-
ple, P (chased|C[[MASK]1,Buddycontextual]) and
P (Cookie|C[[MASK]2,Buddycontextual]) are the
reconstruction probabilities of chased and Cookie,
respectively, given the representation of fully con-
textualized Buddy.

Lexical Prior Only Baseline We pass through
a fully masked version of the input sequence as
above, but do not add the positional embeddings at
the input layer. The reconstruction probability that
we obtain here corresponds to the probability of
predicting the token in the original sequence in the
absence of any lexical information and positional
information. We expect this probability to reflect a
general prior of the model over the vocabulary, for
instance based on frequency in the training corpus.

3 Experiment Setup

3.1 Models

We analyzed three Transformer-based masked lan-
guage models widely used for obtaining contextu-
alized representations: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and DistilBERT (Sanh
et al., 2019). BERT and RoBERTa were both pre-
trained using the masked language modeling objec-
tive (BERT also on Next Sentence Prediction), and
DistilBERT is a more compact version of BERT ob-
tained through knowledge distillation. DistilBERT
has been claimed to retain much of the downstream
task performance of BERT despite being substan-
tially smaller (Sanh et al., 2019), and has been
shown to be highly similar to BERT in terms of
constituency trees that can be reconstructed from
linear probes (Arps et al., 2022).

3.2 Data

We used sentences from the Multi-Genre Natural
Language Inference (MNLI; Williams et al. 2018)
dataset for this analysis. We selected MNLI be-
cause it contains sentences of varying lengths from
a range of domains, and is not a part of the pre-
training data of the models we are probing. We
then sampled 10K premise sentences from the non-
spoken genres of the dataset (i.e., excluding TELE-
PHONE and FACE-TO-FACE). We excluded spoken
data as it is less typical of the data domain the mod-
els were trained on, and we excluded hypothesis
sentences because they were generated by crowd-
workers given the naturally-occurring premises.

3.3 Procedure

For each of the 10K sentences, we created two dif-
ferent sets of probe inputs as illustrated in Figure 1.
We passed the probe inputs to the models to obtain
the two different reconstruction probabilities (from
lexical prior only vs. from a fully contextualized
source token) of each of the tokens in the input,
as described in Section 2.2. Finally, we computed
the log odds ratios between the two reconstruction
probabilities using Eq. 1 to quantify the contribu-
tion of contextualization for all possible (SOURCE,
RECON) token pairs in the original sentence.

4 Analyses

4.1 Is Token Identity Exactly Recoverable
from Contextualized Representations?

The RECON token is among the top 10 MLM pre-
dictions of the model only a small percent of the
time (BERT: 22.1%. RoBERTa: 7.9%, Distil-
BERT: 8.2%), even though the SOURCE token pro-
vided to the model has been contextualized with
all co-occurring tokens revealed. This observa-
tion suggests that the information encoded in the
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Figure 4: Reconstructibility boost (log-odds ratio with vs. without source) broken down by the functional relation
between a functional head and a content-word dependent.

contextualized representations is a degree more
abstract than directly encoding the identities of co-
occurring tokens in the same sequence. This is
in line with Klafka and Ettinger’s (2020) finding
that the features of co-occurring tokens rather than
their identities are often more recoverable from the
contextual representations.

4.2 Is Reconstructability Greater when
Tokens are in a Syntactic Relation?

We hypothesize that the contextual information in
an embedding should disproportionally reflect the
syntactic neighbors of the word. To test this hypoth-
esis, we partition reconstructability scores based on
the syntactic relation between the SOURCE and RE-
CON tokens as follows:3 (1) SOURCE/RECON is
head: Cases where there is a single dependency arc
between two tokens, the closest dependency rela-
tion possible with the exception of subword tokens.
Reconstructing cat from chased in Figure 5 would
be a case of SOURCE is head, and chased from cat
would be RECON is head. (2) SOURCE/RECON
is ancestor: Cases where there is more than one
dependency arc connecting the two tokens. Re-
constructing the from chased would be a case of
SOURCE is ancestor, and chased from the would be
RECON is ancestor. (3) subword: SOURCE/RECON

tokens are subwords of the same lexical item. Bud
and ##dy is an example. (4) No relation: None of

3For these and subsequent analyses, we parse the sentences
using the spaCy dependency parser (https://spacy.io/
models/en#en_core_web_trf).

the above relations holds. For example, tokens Bud
and the are not in a dependency relation.

Bud ##dy chased the cat

Figure 5: The dependency parse of the sentence Buddy
chased the cat.

Our results in Figure 3 confirm our hypothesis.
In general, we find that the degree to which contex-
tual information improves reconstruction depends
on the existence of a syntactic relation between the
SOURCE and RECON as expected. In all models,
tokens in a subword or head-dependent relation are
more reconstructable from each other compared
to tokens with no relation. Furthermore, among
tokens that are in a dependency relation, the closer
the relation, the higher the reconstruction boost: re-
construction boost is the greatest for tokens in a sub-
word relation, then for tokens in a head-dependent
relation, and then for tokens in ancestor-descendant
relation. These trends were consistent across all
models we evaluate, with the exception of Distil-
BERT where reconstruction boost when SOURCE

is head was greater than tokens in a subword rela-
tion. The models showed more variation in whether
ancestor relations boosted reconstructability signif-
icantly. While tokens in an ancestor-descendant
relation (excluding direct dependents) were more
reconstructable than tokens not in a dependency re-
lation in BERT, this was not the case for RoBERTa
and DistilBERT. We also did not find a large or con-
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sistent effect of whether the SOURCE token or the
RECON token is the ancestor (including direct head-
dependent relations). Thus we cannot conclude that
ancestors tend to contain more information about
descendants than vice-versa.

4.3 Finer-Grained Syntactic Properties
In the next set of analyses, we study how fine-
grained syntactic properties of the words affect
reconstructability, focusing on cases where there is
a syntactic relation between SOURCE and RECON.

Dependency Relations One natural way to break
down the results is by the label of the dependency
relation that holds between SOURCE and RECON

when such a relation exists. However, we did not
find overarching trends; results were generally id-
iosyncratic, although boost for token pairs in ROOT

and PRT (particle) relations was high across all
models. See Appendix A for full results.

Functional Relations Next, we zoom in on rela-
tions between functional heads and their content-
word dependents (Figure 4). Table 1 lists all the de-
pendency arcs we use to identify functional heads.4

First, we find that reconstructability is generally
high for these pairs. Second, auxiliary-verb rela-
tions are associated with particularly high recon-
structability for all models. One possible explana-
tion for this finding is the fact that there is always
morphological agreement between auxiliaries and
verbs, unlike most other functional relations. Third,
among functional relations, reconstructability is
always lowest for complementizer-verb relations
(labeled mark). We speculate that the complemen-
tizer might encode contextual information about
the entire complement clause, which often includes
many more content words than just the head verb.

We hypothesized that functional heads encode
more information about their dependents in context
than vice-versa, due to function words carrying less
information than content words, but their contex-
tual representations are equal in size, leaving more
space for information about the rest of the sen-
tence. Results from BERT support the hypothesis
for all relations. On the other hand, no consistent
asymmetry was observed for RoBERTa, and for
DistilBERT, the observed pattern mostly contra-
dicts our hypothesis. The large difference between
BERT and DistilBERT results goes against prior

4While function words are typically considered heads of
content words in linguistic theory, the opposite is often true in
dependency labeling schemes.

Relation FW is ... Example

aux Dependent The dog is sleeping.
auxpass Dependent The dog was taken out.
case Dependent The dog ’s bone is gone.
det Dependent The dog barked.
mark Dependent I think that the dog ate.
pcomp Head I dream about dogs playing.
pobj Head I played with the dog.

Table 1: Dependency arcs denoting functional relations.
FW is ... indicates whether the function word is con-
sidered the head or the dependent in the clearNLP la-
beling scheme used by spaCy (https://github.
com/clir/clearnlp-guidelines).

results that suggest that the syntactic trees recov-
erable from these two models are highly similar
(Arps et al., 2022).

4.4 Linear and Structural Distance

We also hypothesized that the distance between two
tokens (both in linear and structural terms) would
affect reconstruction. Linear distance is the differ-
ence between the linear indices of SOURCE and
RECON: if they are the ith and jth tokens respec-
tively, their linear distance is |i − j|. Structural
distance is the number of arcs in the directed path
between SOURCE and RECON tokens (if there is
a path). For example, in Figure 5 the structural
distance between the and chased is 2.
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Figure 6: Reconstructibility boost (log odds ratio) bro-
ken down by linear distance (top) and structural distance
(bottom) between SOURCE and RECON.

Linear Distance Predictably, we find that infor-
mation encoded in contextualized representations
is biased towards nearby tokens in linear space
(Figure 6, row 1). In other words, we find that re-
constructability generally decreases with increase
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Ablated sequence Probe input (SOURCE == ‘Buddy’)

Sequence to reconstruct Buddy chased Cookie -

Fully contextualized Buddycontextual chasedcontextual Cookiecontextual Buddycontextual [MASK] [MASK]
Static lexical embedding (+position) Buddystatic chasedstatic Cookiestatic Buddystatic [MASK] [MASK]
Static lexical embedding (-position) {Buddystatic, chasedstatic, Cookiestatic} {Buddystatic, [MASK], [MASK]}
All mask (+position) [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
All mask (-position) (Lexical prior only) {[MASK], [MASK], [MASK]} {[MASK], [MASK], [MASK]}

Table 2: Ablated sequence and an example of an input passed through the model to obtain the output representations
when SOURCE is ‘Buddy’. {} denotes an unordered set (i.e., no positional information).

in linear distance. For all models, the sharpest
decrease is observed between 1- and 2-token dis-
tances. Beyond this, reconstructability decreases
approximately linearly in BERT, and more gradu-
ally in RoBERTa and DistilBERT.

Structural Distance The second row of Figure 6
shows the decline in reconstructability as the num-
ber of intervening nodes in the dependency path
between the tokens increases when comparing re-
construction. This trend is strictly monotonic in
BERT, but there is an small increase starting from
dependency depth 7 in RoBERTa and DistilBERT.
Due to the high variance in the deeper depth cases,
it is unclear whether this is a genuine effect of con-
textualization.

5 Decomposing Contextualization

While we examined the effect of contextualization
compared to the lexical prior only baseline, our
method allows for a finer-grained decomposition of
the components of contextualization. In pretrained
Transformer models, the input representation of
a token is a function of the static lexical embed-
ding and a (context-specific) positional embedding.
Using our method, we can study the individual
influence of the lexical embedding, positional em-
bedding, and remaining sequence-specific contex-
tualization (i.e., everything that happens beyond
the input layer, full contextualization henceforth).

We create various ablated versions of a fully
contextualized sequence, as shown in the Ablated
sequence column of Table 2. The reconstruction
probabilities from these ablated sequences allow
us to probe the contribution of the various compo-
nents of contextualized language models. Fully
contextualized and All mask (-position) in Ta-
ble 2 correspond to the reconstruction probabilities
described and compared in Section 2.2, and the rest
are intermediate ablations.

5.1 Results

Surprisingly, we find that there is often no clear ben-
efit to reconstruction of providing the model with
the contextualized embeddings at each layer, over
just providing the input embedding (lexical + posi-
tional embeddings) of the source token (Figure 7,
bottom). While BERT does gain reconstructabil-
ity from full contextualization for subwords and
when SOURCE is a head/ancestor, contextualization
is generally harmful or at least not helpful to re-
construction for RoBERTa and DistilBERT. This
indicates that the positive reconstruction boost ob-
served in Figure 3 must be driven by static lexical
and positional embeddings. Indeed, there are gen-
erally positive gains in reconstructability in mod-
els provided with the lexical embeddings of the
SOURCE tokens compared to models given only
[MASK] tokens (Figure 7, top), and also in mod-
els provided with positional embeddings on top of
lexical embeddings (Figure 9, middle column; Ap-
pendix B.3). We provide full comparisons between
ablations and their interpretation in Appendix B.

When is full contextualization helpful/harmful?
To better understand the effect of full contextualiza-
tion, we manually examined token pairs where the
greatest differences in reconstruction probabilities
with the static lexical + positional and fully contex-
tual SOURCE tokens. In BERT and DistilBERT, the
majority (52% and 80%) of the 100 most helpful
scenarios of full contextualization involved recon-
struction of an apostrophe in a contraction from
single-character or bi-character tokens (e.g., m, t,
re). As the source token is highly ambiguous on its
own, contextualization seems to provide additional
information that these (bi)character tokens are a
part of a contraction (e.g., I’m, wasn’t, we’re. In
RoBERTa, we found no interpretable pattern.

Cases where full contextualization negatively af-
fected reconstruction were often when SOURCE

and RECON formed a common bigram (e.g., (prix,
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Figure 7: Relative reconstructibility (log odds ratio) for static lexical (+pos) and all masked (+pos) SOURCE
embeddings (top) and for fully contextualized and static lexical (+pos) SOURCE embeddings (bottom).

grand), (according, to), (##ritan, pu), (United,
States)). Since the RECON token is predictable
from SOURCE alone, full contextualization seems
to only dilute the signal.

Although we found that reconstruction is often
better given only input embeddings (i.e., static +
positional embeddings) than fully contextualized
embeddings, we take caution with the interpreta-
tion that full layerwise contextualization is in gen-
eral harmful to the models, especially given prior
evidence (Tenney et al., 2019a) that transforma-
tions across layers yield meaningful changes. One
possible interpretation is that the idiosyncrasy of
the procedure for transferring the contextualized
source token falls outside the setting in which these
models were trained, adding noise to the process.

6 Related Work

Our research question is similar to Klafka and Et-
tinger (2020) which use supervised classifiers to in-
vestigate how much information about other tokens
in context is contained in the contextualized repre-
sentation(s) of a token. Our approach addressed a
similar question through reconstruction probabil-
ity given more/less informative token representa-
tions. Our findings about better reconstructability
between tokens in a syntactic dependency relation

echo prior work that show sensitivity of MLMs to
part-of-speech and other syntactic relations (Ten-
ney et al., 2019b; Goldberg, 2019; Htut et al., 2019;
Kim and Smolensky, 2021). A novel finding is
that some of the syntactic dependency between to-
kens can be traced back to information in the input
embeddings, complementing the dynamic layer-
wise analysis in work such as Tenney et al. (2019a)
and Jawahar et al. (2019). This result aligns with
Futrell et al. (2019)’s observation that syntactic de-
pendency is reflected in the corpus distribution as
encoded in static embeddings. Existing work that
analyzes static embeddings from contextualized
models (Bommasani et al., 2020; Chronis and Erk,
2020; Sajjad et al., 2022) mostly concerns the distil-
lation of static embeddings rather than isolating the
contribution of static embeddings in contextualized
prediction as in our work. More broadly, our work
shares goals with intervention-based methods such
as Geiger et al. (2021) and Wu et al. (2020), but
we examine what the effect of our intervention is
on masked language modeling probabilities rather
than on separate downstream tasks. Karidi et al.
(2021) employs the most similar methodology to
ours, in their use of predictions from the masked
language modeling objective directly for probing.
However, their primary analysis concerns the role

8247



of contextualization in word sense disambiguation.

7 Conclusion

We proposed reconstruction probing, a novel
method that compares reconstruction probabilities
of tokens in the original sequence given different
amounts of contextual information. Overall, recon-
struction probing yields many intuitive results. We
find that the information encoded in these represen-
tations tend to be a degree more abstract than token
identities of the neighboring tokens—often, the
exact identities of co-occurring tokens are not re-
coverable from the contexutalized representations.
Instead, reconstructability is correlated with the
closeness of the syntactic relation, the linear dis-
tance, and the type of syntactic relation between the
SOURCE and RECON tokens. These findings add
converging evidence to previous probing studies
about the implicit syntactic information of contex-
tual embeddings (Tenney et al. 2019b). Further-
more, our method is generalizable to comparing
reconstruction probabilities from any pair of rep-
resentations that differ in the degree of informa-
tiveness. We extended our analysis to finer-grained
decomposition of the components that constitute
contextualized representations using this method,
finding that most of the reconstruction gains we
saw were attributable to information contained in
static lexical and positional embeddings at the input
layer. This calls for deeper investigations into the
role of token representations at the input layer, com-
plementing a large body of existing work on layer-
wise analysis of contextualized language models.

Limitations

As we discussed in Section 5.1, further work is
needed to investigate whether the negative effect
of full contextualization beyond static + positional
embeddings at the input layer is an idiosyncrasy
of the embedding transfer procedure, or if this is a
true effect. In future work, an experimental setup
that is closer to the training setup, such as masking
only the RECON token instead of all tokens and
transferring the SOURCE could be adopted, in order
to reduce the noise potentially introduced by the
distributional change in the inputs. Regardless, we
believe that findings regarding the information con-
tent of the representation at the input layer (static
+ positional embeddings) are novel and meaning-
ful, and the quantification method we propose for
comparing two representations in terms of their

predictive utility is a generalizable methodological
contribution.

We furthermore note that our attempts to conduct
evaluation on newer masked language models were
made challenging due to several technical issues
in the library (e.g., masked language modeling
being unavailable in DeBERTa (He et al., 2021):
https://github.com/huggingface/
transformers/pull/18674).
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A Dependency Relations

Figure 8 shows the full reconstructability boost
results for all dependency arc labels in our dataset.

B Detailed Decomposition Analysis

B.1 Creating Ablated Sequences

Fully contextualized See Section 2.2.

Static embedding (+position) We pass through
the masked language model the n versions of the
input sequence described above, each of which
has a single token revealed, at the input layer only.
Again, for each [MASK] token in the input se-
quence, we take the probability of the token in the
same position in the original sequence as the recon-
struction probability. This value corresponds to the
probability of predicting the token in the original
sequence given only the static lexical information
of the source token and the positional information
of the source and recon tokens.

Static embedding (-position) We pass through
the n single token-revealed versions of the input
sequence as described above, but at the input layer,
we do not add the positional embeddings. The
reconstruction probability obtained, then, corre-
sponds to the probability of predicting the token in
the original sequence given only the static lexical
information of the source token and no positional
information of any of the tokens.

All mask (+position) We pass through a fully
masked version of the input sequence that consists
of the same number of [MASK] tokens and obtain
the reconstruction probability of the tokens in the
original sequence. Hence, in this scenario, there is
no source. The value obtained through this input
corresponds to the probability of predicting the
token in the original sequence in the absence of any
lexical information. Note that the model still has
access to the positional embeddings of the recon
token, which may still be weakly informative for
token prediction.

All mask (-position) See Section 2.2, ‘Lexical
prior only baseline’.

B.2 Representations Compared

By comparing the reconstruction probabilities de-
scribed above using Eq. 1, we can gauge the effect
of the additional contextual information on per-
forming masked language modeling. For example,

8250

https://doi.org/10.18653/v1/P19-1452
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1905.06316
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383


0 5 10 15
Log Odds Ratio

intj
ROOT

csubjpass
prt

expl
amod

dobj
compound

oprd
acomp

advmod
auxpass

nsubj
xcomp

neg
poss

predet
npadvmod
nsubjpass

dative
aux
dep
acl

csubj
conj

ccomp
attr
relcl

advcl
agent
nmod

nummod
prep
case

preconj
appos

quantmod
pobj

parataxis
pcomp

det
cc

meta
mark
punct

De
pe

nd
en

cy
 R

el
at

io
n

head
Source
Recon

(a) BERT

0 2 4 6
Log Odds Ratio

expl
ROOT

intj
compound

csubj
csubjpass

nmod
neg
prt

case
nsubj
meta

npadvmod
advmod

dep
appos
amod
poss

acomp
aux

punct
prep

nummod
conj
dobj

preconj
pcomp
xcomp

pobj
cc

dative
predet

acl
det

auxpass
nsubjpass

oprd
attr

agent
mark

parataxis
ccomp

quantmod
advcl
relcl

De
pe

nd
en

cy
 R

el
at

io
n

head
Source
Recon

(b) RoBERTa

1 0 1 2 3
Log Odds Ratio

ROOT
expl

prt
aux

predet
advmod
preconj

agent
dative

auxpass
intj
cc

pcomp
neg

prep
acomp

nsubj
mark

det
quantmod

punct
csubj
poss

amod
dobj

xcomp
pobj
dep

nummod
attr

csubjpass
nsubjpass

meta
acl

ccomp
advcl

npadvmod
relcl

compound
oprd
conj

parataxis
case

appos
nmod

De
pe

nd
en

cy
 R

el
at

io
n

head
Source
Recon

(c) DistilBERT

Figure 8: Reconstructibility boost (log odds ratio with vs. without source) broken down by the depedency relation
label between a SOURCE and RECON.

if we compare Fully contextualized and Static
embedding (+position), we can quantify the ben-
efit of having the contextualization that happens
through applying the model weights to the static
representation of the input. If we compare Static
embedding (+position) and Static embedding (-
position), we can quantify the benefit of positional
embeddings (when given the same static lexical
information). We make six different comparisons
illustrated in Table 3, each comparison serving a
different analytic role.

B.3 Further Discussion

We furthermore hypothesized the reconstruction
boost from the availability of positional embed-
dings to be sensitive to the presence of a syntactic
relation between SOURCE and RECON. This hy-
pothesis is borne out in BERT and RoBERTA, but
not in DistilBERT, suggesting that positional em-

beddings in DistilBERT are qualitatively different
(Figure 9, left column).

C License and Terms for Use

License information for scientific artifacts used in
this paper is as follows: MNLI (MIT License),
BERT (Apache-2.0 License), RoBERTa (MIT Li-
cense), and DistilBERT (Apache-2.0 License). Our
own code follows the GPL-3.0 License. All of the
publicly available artifacts are used in ways that
comply with their licenses.

D Model and Implementation Details

The models that we used in this paper are
all pretrained checkpoints from HuggingFace
(Wolf et al., 2020). Specifically, they are:
bert-large-uncased (340M parameters),
roberta-large (355M parameters), and
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Base Augmented What Base vs. Augmented can tell us

All mask (-position) All mask (+position) Reflects the effect of positional information in the absence of any lexical information
other than the most general lexical priors of the model.

All mask (-position) Static (-position) Reflects the effect of static lexical information in the absence of positional information.
All mask (+position) Static (+position) Reflects the effect of static lexical information in the presence of positional information.
Static (-position) Static (+position) Reflects the effect of positional information in the presence of full lexical information.
Static (+position) Fully contextualized Reflects the effect of the contextualization through the layers of the model, beyond the input layer.
All mask (-position) Fully contextualized Comparison between the least and most contextualized reconstruction scenarios. Reflects

the overall change induced by contextualization over the lexical priors of the model.

Table 3: The comparisons examined and the purpose of the comparisons. Eq. 1 is computed by taking the
reconstruction probability of a given (token, input sequence) under Base as q and under Augmented as p.

distilbert-base-uncased (66M parame-
ters). We inherited tokenization and any applicable
hyperparameter settings from the specifications of
the pretrained checkpoints. Computing reconstruc-
tion probabilities took around 3 CPU days for each
model.
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Figure 9: Relative reconstructibility (log odds ratio) for BERT (top), RoBERTa (middle), and DistilBERT (bottom).
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