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Abstract
Multimodal aspect-based sentiment analysis
(MABSA) aims to extract aspects from text-
image pairs and recognize their sentiments. Ex-
isting methods make great efforts to align the
whole image to corresponding aspects. How-
ever, different regions of the image may relate
to different aspects in the same sentence, and
coarsely establishing image-aspect alignment
will introduce noise to aspect-based sentiment
analysis (i.e., visual noise). Besides, the sen-
timent of a specific aspect can also be inter-
fered by descriptions of other aspects (i.e., tex-
tual noise). Considering the aforementioned
noises, this paper proposes an Aspect-oriented
Method (AoM) to detect aspect-relevant seman-
tic and sentiment information. Specifically, an
aspect-aware attention module is designed to
simultaneously select textual tokens and im-
age blocks that are semantically related to the
aspects. To accurately aggregate sentiment in-
formation, we explicitly introduce sentiment
embedding into AoM, and use a graph convo-
lutional network to model the vision-text and
text-text interaction. Extensive experiments
demonstrate the superiority of AoM to existing
methods. The source code is publicly released
at https://github.com/SilyRab/AoM.

1 Introduction

As an important and promising task in the field of
sentiment analysis, Multimodal Aspect-Based Sen-
timent Analysis (MABSA) has attracted increasing
attention (Lv et al., 2021; Ju et al., 2021). Given an
image and corresponding text, MABSA is defined
as jointly extracting all aspect terms from image-
text pairs and predicting their sentiment polarities
(Ju et al., 2021).

In this scenario of fine-grained sentiment recog-
nition for multimodal information, the input image-
text pairs are always complex. (1) The semantics
of sentence is complex which adds sentiment con-
fusion among different aspects. Take Figure 1 as an
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Complain about Kyoto a bit
and someone takes you to
see the mayor. Interesting!
Mayor Kadokawa, thanks
for your time!

region 1
region 2

Aspect Kyoto mayor Mayor Kadokawa
Sentiment Negative Neutral Positive

Figure 1: An example of MABSA task, including the as-
pects, their corresponding descriptions, and sentiments.

example, there are 3 aspects in the sentence with 3
different sentiments, The sentiment of “mayor" can
be easily confused by the keyword, “Interesting”,
which is of positive sentiment. (2) The images con-
tain a large amount of detailed information, and the
visual contents are usually related to only one or
several of the aspects. For example, as shown in
Figure 1, the objects in red boxes are more helpful
in analyzing the sentiment of “Mayor Kadokawa”
than the other aspects. The complex input greatly
challenges the recognition of aspect-based senti-
ment.

Considering the multimodal input, existing meth-
ods are typically dedicated to associated visual and
textual contents (Ju et al., 2021; Ling et al., 2022;
Yang et al., 2022). Ju et al. (2021) uses image-
text relation to evaluate the contribution of visual
contents to aspect sentiment, based on which to de-
termine whether the image is involved in sentiment
analysis. Ling et al. (2022) and Yang et al. (2022)
align visual representations of objects and their at-
tributes with corresponding textual contents. To
summarize, the whole image is directly associated
with textual content in these methods. Intuitively,
without aligning image blocks to corresponding as-
pects, the coarse whole-image-text association can
introduce aspect-irrelevant visual noise, which fur-
ther hinders aspect sentiment analysis. In addition,
the performance can be further impacted by the
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textual noise from the confusion among different
aspects.

In this paper, we propose an Aspect-oriented
Method (AoM) to mitigate aforementioned noises
from both image and text. AoM can detect aspect-
relevant information from perspectives of both se-
mantics and sentiment. There are two key modules
in AoM: Aspect-Aware Attention Module (A3M)
for semantically fine-grained image-text alignment
and Aspect-Guided Graph Convolutional Network
(AG-GCN) for sentiment information aggregation.
In A3M, we first extract aspect features associated
with each visual and textual token. And then aspect-
relevant token representations are computed based
on their relevance to the corresponding aspect fea-
tures. In AG-GCN, we first explicitly add sentiment
embeddings to the obtained representations of vi-
sual and textual tokens. A multimodal weighted-
association matrix is constructed containing aspect-
to-image-block similarity and word-to-word depen-
dency. Then we use a graph convolutional network
to aggregate sentiment information according to
the constructed multimodal matrix.

The contributions can be summarized as follows:
(1) We propose an aspect-oriented network to

mitigate the visual and textual noises from the com-
plex image-text interactions.

(2) We design an aspect-aware attention mod-
ule and an aspect-guided graph convolutional net-
work to effectively detect aspect-relevant multi-
modal contents from the perspectives of semantic
and sentiment, respectively.

(3) Experiments on two benchmark datasets, in-
cluding Twitter2015 and Twitter2017, show that
our approach generally outperforms the state-of-
the-art methods.

2 Related Work

In this section, we review the existing methods for
both ABSA and MABSA.

2.1 Aspect-based Sentiment Analysis

In the past few years, Aspect-Based Sentiment
Analysis (ABSA) in the textual fields has attracted
much attention and gained mature research (Chen
and Qian, 2020; Oh et al., 2021; Xu et al., 2020).
On the one hand, most recent works are based on
the pre-trained language model BERT because of
its remarkable performance in many NLP tasks
(Liang et al., 2022a). On the other hand, some
recent efforts focus on modeling the dependency

relationship between aspects and their correspond-
ing descriptions, in which graph convolutional net-
works (GCNs) (Chen et al., 2022; Liang et al.,
2022b, 2020; Li et al., 2021a; Pang et al., 2021)
or graph attention networks (GATs) (Yuan et al.,
2020) over dependency with the syntactic structure
of a sentence are fully exploited.

2.2 Multimodal Aspect-based Sentiment
Analysis

With the enrichment of multimodal users’ posts
in social media, researchers find that images of-
fer great supplementary information in aspect term
extraction (Wu et al., 2020a; Zhang et al., 2018;
Asgari-Chenaghlu et al., 2021) and sentiment analy-
sis (Wu et al., 2022; Li et al., 2021b; Hazarika et al.,
2020; Cai et al., 2019). Thus, Multimodal Aspect-
based Sentiment Analysis (MABSA) begins to be
widely studied. MABSA task can be divided into
two independent sub-tasks, i.e., Multimodal Aspect
Term Extraction (MATE) and Multimodal Aspect-
oriented Sentiment Classification (MASC). The
former extracts all aspect terms in the sentence at
the prompt of the image, and the latter predicts the
sentiment polarities for the aspects.

Ju et al. (2021) first realizes MABSA in a unified
framework and designs an auxiliary cross-modal
relation detection to control whether the visual in-
formation will be used in prediction. For captur-
ing cross-modal alignment, Ling et al. (2022) con-
structs a generative multimodal architecture based
on BART for both vision-language pre-training and
the downstream MABSA tasks. Yang et al. (2022)
dynamically controls the contributions of the vi-
sual information to different aspects via the trick
that the lower confidence of the results predicted
by purely textual is, the more contributions from
images will be considered.

On the one hand, the above methods ignore the
alignment of fine-grained visual blocks and the
corresponding aspects, which introduce irrelevant
visual noise. On the other hand, modeling of syntax
dependency and sentiment information for aspect
descriptions is absent in these methods, which is
proved important in sentiment analysis (Liang et al.,
2022a; Kalaivani et al., 2022; Xu et al., 2022).

To tackle the aforementioned issues, we pro-
pose an aspect-oriented model consisting of Aspect-
Aware Attention Module and Aspect-Guided Graph
Convolutional Network which respectively work
to capture semantic information by fine-grained
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Figure 2: The overview of our proposed aspect-oriented model AoM.

image-text alignment and effectively aggregate
aspect-relevant sentiment information.

3 Methodology

3.1 Overview

Task Definition. Formally, given a tweet that
contains an image V and a sentence with n
words S = (w1, w2, ..., wn), our goal is to ac-
quire the sequence Y representing all aspects
and their associated sentiment polarities. We
formulate the output of MABSA as Y =
[as1, a

e
1, s1, ..., a

s
i , a

e
i , si, ...a

s
k, a

e
k, sk], where asi , aei

and si depict the start index, end index of the i-th
aspect and its sentiment polarity in the tweet, and
k is the number of aspects.
Model preview. Figure 2 shows the overview
of our model architecture, which builds on an
encoder-decoder architecture based on BART
(Lewis et al., 2019). Between the encoder and
the decoder of BART, we creatively implement
the Aspect-Aware Attention Module (A3M) and
Aspect-Guided Graph Convolutional Network (AG-
GCN) to align the textual aspect to its associated
visual blocks and textual description, simultane-
ously mitigate interference both from semantics
and sentiment among different aspects. In the fol-
lowing subsections, we will illustrate the details of

the proposed model.
Feature Extractor. The initial word embeddings
are obtained from the pre-trained BART due to
its excellent ability of textual representation. The
embeddings of visual blocks are obtained by pre-
processing via ResNet (Chen et al., 2014) following
(Yu et al., 2019). We consider every feature of a
visual block or word token as an atomic feature. We
add <img> and </img> before and after the visual
features, <bos> and <eos> for the textual features.
Then, we concatenate the multimodal features as
X which is the input of BART encoder.

We can get the multimodal hidden state H =
{hV0 , ...hVi , ...hVm, hT0 , ..., h

T
j , ...h

T
n} with m visual

blocks and n words, where hVi and hTj refer to
features of the i-th visual block and the j-th word
in the sentence.

3.2 Aspect-Aware Attention Module (A3M)

Since aspects are not specially modeled by BART
encoder, we creatively design the Aspect-Aware
Attention Module (A3M) aiming to capture aspect-
relevant semantic information. For this purpose, we
align the multimodal information of target objects
and filter out the semantic noise from images.

First, as aspects are usually noun phrases from
the sentences, we extract those phrases as the
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candidate aspects (CA) with the NLP tool Spacy1.
And from the hidden state H of the BART encoder,
we obtain the features of all candidate aspects de-
noted as HCA = {hCA

1 , ..., hCA
i , ..., hCA

l }, where
l is the number of noun phrases in the sentence. To
get the relationship between candidate aspects and
atomic features, we implement an attention-based
mechanism guided by the candidate aspects. Given
the t-th hidden feature ht, its attention distribution
αt over k candidate aspects is obtained by:

Zt = tanh((WCAH
CA + bCA)⊕ (WHht + bH)), (1)

αt = softmax(WαZt + bα), (2)

where Zt ∈ R2d×k is the comprehensive feature
extracted from both the candidate aspects and the
hidden states. HCA ∈ Rd×k denotes the features
of candidate aspects. WCA ∈ Rd×d, WH ∈ Rd×d,
Wα ∈ R1×2d, bCA, bH and bα are the learned
parameters.⊕ is an operator between a matrix and a
vector, where the vector is repeated into the appro-
priate size to concatenate with the matrix. We then
get the aspect-related hidden feature hAt by calcu-
lating the weighted sum of all candidate aspects
following the below equation:

hAt =
k∑

i

αt,ih
CA
i . (3)

For example, if a visual block is strongly associ-
ated with the j-th aspect, the corresponding αt,j is
approximately 1. hAt would be equal to the aspect
semantically. And if the visual block is not related
to any specific candidate aspects, both αt and hAt
would be zero-like vectors of no information.

Considering that not every visual block can be
used for prediction, βt is learned to add up the
atomic feature ht and its aspect-related hidden fea-
ture hAt . Details are as follows:

βt = sigmoid(Wβ[W1ht;W2h
A
t ] + bβ), (4)

ĥt = βtht + (1− βt)h
A
t , (5)

where Wβ , W1, W2, bβ are parameters, and [; ]
denotes the concatenation operator for vectors.
ĥt ∈ Ĥ is the final output of A3M after the seman-
tic alignment and the noise reduction procedure.
Thus we get the noiseless and aligned information
for every atomic feature.

Pre-training To align the two modalities and re-
duce noise, we conduct a pre-training task in A3M.

1Spacy: https://spacy.io/
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Figure 3: The framework of the pre-training task.

Specifically, we detect the image-text relationship
on the datasets TRC (Vempala and Preoţiuc-Pietro,
2019) as illustrated by Figure 3. We first obtain the
average feature of image blocks from the output of
A3M and then pass it to a fully connected softmax
layer, which outputs a probability distribution over
whether the image is related to the text. Finally, we
use cross entropy loss to train our model.

3.3 Aspect-Guided Graph Convolutional
Network (AG-GCN)

The aspect-focused interaction between visual
modality and textual modality in A3M concentrates
on the context semantics, and that is not adequate
for MABSA. Sentiment interference among dif-
ferent aspects still exists and influences sentiment
prediction. Thus, we design the Aspect-Guided
Graph Convolutional Network (AG-GCN) module
to introduce external sentiment information and
mitigate emotional confusion among different as-
pects to a certain extent.

Specifically, for word wi in the sentence, we gain
its affective score wS

i from SenticNet (Ma et al.,
2018) and project it to the space with the same
dimension as hAt , with si obtained. Then we add
the sentiment feature si to the output of A3M:

wS
i = SenticNet(wi), (6)

si = WSw
S
i + bS , (7)

hSi = ĥi + si, (8)

where WS , bS are the learned parameters. hSi is the
feature with affective knowledge.

Next, we build a boolean dependency matrix
D among visual blocks and words. First, for the
word-to-word part, submatrix DTT representing
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Figure 4: The dependency tree of the example men-
tioned in the introduction.

the dependency tree2 of the input sentence like Fig-
ure 4. If two words can be associated within two
generations, the element of DTT would be set to
1, otherwise 0 instead. For example, “Kyoto” is as-
sociated with “bit” (child),“a” (grandchild),“about”
(father) and “Complain” (grandfather). Second, the
visual dependency submatrix DV V is initialized
as a diagonal matrix. And as for the word-image-
block dependency, denoted as DTV and equaled
to DT

V T , we set all the elements in the i-th line of
DTV to 1 if the i-th word is an aspect, otherwise 0.
And the matrix D is defined as:

D =

[
DV V DV T

DTV DTT

]
, (9)

Considering the different importance of differ-
ent dependencies, we attach weights onto D with
cosine similarity among ĥi as follows:

Aij = DijFcosine_similarity(ĥi, ĥj), (10)

where both D,A ∈ R(m+n)×(m+n), and A is the
weighted association matrix.

AG-GCN takes HS from Eq.8 as initial node
representations in the graph. For the i-th node at
the l-th layer, the hidden state hSi,l is updated by the
following equation:

hSi,l = ReLU(
n∑

j=1

AijWlh
S
i,l−1 + bl), (11)

where Wl,bl are learned parameters and we use
ReLU as activation function. Significantly, hSi,0
is equal to hSi . Accordingly, we get the final out-
put ĤS from the last GCN layer which is rich in
sentiment information. Every underlying aspect
aggregates its relevant information from both the
image-text pair. Moreover, sentiment confusion
of different aspects is weakened because the as-
sociation matrix makes little interference among
different aspects.

2We use spaCy toolkit to construct the dependency tree
referring from https://spacy.io

Twitter2015 Twitter2017

#sentence 3,502 2,910
#with one aspect 2,159 (61.65%) 976 (33.54%)

#with multiple aspects 1,343 (38.35%) 1,934 (66.46%)
#with multiple sentiments 1,257 1,690

Table 1: Statistics of the two benchmark datasets. Line 1
is the number of sentences. #X in the last 3 lines denotes
the number of sentences with such characteristics X.

3.4 Prediction and Loss Function
The BART decoder takes the combination of Ĥ ,
ĤS , and the previous decoder output Y<t as inputs,
and predicts the token probability distribution as
follows:

H̃ = λ1Ĥ + λ2Ĥ
S , (12)

hdt = Decoder(H̃;Y<t) (13)

HT = (W + H̃T )/2 (14)

P (yt) = softmax([HT ;C
d]hdt ) (15)

where λ1, λ2 are the hyper-parameters to control
the contribution from the two modules. H̃T is the
textual part of H̃ . W denotes the embeddings of
input tokens. Cd means the embeddings of the [
positive, neutral, negative, <eos>]. The loss func-
tion is as follows:

L = −EX∼D

O∑

t=1

logP (yt|Y<t, X), (16)

where O = 2M + 2N + 2 is the length of Y, and
X denotes the multimodal input.

4 Experiment

4.1 Experimental settings
Datasets. Our two benchmark datasets are Twit-
ter2015 and Twitter2017 (Yu and Jiang (2019)). As
shown in the statistics of Table 1, sentences with
multiple aspects take up a considerable part of the
two datasets.
Implementation Details. Our model is based on
BART (Lewis et al., 2019), and the pre-training
task is trained for 40 epochs with batch size 64,
and for 35 epochs with batch size 16 on MABSA.
The learning rates are both 7e-5 and hidden sizes
are 768. Hyper-parameters λ1 and λ2 are 1 and 0.5
respectively. Besides, we pre-train A3M on TRC
dataset (Vempala and Preoţiuc-Pietro, 2019), which
is divided into two groups according to whether the
text is represented.
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Twitter2015 Twitter2017
Methods P R F1 P R F1

Text-based
SPAN* (Hu et al., 2019) 53.7 53.9 53.8 59.6 61.7 60.6
D-GCN* (Chen et al., 2020) 58.3 58.8 59.4 64.2 64.1 64.1
BART* (Yan et al., 2021) 62.9 65.0 63.9 65.2 65.6 65.4

Multimodal

UMT+TomBERT* (Yu et al., 2020; Yu and Jiang, 2019) 58.4 61.3 59.8 62.3 62.4 62.4
OSCGA+TomBERT* (Wu et al., 2020c; Yu and Jiang, 2019) 61.7 63.4 62.5 63.4 64.0 63.7
OSCGA-collapse* (Wu et al., 2020c) 63.1 63.7 63.2 63.5 63.5 63.5
RpBERT-collapse* (Sun et al., 2021) 49.3 46.9 48.0 57.0 55.4 56.2
UMT-collapse (Yu et al., 2020) 61.0 60.4 61.6 60.8 60.0 61.7
JML (Ju et al., 2021) 65.0 63.2 64.1 66.5 65.5 66.0
VLP-MABSA* (Ling et al., 2022) 65.1 68.3 66.6 66.9 69.2 68.0
CMMT (Yang et al., 2022) 64.6 68.7 66.5 67.6 69.4 68.5
AoM (ours) 67.9 69.3 68.6 68.4 71.0 69.7

Table 2: Results of different methods for MABSA on the two Twitter datasets. * denotes the results from Ling et al.
(2022). The best results are bold-typed and the second best ones are underlined.

Evaluation Metrics. We evaluate the performance
of our model on MABSA task and MATE task by
Micro-F1 score (F1), Precision (P) and Recall (R),
while on MASC task we use Accuracy (Acc) and
F1 following previous studies.

4.2 Baselines

We compare our proposed model with four types
of methods listed below.

Approaches for textual ABSA. 1) SPAN (Hu
et al., 2019) detects opinion targets with their senti-
ments. 2) D-GCN (Chen et al., 2020) models de-
pendency relations among words via dependency
tree. 3) BART (Yan et al., 2021) solves seven
ABSA subtasks in an end-to-end framework.

Approaches for MATE. 1) RAN (Wu et al.,
2020b) focus on alignment of text and object re-
gions. 2) UMT (Yu et al., 2020) takes text-based
entity span detection as an auxiliary task. 3) OS-
CGA (Wu et al., 2020c) foucus on alignments of
visual objects and entities.

Approaches for MASC. 1) ESAFN (Yu et al.,
2019) is an entity-level sentiment analysis method
based on LSTM. 2) TomBERT (Yu and Jiang,
2019) applies BERT to obtain aspect-sensitive tex-
tual representations. 3) CapTrBERT (Khan and
Fu, 2021) translates images into text and construct
an auxiliary sentence for fusion.

Approaches for MABSA. 1) UMT-collapse
(Yu et al., 2020), OSCGA-collapse (Wu et al.,
2020c) and RpBERT-collapse (Sun et al., 2021)
are adapted from models for MATE by using col-
lapsed labels to represent aspect and sentiment
pairs. 2) UMT+TomBERT, OSCGA+TomBERT
are two pipeline approaches by combining UMT
(Yu et al., 2020) or OSCGA (Wu et al., 2020c) with

TomBERT (Yu and Jiang, 2019). 3) JML (Ju et al.,
2021) is the first joint model for MABSA with aux-
iliary cross-modal relation detection module. 4)
CMMT (Yang et al., 2022) implements a gate to
control the multimodal information contributions
during inter-modal interactions. 5) VLP-MABSA
(Ling et al., 2022) performs five task-specific pre-
training tasks to model aspects, opinions and align-
ments.

4.3 Main Results

In this section, we show the excellent performance
of AoM on the two datasets for the three tasks
compared with SOTAs.

Performance on MABSA: The results for
MABSA are shown in Table 2. First, our AoM
far exceeds all text-based models, which means
detection of richer visual information and textual
information in our model is helpful. Second, multi-
modal pipeline methods and adaptive methods are
generally unsatisfactory, because they ignore the
interaction between the semantic information and
sentiment for the two sub-tasks. Last, AoM out-
performs all multimodal methods in every metric.
Especially, AoM achieves the improvement of 2%
and 1.2% with respect to F1 in contrast with the sec-
ond best models on two datasets (VLP-MABSA for
Twitter2015 and CMMT for Twitter2017), which
demonstrates the effectiveness of learning aspect-
relevant visual blocks and textual words compared
to focusing on all visual and textual inputs.

Performance on MATE: As shown in Table 3,
AoM is ahead of most of the current models and
performs the best in Twitter 2015 by 0.3% higher
than the second best CMMT on F1. The perfor-
mance of CMMT in Twitter2017 is 0.8% higher
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Twitter2015 Twitter2017
Methods P R F1 P R F1
RAN* 80.5 81.5 81.0 90.7 90.7 90.0
UMT* 77.8 81.7 79.7 86.7 86.8 86.7
OSCGA* 81.7 82.1 81.9 90.2 90.7 90.4
JML* 83.6 81.2 82.4 92.0 90.7 91.4
VLP-MABSA* 83.6 87.9 85.7 90.8 92.6 91.7
CMMT 83.9 88.1 85.9 92.2 93.9 93.1
AoM (ours) 84.6 87.9 86.2 91.8 92.8 92.3

Table 3: Results of different methods for MATE. * de-
notes the results from Ling et al. (2022).

Twitter2015 Twitter2017
Methods ACC F1 ACC F1
ESAFN 73.4 67.4 67.8 64.2
TomBERT 77.2 71.8 70.5 68.0
CapTrBERT 78.0 73.2 72.3 70.2
JML 78.7 - 72.7 -
VLP-MABSA 78.6 73.8 73.8 71.8
CMMT 77.9 - 73.8 -
AoM (ours) 80.2 75.9 76.4 75.0

Table 4: Results of different methods for MASC.

than ours, probably due to our model wrongly pre-
dicting some noun phrases as aspects. But consid-
ering the improvement in MASC and MABSA, it
is still worthy treating all noun phrases in the sen-
tence as candidate aspects when acquiring aspect-
relevant visual information.

Performance on MASC: Table 4 shows the per-
formance of MASC. It is exciting that our model
outperforms the second-best results by 1.5% and
2.6% in accuracy, 2.1% and 3.2% points in F1 score
on Twitter2015 and Twitter2017. It demonstrates
that AoM has the ability to detect aspect-related
sentiment information from both images and text,
even disturbed by other noisy aspects.

4.4 Ablation Study

In this section, we research the effectiveness of
each component in AoM, the results are shown in
Table 5.

W/o A3M&AG-GCN shows that after remov-
ing the two specially designed modules, the per-

Twitter2015 Twitter2017
Methods P R F1 P R F1
Full 67.9 69.3 68.6 68.4 71.0 69.7
w/o A3M&AG-GCN 65.7 67.3 66.5 66.5 69.0 67.8
w/o A3M&TRC 62.1 61.0 61.6 63.7 64.1 63.9
w/o TRC 66.8 68.4 67.6 67.8 69.8 68.8
w/o AG-GCN 67.0 69.4 68.2 67.8 69.7 68.8
w/o SenticNet 65.7 70.5 68.0 68.1 69.4 68.7
w/o TRC&AG-GCN 66.7 69.2 68.0 67.8 69.5 68.6

Table 5: The performance comparison of our full model
and its ablated approaches.

Image

Text

VLP-MABSA

BART+A3M

AoM

(a) NBA Western Conference Finals: 
Golden State Warriors shock 
Oklahoma City Thunder,…

( NBA, NEU ) (√, √)
---

( Oklahoma, NEU ) (×, ×)
( NBA, NEU ) (√, √)
( Golden State Warriors , POS ) (√, √)
( Oklahoma City Thunder, NEG ) (√, √)

( NBA, NEU ) (√, √)
( Golden State Warriors , POS ) (√, √)
( Oklahoma City Thunder, NEG ) (√, √)

(b) This subtle difference between 
Daniel Radcliffe and Elijah Wood
is pretty unsettling.

( Daniel Radcliffe, NEU ) (√, ×)
( Elijah, NEU ) (×, ×)

( Daniel Radcliffe, NEU ) (√, ×)
( Elijah Wood, NEG ) (√, √)

( Daniel Radcliffe, NEG ) (√, √)
( Elijah Wood, NEG ) (√, √)

Figure 5: Two cases with predictions by VLP-MABSA
(Ling et al., 2022), BART+A3M, and our model.

formance declines by 2.1% on Twitter2015 and
1.9% on Twitter2017. It fully demonstrates their
contributions to learning effective information.

W/o A3M&TRC performs worse after remov-
ing A3M including the pre-training on TRC. It
proves the necessity of modeling semantic align-
ment between visual blocks and aspects in A3M.
With the alignment, AG-GCN can obtain appropri-
ate aspect-image-block and text-text association.

W/o TRC pre-training shows a slight drop after
we remove the TRC pre-training on A3M, which
implies relevant pre-training task is useful for the
model to learn better parameters.

W/o AG-GCN displays the performance with-
out AG-GCN, declining by 0.42% on Twitter2015
and 0.9% on Twitter2017. It means that AG-GCN
does make the prediction focus on specific aspects
related to blocks and words with syntax dependen-
cies. In other words, the multimodal interference
from other aspects can be mitigated.

W/o SenticNet is the model without sentiment
information in AG-GCN. Its performance shows
adding external affective knowledge can enhance
the sentiment comprehension of the model.

W/o TRC&AG-GCN is the BART model only
with our A3M module. We can see from Table 5
that w/o TRC&AG-GCN improves w/o A3M&AG-
GCN by 1.5% and 0.8%. So it is effective to align
the fine-grained visual block to related aspect and
reduce irrelevant information.

4.5 Case Study

To better analyze how the Aspect-Aware Attention
Module and Aspect-Guided Graph Convolutional
Network work, we present the case study as fol-
lows.

Figure 5 displays two examples with predic-
tions from VLP-MABSA (Ling et al., 2022),
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A3M

Kyoto
bit

someone
mayor

Mayor Kadokawa
thanks
time

(I.a) attention of CAs

(I.b) learned visual attention

Complain about
Kyoto a bit and
someone takes you
to see the mayor.
Interesting! Mayor
Kadokawa, thanks
for your time!

Inputs

Aspect-Sentiment Pairs

<Kyoto, NEG>

<mayor, NEU>

<Mayor Kadokawa, POS>

The image-related probability 
distribution of candidate aspects.

AG-GCN

(II.a) word-to-word association matrix (II.b) word-to-visual-block association matrix

(II.c) aspect-relevant visual attention map

Mayor Kadokawa

Mayor Kadokawa thanks

Kyoto Mayor Kadokawa

(II.d) information relevant to “Mayor Kadokawa”

0.8 0.7 0.6 0.1 0.00.20.30.40.5

Figure 6: Visualization of the attention maps in A3M and the sub-parts of the weighted-association matrix AG-GCN.

BART+A3M and our AoM. In example (a), VLP-
MABSA misses the aspect “Golden State War-
riors”, gets an incomplete aspect “Oklahoma City
Thunder” and wrongly predicts the sentiment. It
may be caused by the interference from the vi-
sual region which represents pride expression of a
person. However, BART+A3M gets all right pre-
dictions due to the ability of aspect-oriented atten-
tion. In example (b), compared with our whole
model, BART+A3M wrongly predicts the senti-
ment of “Daniel Radcliffe” which should be nega-
tive. We attribute the wrong prediction to lacking
syntax association which benefits sentiment trans-
mission. In other words, AG-GCN contributes to
the correctness.

4.6 Attention Visualization

To investigate the effectiveness of detecting aspect-
relevant information, we visualize the attention pro-
cess as shown in Figure 6.

For A3M: (i) Figure 6-(I.a) shows the attention
weights of candidate aspects computed according
to the images. We can see that “Mayor Kadokawa”
is the most relevant aspect. (ii) Figure 6-(I.b)
shows the proportions of the visual information re-
served at the last step in A3M, where we weighted
add up the representations of visual blocks and
the corresponding aspects. The heat map shows
that the visual information associated with “Mayor
Kadokawa” is reserved to a great extent, while the
helpless information from other blocks is disre-
garded as noise. It demonstrates that attention in
A3M is able to detect aspect-relevant information.

For AG-GCN: (i) Figure 6-(II.a) shows the
word-to-word part of the weighted association ma-
trix. The matrix effectively excludes sentiment
interference from other aspects by adding syntax
dependency information. For example, the senti-
ment of “mayor” cannot be influenced by irrelevant
keywords, such as “Complain” and “thanks”. (ii)
Figure 6-(II.b) shows the dependencies between
visual blocks and words. (iii) Specifically, we vi-
sualize the visual attention of aspects “Kyoto” (see
Figure 6-(II.c) left) and “Mayor Kadokawa” (see
Figure 6-(II.c) right). We can see that “Kyoto” pays
more attention to the pictures hanging on the wall
which are full of Japanese elements related to the
place, while “Mayor Kadokawa” focus more on the
joyful expressions of the two people. (iv) Figure
6-(II.d) shows the words and image blocks “Mayor
Kadokawa” focused on in sentiment transmission.
It’s obvious that these attentions are helpful for the
prediction.

5 Conclusion

In this paper, we proposed an aspect-oriented
model (AoM) for the task of multimodal aspect-
based sentiment analysis. We use two specially
designed modules to detect aspect-relevant infor-
mation from the semantic and sentiment perspec-
tives. On the one hand, to learn aspect-relevant
semantic information especially from the image,
we construct the Aspect-Aware Attention Module
to align the visual information and descriptions to
the corresponding aspect. On the other hand, to
detect the aspect-relevant sentiment information,
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we explicitly add sentiment embedding into AoM.
Then, a graph convolutional network is used to ag-
gregate the semantic and sentiment embedding un-
der the guidance of both image-text similarity and
syntax dependency in sentences. The experimental
results on two widely used datasets demonstrate
the effectiveness of our method.

Limitations

Though our proposed method outperforms cur-
rent state-of-the-art methods, there are still many
challenges we should overcome in future research.
First, for colloquial expression which confuses cur-
rent dependency tree parser, we should come up
with new solutions. Second, emotional prediction
of tweet posts describing current issues needs exter-
nal knowledge, which is absent in existing research.
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be significant, while on small test sets they may not be.
In section 4 Experiment.

C �3 Did you run computational experiments?
In section 4 Experiment.

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We only use the most commonly used pre-trained models and the parameters or GPU hours are not
focus of our research.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In section 4 Experiment.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In section 4 Experiment.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In section 4 Experiment.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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