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Abstract

Disfluencies commonly occur in conversa-
tional speech. Speech with disfluencies can
result in noisy Automatic Speech Recognition
(ASR) transcripts, which affects downstream
tasks like machine translation. In this paper,
we propose an adversarially-trained sequence-
tagging model for Disfluency Correction (DC)
that utilizes a small amount of labeled real dis-
fluent data in conjunction with a large amount
of unlabeled data. We show the benefit of our
proposed technique, which crucially depends
on synthetically generated disfluent data, by
evaluating it for DC in three Indian languages-
Bengali, Hindi, and Marathi (all from the Indo-
Aryan family). Our technique also performs
well in removing stuttering disfluencies in
ASR transcripts introduced by speech impair-
ments. We achieve an average 6.15 points im-
provement in Fl-score over competitive base-
lines across all three languages mentioned. To
the best of our knowledge, we are the first to
utilize adversarial training for DC and use it
to correct stuttering disfluencies in English, es-
tablishing a new benchmark for this task.

1 Introduction

Disfluencies are words that are part of spoken ut-
terances but do not add meaning to the sentence.
Disfluency Correction (DC) is an essential pre-
processing step to clean disfluent sentences before
passing the text through downstream tasks like ma-
chine translation (Rao et al., 2007; Wang et al.,
2010). Disfluencies can be introduced in utter-
ances due to two main reasons: the conversational
nature of speech and/or speech impairments such
as stuttering. In real-life conversations, humans
frequently deviate from their speech plan, which
can introduce disfluencies in a sentence (Dell et al.,
1997). Stuttering speech consists of involuntary
repetitions or prolongations of syllables which dis-
turbs the fluency of speech.

Conversational disfluencies occur once every 17
words (Bortfeld et al., 2001) whereas a 2017 US

study! shows that roughly 1% of the population
stutters and predominantly consists of children.
One out of every four children continues to suf-
fer from this disorder lifelong. When such speech
passes through an ASR system, readability of the
generated transcript deteriorates due to the pres-
ence of disfluencies in speech (Jones et al., 2003).

Shriberg (1994) defines the surface structure of
disfluent utterances as a combination of reparan-
dum, interregnum and repair. The reparandum
consists of the words incorrectly uttered by the
speaker that needs correction or complete removal.
The interregnum acknowledges that the previous
utterance may not be correct, while repair contains
the words spoken to correct earlier errors.

Type Example
Conversational | Well, you know,
Stuttering Um it was quite fu funny

Table 1: Examples and surface structure of disfluent
utterances in conversational speech and stuttering. Red
- Reparandum, Blue - Interregnum, - Repair

Data in DC is limited because of the time and

resources needed to annotate data for training
(Appendix A). Through this work?, we provide a
method to create high-quality DC systems in low
resource settings. Our main contributions are:

1. Improving the state-of-the-art in DC in In-
dian languages like Bengali, Hindi and
Marathi by 9.19, 5.85 and 3.40 points in F1
scores, respectively, using a deep learning
framework with adversarial training on real,
synthetic and unlabeled data.

2. Creating an open-source stuttering English
DC corpus comprising 250 parallel sentences

3. Demonstrating that our adversarial DC model
can be used for textual stuttering correction

1https: //www.nidcd.nih.gov/health/stuttering
*https://github.com/vineet2104/
AdversarialTrainingForDisfluencyCorrection
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with high accuracy (87.68 F1 score)

2 Related work

Approaches in DC can be categorized into
noisy channel-based, parsing-based, and sequence
tagging-based approaches. Noisy channel-based
approaches rely on the following principle: a dis-
fluent sentence Y can be obtained from a flu-
ent sentence X by adding some noise. These
models try to predict the fluent sentence X given
the disfluent sentence Y (Honal and Schultz,
2004; Jamshid Lou and Johnson, 2017; Johnson
and Charniak, 2004). Parsing-based approaches
jointly predict the syntactic structure of the dis-
fluent sentence along with its disfluent elements
(Honnibal and Johnson, 2014; Jamshid Lou and
Johnson, 2020; Rasooli and Tetreault, 2013; Wu
et al., 2015; Yoshikawa et al., 2016). Sequence
tagging-based approaches work on the following
hypothesis: every word in a disfluent sentence
can be marked as fluent/disfluent. These meth-
ods work best for shorter utterances and perform
optimally for real-life conversational DC (Hough
and Schlangen, 2015; Ostendorf and Hahn, 2013;
Zayats et al., 2016). Moreover, sequence-tagging
based methods require far less labeled data to per-
form well, compared to the other two methods.
Our approach to DC focuses on treating it as a
sequence tagging problem rather than a machine
translation task. The objective is to accurately clas-
sify each word as either disfluent or fluent, and
create fluent sentences by retaining only the flu-
ent words. The lack of labeled data for DC in
low-resource languages has prompted the use of
semi-supervised methods and self-supervised tech-
niques (Wang et al., 2018; Wang et al., 2021). DC
has also been studied as a component in speech
translation systems, and thus its effect has been
analyzed in improving the accuracies of machine
translation models (Rao et al., 2007; Wang et al.,
2010). Synthetic data generation for DC has also
received attention recently. These methods infuse
disfluent elements in fluent sentences to create par-
allel data for training (Passali et al., 2022; Saini
et al., 2020). Our work is an extension of Kundu
et al. (2022), which creates the first dataset for DC
in Bengali, Hindi and Marathi. We use this dataset
to train our adversarial model to improve over the
state-of-the-art in these languages. To the best of
our knowledge, we are the first to model DC to
correct stuttering ASR transcripts.

3 Types of Disfluencies

There are six broad types of disfluencies encoun-
tered in real life - Filled Pause, Interjection, Dis-
course Marker, Repetition or Correction, False
Start and Edit. Although these are common in
conversational speech, stuttering speech consists
mainly of Filled Pauses and Repetitions. This sec-
tion describes each type of disfluency and gives
some examples in English.

1. Filled Pauses consist of utterances that have
no semantic meaning.

Example - What about the uh event?

2. Interjections are similar to filled pauses, but
their inclusion in sentences indicates affirma-
tion or negation.

Example - Ugh, what a day it has been!

3. Discourse Markers help the speaker begin
a conversation or keep turn while speaking.
These words do not add semantic meaning to
the sentence.

Example - Well, we are going to the event.

4. Repetition or Correction covers the repeti-
tion of certain words in the sentence and cor-
recting words that were incorrectly uttered.
Example - If I can’t don’t go to the event to-
day, it is not going to look good.

5. False Start occurs when previous chain of
thought is abandoned, and new idea is begun.
Example - Mondays dont work for me, how
about Tuesday?

6. Edit refers to the set of words that are uttered
to correct previous statements.

Example - We need three tickets, I’m sorry,
four tickets for the flight to California.

4 Architecture

The lack of labeled data for DC is a significant
hurdle to developing state-of-the-art DC systems
for low-resource languages. Passali et al. (2022),
Saini et al. (2020) and Kundu et al. (2022) intro-
duced data augmentation by synthesizing disfluen-
cies in fluent sentences to generate parallel data.
In this work, we propose a deep learning archi-
tecture that uses adversarial training to improve
a BERT-based model’s token classification accu-
racy of whether a token is disfluent or not. Our
proposed architecture uses real, synthetic and unla-
beled data to improve classification performance.
Our model, Seq-GAN-BERT, is inspired by
Croce et al. (2020), who first used a similar model
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for sentence classification. It consists of three
modules: a BERT-based encoder (Devlin et al.,
2019), discriminator and generator. The encoder
converts the input sequence X = (X1, Xo,...X,,)
into encoded vector representations (Hye,). Si-
multaneously, the generator creates fake represen-
tations (Hfye) from Gaussian random noise (Z),
mimicking the real data that passes through the
encoder. The discriminator aims to solve a two-
pronged objective: 1) predicting every word in the
sentence to be disfluent or fluent and ii) determin-
ing whether the input from the generator comes
from real or fake data.

Real & Synthetic
Data (Labeled &
Unlabeled)

MuRIL Transformer

Hiake Hreal

Discriminator

Softmax

Random Gaussian
Noise Input

Generator

® 0
O O
O O

o 6,
X

Probabilities

O O
- @ O
o © O

Well you know this is good plan

Figure 1: Architecture of the Seq-GAN-BERT model.
Green nodes denote fluent class probabilities, red nodes
denote disfluent class probabilities and the orange node
shows the probability of classifying a sample as real (1)
or fake (0).

4.1 Adversarial Training

The discriminator loss comprises two loss terms.
The first loss is supervised by the token classifi-
cation task, while the second loss is defined by
the real/fake data identification task. Such adver-
sarial training also allows the model to use un-
labeled data during training. For unlabeled sam-
ples, only the real/fake data identification task is
executed. The generator continuously improves
during training and produces fake representations
that resemble actual data. The competing tasks of
the generator (to create better representations to
fool the discriminator) and the discriminator (to

perform token classification for labeled sentences
and real/fake identification) compels the MuRIL
encoder to generate better representations of input
sentences. The resulting high-quality representa-
tions allow the discriminator to identify disfluent
words with a high accuracy.

5 Task 1: Few Shot DC in Indian
Languages

To test our proposed architecture, we train the
model on the few-shot DC task for Indian lan-
guages. The current state-of-the-art performance
in Bengali, Hindi and Marathi DC is obtained by
training a large multilingual transformer model us-
ing synthetic data created by injecting disfluencies
in fluent sentences using rules (Kundu et al., 2022).
We train our Seq-GAN-BERT model using the au-
thors’ multilingual real and synthetic data.

5.1 Dataset

Our dataset consists of parallel disfluent-fluent
sentences in three Indian languages. We use 300,
150 and 250 real disfluent sentences in Bengali,
Hindi and Marathi, respectively and generate 1000
synthetic disfluent sentences in Bengali and 500
synthetic disfluent sentences each in Hindi and
Marathi each by infusing disfluent elements in
fluent transcriptions using a rule-based approach
(Kundu et al., 2022). The synthetic data was cre-
ated such that the percentage of disfluent words
across 3 languages remains constant.

5.2 Text Processing and Training Details

Text pre-processing is performed by removing
punctuations, lower-casing and creating word-
level tokens for parallel sentences. The Seq-
GAN-BERT model uses a combination of labeled
and unlabeled data comprising real and syntheti-
cally generated disfluent sentences in different lan-
guages. We try different combinations of mono-
lingual and multilingual data. Our experiments
show that the best model for Bengali uses real
and synthetic Bengali sentences as labeled data
and disfluent Hindi sentences as unlabeled data.
The best model for Hindi uses real and synthetic
Hindi sentences as labeled data and disfluent Ben-
gali sentences as unlabeled data. The best model
for Marathi uses real and synthetic Marathi sen-
tences as labeled data and disfluent Bengali sen-
tences as unlabeled data. The BERT-based trans-
former that we use as an encoder is the MuRIL
model pretrained on English and many Indian lan-
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Lang | Input Transliteration Gloss Translation ZS Output FS Output
Bn <7 1< =01 | biShaya syaara | subject sir | Subject Sir | fe=o! ity | =351 HE =i
M M Wi | biShayaTaa the_matter  sir | Subject Sir Sir | 93P 9F WHIN | QP o JeTel™
OF[ G IS syaara syaara | sir I_am a_little | I said a little
aami ekaTu | wrong I_said wrong
bhula balalaama
Hi TNAGEHATA | to yaha hai a | soitisaschool | so this is uh | T8 & 3 Tt a1 a8 &
skula school
Mr AT Uk | deshaatiila in_the_country This cleanli- | 3T Uk | oA Udeh
AEd UAH | pratyeka sha- | each ness drive is | AT &l WeSdT | AT & Wesdr
HIEIG) Eﬁ IJ=ddl | haraata pratyeka | in_the_city each | going on in Eﬁﬁﬁ qe Gﬂ—g Iﬁﬁﬂ qe Gﬂ—g
g gE ag gaavaata hii | in_the_village every city in
svachChataa this cleanli- | every village of
mohiima suruu | ness campaign | the country
aahe continue is

Table 2: Comparison between the output of the zero-shot and few-shot model. The few-shot model provides better
inference in most cases; Bn - Bengali, Hi - Hindi, Mr - Marathi, ZS - Zero Shot, FS - Few Shot.

guages (Khanuja et al., 2021). MuRIL representa-
tions for Indian languages are of superior quality
compared to other multilingual Transformer-based
models like mBERT (Devlin et al., 2019).

5.3 Evaluation

To evaluate our model, we train baselines for DC
in zero-shot and few-shot settings. ZeroShot is
based on Kundu et al. (2022). FewShot is based on
training MuRIL on all real and synthetic data avail-
able in the chosen language, along with labeled
data in a related Indian language (for Bengali, ei-
ther Hindi or Marathi can act as a related Indian
language). FewShotAdv is the Seq-GAN-BERT
model without any unlabeled data. Although mod-
els like BILSTM-CRF have been as alternatives to
transformers for sequence tagging, direct finetun-
ing often performs better (Ghosh et al., 2022). Per-
formance of DC systems is usually measured with
F1 scores (Ferguson et al., 2015; Honnibal and
Johnson, 2014; Jamshid Lou and Johnson, 2017).
Table 3 shows the comparison of various baselines
against our model.

Our model, Seq-GAN-BERT with unlabeled
sentences, performs better than the other baselines
and establishes a new state-of-the-art for DC in
Bengali, Hindi and Marathi. Our model bene-
fits from adversarial training using both unlabeled
data and multilingual training. Comparison of our
model’s output with respect to the ZeroShot base-
line is discussed in Table 2 (for more examples,
refer to Appendix B). The observed precision and
recall scores of these models during testing show
that without adversarial training, the model per-
forms with high precision but low recall. However,
with adversarial training, the model improves its
recall without compromising much on precision.

Lang Model P R F1
Bn ZeroShot 93.06 | 62.18 | 74.55
FewShot 66.37 | 68.20 | 67.27
FewShotAdv | 84.00 | 78.93 | 81.39
Our model | 87.57 | 80.23 | 83.74
Hi ZeroShot 85.38 | 79.41 | 82.29
FewShot 82.99 | 81.33 | 82.15
FewShotAdv | 88.15 | 83.14 | 85.57
Our model | 89.83 | 86.51 | 88.14
Mr ZeroShot 87.39 | 61.26 | 72.03
FewShot 82.00 | 60.00 | 69.30
FewShotAdv | 84.21 | 64.21 | 72.86
Our model | 85.34 | 67.58 | 75.43

Table 3: Comparing the performance of baselines and
our model on DC across Bengali (Bn), Hindi (Hi)
and Marathi (Mr); ZeroShot - Monolingual supervised
training, FewShot - Multilingual supervised training,
FewShotAdv - Adversarial training without unlabeled
data, Our model - Multilingual adversarial training with
unlabeled data; P = Precision, R = Recall

The zero-shot model (without adversarial training)
classifies less words as disfluent but at a high ac-
curacy, whereas the few-shot model (with adver-
sarial training) correctly classifies more words as
disfluent.

6 Task 2: Stuttering DC in English

We have already shown how our proposed archi-
tecture learns better semantic representations for
DC using small amounts of manually annotated
labeled data. In this section, we present a sim-
ilar experiment in Stuttering DC (SDC). We de-
fine SDC as the task of removing disfluent ele-
ments in spoken utterances that are caused by stut-
tering speech impairment. Since this is the first
attempt to model stuttering correction as disflu-
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ency removal, we make our version of the exist-
ing dataset for stuttering publicly available for re-
search purposes and provide various baseline com-
parisons. We show that our model generalizes well
for this task and is able to remove disfluent ele-
ments in stuttering speech.

6.1 Dataset

The UCLASS dataset is created by transcribing
audio interviews of 14 anonymous teenagers who
stutter and consists of two released versions (How-
ell et al.,, 2004). Both versions of this corpus
are available for free download and research. We
create 250 disfluent-fluent parallel sentences from
the available transcripts of such utterances. The
dataset is released here’.

6.2 Processing & Training

We follow the same steps as before (section 5.2).
Stuttered syllables are represented in the text, sep-
arated by a space delimiter and treated as a dis-
fluent term. This gold-standard dataset is split
into 150 sentences for training and 100 sentences
for testing. The training sentences are used as la-
beled data for the model and unlabeled data from
Switchboard (Godfrey et al., 1992) or Kundu et al.
(2022) is used to facilitate multilingual training.
Our model performs best when we use synthetic
Bengali disfluent sentences as unlabeled data.

6.3 Evaluation

We use five baselines to evaluate our model’s per-
formance. SupervisedGold uses the gold standard
data and trains the MuRIL model for token clas-
sification. SupervisedGoldSWBD and Supervised-
GoldLARD uses a combination of the gold stan-
dard dataset along with 1000 disfluent sentences
from the Switchboard corpus and LARD dataset
(Passali et al., 2021). AdversarialSWBD and Ad-
versarialLARD uses the Seq-GAN-BERT to train
on a combination of labeled sentences from gold
standard corpus and unlabeled sentences from the
Switchboard corpus and LARD dataset. Table 4
displays our results averaged over multiple seeds.
Our model outperforms all baselines. Improve-
ment over AdversarialLARD shows the benefit
of multilingual training. We also used synthetic
Hindi or Marathi data while training, but achieved
lower scores than the Adversarial LARD baseline.

Shttps://github.com/vineet2104/
AdversarialTrainingForDisfluencyCorrection

Model P R F1
SupervisedGold 89.11 | 78.08 | 83.23
SupervisedGoldSWBD | 87.34 | 86.50 | 86.92
SupervisedGoldLARD | 74.58 | 86.33 | 80.02
Adversarial SWBD 85.76 | 84.17 | 84.96
Adversarial LARD 86.21 | 84.82 | 85.51
Our model 87.26 | 88.10 | 87.68

Table 4: Comparing baselines and our model for En-
glish stuttering DC; SupervisedGold - Supervised train-
ing on gold standard dataset, SupervisedGoldSWBD
and SupervisedGoldLARD - Supervised training on
gold standard dataset and DC data, AdversarialSWBD
and AdversarialLARD - Adversarial training without
unlabeled data, Our model - Multilingual Adversarial
training with unlabeled data; P = Precision, R = Recall

Summary of results: In this paper, we evaluate
our proposed architecture for low-resource DC us-
ing two tasks: 1) DC in Indian languages and 2)
Stuttering DC in English. Our model outperforms
competitive baselines across both these tasks es-
tablishing a new state-of-the-art for Indian lan-
guages DC. The adversarial training in our model
improves the representations of a BERT-based en-
coder for disfluent/fluent classification. We show
that multilingual training benefits such tasks as the
generator is trained to create better representations
of fake data to fool the discriminator.

7 Conclusion

Adversarial training using unlabeled data can ben-
efit disfluency correction when we have limited
amounts of labeled data. Our proposed model
can also be used to correct stuttering in ASR tran-
scripts with high accuracy.

Future work lies in integrating speech recog-
nition models like Whisper* or wav2vec 2.0
(Baevski et al., 2020) to create end-to-end speech-
driven DC models. It will also be insightful to see
how this model transfers to other low-resource lan-
guages with different linguistic properties.
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9 Limitations

There are two main limitations of our work.
Firstly, since there are no known baselines for In-
dian language DC except Kundu et al. (2022),
other architectures might perform better than our
model. Our claim that Seq-GAN-BERT tries to
maximize the information gained from unlabeled
sentences is supported by superior performance
over baselines defined in this work and other re-
lated models. Secondly, due to the lack of good
quality labeled datasets, our test sets contained
only 100 sentences. However, we believe that
the consistency of our high-performing models
across languages and multiple seeded experiments
presents a positive sign for DC in low-resource set-
tings.

10 Ethics Statement

The aim of our work was to design an adversarial
training-enabled token classification system that is
able to correctly remove disfluencies in text. The
datasets used in this work are publicly available
and we have cited the sources of all the datasets
that we have used.
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A Challenges in creating data for DC

There are three steps involved in creating data for
DC - i) Transcribing the speech utterance, ii) Iden-
tifying disfluent elements in the transcript and iii)
Creating the fluent sentence after removing dis-
fluent utterances. Identifying disfluencies is not
a straightforward task. Our observations show
that, on average, it takes 2 minutes to create a
pair of disfluent-fluent sentences for an average 15-
second speech utterance.

Collecting data for SDC comes with its chal-
lenges. Currently available datasets only focus
on speaker details and record stuttered speech for
analysis. Since SDC requires speech to be tran-
scribed and annotated, creating parallel sentences
for training is difficult. We derive our dataset from
open-source resources. However, to create manual
data at a large scale, an appropriate recording en-
vironment must be designed where speakers who
stutter can interact with others over various topics
with skilled annotators listening and transcribing
the audio. Thus, creating data for DC is a chal-
lenging task (Section 1) and we hope that our con-
tributed dataset can facilitate further research in
stuttering correction.

B Case study: Analysing differences in
the zero shot and few shot settings

In Indian languages DC, the ZeroShot baseline cor-
responds to a zero-shot method for DC, whereas
our model is an adversarially trained few-shot
method for DC. We perform qualitative compar-
isons across both these models to understand the
difference through case studies from the test set.
Table 5 shows our results. Our few-shot model
qualitatively performs better than the zero-shot
baseline in most cases and thus strengthens the re-
sults mentioned in Section 5.3.
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Lang | Input Transliteration | Gloss Translation ZS Output FS Output
Hi sgd a9 | bahata teja | a_lot  quick | Used to | dgd aw dgd ast
TATd & 3R | chalaate the | drive  were | drive  very | Ieid & 3R | 9ad & 3R
7 ar ?RZITE%?T aura maim | and I a what | fast and | §3r WW e} B l;rﬁmw
8 UFHET | a kyaa ka-|say is h an-|I used to |8 § UR®a | F9dr a1 =
QT 9IS | hate hai ha | imals  count | count the | fRaTaT I | &
e} enimalasa was way [ animals on | &
ginataa thaa the way
raaste mai.m
Mr |® 3m 8 | mii aaja | I today uh | The concept | 31TST 3f | 3MTST
LIE] S| am phu- | of_flowers of  vertical ' S | B St
yesie uifget | laamche  je | j exhibi- | garden was | UaiH ulfgdl | ue= urfget
RIG) c_fu'ﬁﬂv_v[ pradarshana tion saw | seen in the | AId cséTqm ard cséTqm
DSl paahile tyaata | in_it vertical | exhibition I | TT&dt DICEEH
TehedT vharTiikala of_the_garden | saw today Tehed-T Tehed-T
BRI gaarDanachii | concept Ulerdell Ulerdedl
IECIGI sa.mkalpanaa | to_see re- fAresTett IEEIGI
paahaayalaa ceived
mildaalii

Table 5: Some more examples of comparison between performance of Zero Shot DC Few Shot DC models, in
addition to examples mentioned in Table 2.

8120




ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitations have been mentioned as section 8 of the paper submitted

[l A2. Did you discuss any potential risks of your work?
Not applicable. Since our paper is about disfluency correction through text, we do not anticipate any
risks of our work or its potential use in other tasks.

¥f A3. Do the abstract and introduction summarize the paper’s main claims?
Yes, abstract and introduction summarize the paper’s main claims

X A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 5.1 describes the data we create

v/ B1. Did you cite the creators of artifacts you used?
The authors of the dataset we use have been cited in Section 4.1 and Section 5.1

¥ B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
It has been mentioned that the data we use is open source in sections 4.1 and 5.1

¥f B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
It has been mentioned that the data we use is open source and consistent with its intended use in
sections 4.1 and 5.1

¥f B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
It has been mentioned in section 5.1 that the data we use and create is anonymous

0J BS5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. The data we create is derived from an existing dataset that is open source and
provides relevant documentation. We have cited the original dataset in section 4.1 and 5.1.

v B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

Relevant statistics have been mentioned in sections 4.2 and 5.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

8121


https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C ¥ Did you run computational experiments?
Section 4.2 and Section 5.2

(] C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Not applicable. Our model architecture does not compulsorily require any GPU support and thus is
usable on many established frameworks

¥ C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Relevant details have been included in section 4.1, 4.2, 5.1 and 5.2

¥ C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Relevant details have been included in sections 4.3 and 5.3 and Appendix C

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Relevant details have been included in sections 4 and 5

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

(] D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

(1 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Not applicable. Left blank.

(1 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

Not applicable. Left blank.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

0J DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

8122



