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Abstract
Pre-training models with large crawled corpora
can lead to issues such as toxicity and bias,
as well as copyright and privacy concerns. A
promising way of alleviating such concerns
is to conduct pre-training with synthetic tasks
and data, since no real-world information is in-
gested by the model. Our goal in this paper is
to understand the factors that contribute to the
effectiveness of pre-training models when us-
ing synthetic resources, particularly in the con-
text of neural machine translation. We propose
several novel approaches to pre-training trans-
lation models that involve different levels of
lexical and structural knowledge, including: 1)
generating obfuscated data from a large parallel
corpus 2) concatenating phrase pairs extracted
from a small word-aligned corpus, and 3) gener-
ating synthetic parallel data without real human
language corpora. Our experiments on multiple
language pairs reveal that pre-training benefits
can be realized even with high levels of obfusca-
tion or purely synthetic parallel data. We hope
the findings from our comprehensive empirical
analysis will shed light on understanding what
matters for NMT pre-training, as well as pave
the way for the development of more efficient
and less toxic models.

1 Introduction and Motivation

Neural Machine Translation (NMT) models depend
on large quantities of aligned training data (Aha-
roni et al., 2019; Fan et al., 2021; NLLB Team
et al., 2022). For many language pairs of interest,
however, high quality parallel data is either unavail-
able or exists only in limited quantities. Training
robust NMT systems with such limited data can be
a significant challenge.

Even for high-resource language pairs, parallel
data can be noisy and frequently contains toxic
speech or biased language. Such problems are par-
ticularly acute for comparable corpora crawled au-
tomatically from the web (Kreutzer et al., 2022)
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Figure 1: A comparison of the extent to which the syn-
thetic data generation methods described in Section 3
encode lexical and/or structural translation knowledge.
The vertical axis compares methods with respect to lexi-
cal knowledge. The horizontal axis compares structural
knowledge. BLEU scores correspond to the Indonesian-
to-English translation task described in Section 4.

since it can cause catastrophic mistranslations
(Costa-jussà et al., 2022) or hallucinated toxicity.
It is preferable to avoid exposing the model to such
data in order to prevent accidental generation of of-
fensive content or egregiously embarrassing trans-
lations. Crawled data can also present problematic
copyright, attribution, and privacy issues. As an
example, the JW300 corpus of Jehovah’s Witnesses
publications (Agić and Vulić, 2019) was recently
withdrawn due to a copyright infringement claim.

Our primary motivation is to investigate how
knowledge transfer from NMT pre-training can
help to avoid or minimize the data issues described
above. We study the impact of pre-training and
transfer learning on translation tasks by compar-
ing various procedural approaches to synthetic data
generation. Each approach has varying degrees
of inherited or artificially constructed lexical and
structural translation knowledge. The degree to
which each method encodes lexical and/or struc-
tural translation knowledge is plotted in abstract
form in Figure 1. We describe each of our synthetic
data generation methods in Section 3.
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Our first approach (§3.1) studies the extent to
which the transfer benefits of regular pre-training
can be realized when using obfuscated or encrypted
data. Our obfuscated corpus is derived from real
parallel data by mapping the original words to a vo-
cabulary of ‘nonsense’ tokens. Experiments on six
different language pairs show that obfuscated pre-
training is able to capture much of the transferable
knowledge: pre-training with an obfuscation ratio
as high as 75% is still able to achieve BLEU scores
close to those obtained by a model pre-trained on
the original un-obfuscated parallel data.

Our second approach (§3.2) seeks to maximize
the benefit that can be derived from a specific lim-
ited quantity of fine-tuning data. We do this by pre-
training on newly constructed artificial sentence
pairs synthesized directly from the fine-tuning cor-
pus. The synthetic sentence pairs are created by
concatenating randomly sampled aligned phrase
pairs extracted from the fine-tuning corpus. Al-
though the sentence-level fluency and grammatical-
ity of sentences constructed using this technique
are both quite poor, they do retain word- and phrase-
level correspondences and local reordering infor-
mation that can greatly improve translation quality
and robustness compared to models trained using
only the original fine-tuning data.

Our third approach (§3.3) explores the pre-
training impact of important translation phenomena
such as alignments and reordering. We pre-train
models on procedurally generated synthetic paral-
lel data that does not derive from any real human
language corpus. We design three simple synthetic
sequence-to-sequence translation tasks and associ-
ated data sets. Since our data is procedurally gener-
ated, problems of toxicity, attribution and copyright
can be avoided. We evaluate the effectiveness of
pre-training and transfer for our synthetic tasks in
the context of low-resource NMT. Our results show
that – to a surprising degree – the transfer benefits
of pre-training can be realized even with purely
synthetic tasks and data. Our analysis shows that
structure, in the form of aligned sub-trees, matters
in synthetic pre-training for NMT.

We empirically evaluate the impact of each of
our proposed synthetic pre-training methods in low-
resource MT settings (§4), followed by a discus-
sion and analysis explaining our insights into what
makes for a good pre-trained model (§5). We also
consider the question of model toxicity. We mea-
sure the extent of hallucinated toxicity in each syn-

thetic data generation method, showing that syn-
thetic methods can result in substantially reduced
toxicity compared to models pre-trained on real
parallel corpora.

The primary contributions of our paper are as
follows: (i) we propose several novel synthetic
pre-training tasks, that encode varying degrees of
structural and lexical knowledge, in order to gain
insights into what makes for a good pre-trained
NMT model; (ii) we conduct a comprehensive em-
pirical evaluation of knowledge transfer in NMT
from synthetic data pre-training, considering met-
rics of both translation quality and toxicity; and (iii)
we demonstrate that synthetic data is a promising
stepping stone towards relieving the data burden in
low-resource translation and building more accu-
rate and trustworthy NMT systems.

2 Related Work

Transferring knowledge from pre-trained language
models (Devlin et al., 2018; Raffel et al., 2019;
Brown et al., 2020) is a common technique for en-
suring robust NLP downstream task performance.
Early work by Zoph et al. (2016) explored transfer
learning for NMT from a model pre-trained on a
single language pair. More recently, methods that
transfer from large-scale multilingual pre-trained
models (Conneau et al., 2019; Liu et al., 2020;
Goyal et al., 2022; NLLB Team et al., 2022) have
achieved improved translation performance across
a wide range of language pairs. Aji et al. (2020)
conducted a study on pre-training and transfer for
low-resource NMT. These works depend on real hu-
man language for pre-training and therefore inherit
data issues such as toxicity and bias. In contrast,
our work studies NMT pre-training and transfer
from synthetic data based on ‘nonsense’ words.

Only a few methods have addressed the problem
of pre-training from synthetic data in NLP. Krishna
et al. (2021) proposed pre-training for summariza-
tion using synthetic article and summary pairs de-
rived from manually curated tasks and a vocabu-
lary of nonsense symbols. Sinha et al. (2021) have
shown that masked language model pre-training
with limited word-order information can be almost
as effective as regular pre-training. Chiang and
Lee (2020, 2021) show that non-human language
data and artificial datasets (e.g. nested sequences
of parentheses), can still demonstrate knowledge
transfer to downstream NLP tasks. Wu et al. (2022)
compare the effect of pre-training on many sim-
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ple synthetic tasks. Our work in this paper rep-
resents the first empirical evaluation of synthetic
pre-training for neural machine translation. To the
best of our knowledge, our proposed synthetic tasks
have not been explored in previous work.

The quality of a pre-trained model should not
be measured purely by performance. We should
also consider trustworthiness (He et al., 2022; Xu
et al., 2022; He et al., 2021). Recent works have
noted that translation systems pre-trained on web-
scale corpora are prone to produce toxic (Costa-
jussà et al., 2022) or biased outputs (Prates et al.,
2020; Cho et al., 2021; Costa-jussà et al., 2020),
and/or present privacy issues (Prates et al., 2020;
Kamocki and O’Regan, 2016), which reduces user
trustworthiness. Bias mitigation for NMT has been
well-investigated while privacy and toxicity issues
for translation are still not extensively explored
(Costa-jussà et al., 2022). Wang et al. (2021) pro-
pose federated neural machine translation to pro-
tect privacy such as commercial leakage or copy-
right. (Costa-jussà et al., 2022) mitigate toxicity
by filtering training data that matches pre-defined
multilingual toxic word lists.

3 Synthetic Pre-Training for NMT

Pre-training followed by fine-tuning is a common
approach to training robust NMT models (Con-
neau et al., 2019; Liu et al., 2020). Our motivation
is to understand the extent to which the transfer
benefits of pre-training can be replicated using syn-
thetic tasks and data. In this section, we describe
three approaches to the programmatic generation
of synthetic data: (i) pre-training with obfuscated
parallel data that implicitly preserves certain lan-
guage properties such as distributional frequencies,
(ii) pre-training with synthetic data created by con-
catenating aligned phrases, and (iii) pre-training
with synthetic tasks designed to encourage transfer
learning of important translation properties such as
long-distance reordering.

3.1 Pre-Training on Obfuscated Parallel Data

In order to gain insight into what makes a good
pre-trained model, we design an obfuscated pre-
training experiment in which the model learns to
translate obfuscated source sequences to obfus-
cated target sequences. The synthetic training data
for this experiment is created by obfuscating words
in the original parallel data. We define separate
1-to-1 nonsense token vocabulary mappings for the

set of all words that occur in the source and target
sides of the data: each source word si and target
word tj has a corresponding obfuscated nonsense
source token Osi and target token Otj . The syn-
thetic pre-training corpus is created by replacing,
with probability R, each source and target word
with its corresponding obfuscated nonsense token.
R thus determines the proportion of obfuscated to-
kens, allowing us to evaluate the extent to which
pre-training knowledge transfer occurs with differ-
ent obfuscation ratios. This method of obfuscation
can be viewed as a trivial form of encrypted train-
ing. Although the original word identities are ob-
scured, a great deal of useful information such as
distributional frequencies, word order, dependency
relations, alignments, and grammatical structure
remain implicit in the obfuscated data. An example
German-English parallel sentence pair and obfus-
cations at R = 0.25 and R = 1.00 (i.e. all tokens
obfuscated) are shown below:

R = 0.00
src Meine zweite Bemerkung ist etwas ernsthafter.
trg My second comment is rather more serious.

R = 0.25
src wfnzc zweite Bemerkung ist etwas ernsthafter .
trg My IJODB comment is AHBNB more serious .

R = 1.00
src wfnzc kqknd gmlfd tlieb ghzwa jdfnd engwd
trg UKVFB IJODB XRWOB SZEIA AHBNB LATAA MCSDA ETFJA

3.2 Pre-Training on Concatenated Phrases

In this section, we propose pre-training an NMT
model with synthetic parallel data formed by con-
catenating aligned phrases. The main advantage of
aligned phrases is that they are extracted from real
parallel data and thus encode both lexical and struc-
tural translation knowledge. Lexical knowledge is
defined by the word- and phrase-level correspon-
dences between the source and target language.
Structural knowledge, encoded by local reordering
within aligned phrases, can also be leveraged.

We first extract a collection of aligned phrases P
using the standard recipe implemented in the Moses
SMT Toolkit (Koehn et al., 2007). The accuracy of
the aligned phrases depends on the size and quality
of the parallel data: we target low-resource MT and
assume there is only a limited quantity of parallel
data available. We generate synthetic parallel sen-
tence pairs by first sampling a normally distributed
phrase length P . We sample each phrase position
p = 1 . . . P uniformly at random from P . The
source and target sentences thus consist of concate-
nated source and target phrases. The word order
within each sampled phrase is fluent and local re-
ordering may also be captured. The boundaries
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between phrases, however, typically do not respect
natural word order or grammar. In spite of these
limitations, we show in Section 4.3 that this simple
method of data augmentation can significantly im-
prove the quality of an NMT model when training
data is limited. An example Indonesian-to-English
synthetic sentence pair, with phrase boundaries in-
dicated by parentheses, is shown below:

src [sejak Wright] [sambil seringkali] [kami]
[50 juta mengingat]

trg [from Wright] [in most times] [we]
[50 millions as]

3.3 Pre-Training on Synthetic Tasks and Data

In this section, we define three completely synthetic
task variants that can be used for NMT pre-training:
(1) the identity operation, (2) case-mapping, and
(3) permuted binary trees. All three tasks are based
on a procedural data generation model and can thus
be used to generate arbitrary quantities of synthetic
data. Procedural generation of synthetic parallel
sentence pairs allows for complete control over the
alignments, length distribution, token frequency
distribution, and level of noise in the data.

All three synthetic tasks are based on a 1-to-1
paired dictionary of source and target synthetic to-
kens: S for source and T for target. We define a
pairwise mapping between the two vocabularies
such that each synthetic source token Si is paired
with a corresponding synthetic target token Ti for
each i ∈ 1 . . . N , where N is the size of the paired
vocabulary. In the examples below, the source vo-
cabulary consists of all 263 = 17576 three-character
synthetic tokens that can be created using the low-
ercase English letters {a, . . . , z}.

3.3.1 Synthetic Task 1: Identity Operation
The simplest of the pre-training tasks we consider
is the identity operation, which has been previously
proposed by Wu et al. (2022) as a synthetic task
for language model pre-training. For this task, the
source and target sentences are identical. We in-
clude it not because we believe it to be in any way
a proxy for the true translation task, but instead to
serve as the simplest possible baseline sequence-
to-sequence synthetic task. We generate parallel
sentence pairs by first sampling a sentence length
L from the normal distribution. Each source token
si for i = 1 . . . L is sampled uniformly from the
source vocabulary S . The target sentence is simply
a copy of the source:

src cea qne jda rnu jkq ozf dke kzl hpo
trg cea qne jda rnu jkq ozf dke kzl hpo

3.3.2 Synthetic Task 2: Case-Mapping
Our second pre-training task defines a case-
mapping operation. Each synthetic parallel sen-
tence pair consists of the same sequence of tokens
but the source sentence is lowercase and the target
sentence is uppercase. We also design an extension
of this task that includes insertions and deletions.
Source and target tokens can be deleted with fixed
probability ds (for source) and dt (for target). Ran-
dom insertions and deletions are added to avoid
having identical source and target lengths for every
sentence pair, which might entrench the tendency
of the model to mimic such behavior even at the
fine-tuning stage where it is likely inappropriate.
From the perspective of the translation task, a sen-
tence pair with a missing target token corresponds
to a deletion, while a missing source token cor-
responds to an insertion. The following example
shows a parallel sentence pair for the case-mapping
task with fixed source and target deletion probabili-
ties ds = dt = 0.15:

src qdo zwj iub uxj pls nsn igk mrz ojw
trg QDO ZWJ IUB KWP UXJ PLS NSN IGK MRZ OJW

3.3.3 Synthetic Task 3: Permuted Trees
The third of our synthetic pre-training tasks is de-
signed to reflect some aspects of the reordering pro-
cess that occurs during natural language translation.
We first generate random sentences with normally
distributed lengths and uniformly distributed syn-
thetic tokens, as for tasks 1 and 2. We then induce
an artificial binary tree over the source sentence
by picking a random point at which to split the
sentence, and recursively repeat this process for
the left and right sub-strings. The resulting binary
tree structure allows us to generate synthetic par-
allel data with reordering that preserves the align-
ment of contiguous source-to-target token spans.
The target tree is generated as a permutation of
the source tree: we randomly swap left and right
sub-trees with some fixed probability r. Generat-
ing synthetic sentence pairs in this way implies the
existence of lexicalised synchronous context free
grammar (SCFG) rules (Chiang, 2007) that could
be used to generate the sentence pair as a parallel
derivation. The example below shows a synthetic
sentence pair generated using this method:
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src [ jtx [ [ urs [ ktp [ hme nmc ] ] ] pep ] ]
trg [ JTX [ [ URS [ [ HME NMC ] KTP ] ] PEP ] ]

Parentheses indicating the tree structure are
shown for clarity. During pre-training, however,
only the source and target synthetic token se-
quences are actually seen by the model. In this
example, the source token ‘ktp’ was reordered with
respect to the sub-tree containing the tokens ‘hme
nmc’. Figure 2 shows the token-level alignment
and reordering operations encoded by this parallel
sentence pair.

4 Experimental Framework

We evalute our synthetic pre-training data genera-
tion methods for NMT using using both English-
centric and non-English-centric language pairs.

4.1 Experiment Setup
English-Centric Language Pairs For English-
centric translation directions, we use fine-tuning
data sets similar to Aji et al. (2020). For German-
English, we use the official data from the WMT
2014 News Translation Task. For Myanmar-
English, the fine-tuning data consists of 18.0k paral-
lel sentence pairs in the news domain collected for
the Asian Language Treebank (ALT) project (Ding
et al., 2018). We use the original train, dev and test
split. For Indonesian-English, we use a filtered set
of 24.6k parallel sentence pairs from the IDENTIC
v1.0 corpus (Larasati, 2012) which covers various
genres. We randomly divide the original corpus
into distinct train (90%), dev (5%), and test (5%)
sets. For Turkish-English, we use data from the
WMT 2017 News Translation Task (Yepes et al.,
2017). The training set includes 207.7k parallel
sentence pairs. We use the WMT newsdev2016 set
for validation, and report results on newstest2017.

Figure 2: Example synthetic sentence pair and partial
derivation for the aligned permuted binary trees task. In
this example, a single non-terminal node was reordered.

Non-English-Centric Language Pairs For non-
English-centric directions, we simulate low-
resource translation conditions by sampling data
from OPUS NLP (Tiedemann, 2012). The non-
English-centric language pairs we evaluate are
as follows: Indonesian-Myanmar, Indonesian-
Turkish, Indonesian-Tagalog, Myanmar-Turkish,
Myanmar-Tagalog, Tagalog-Turkish, German-
Indonesian, and German-Myanmar. For each pair,
we simulate low-resource conditions by creating
fine-tuning sets of size 10k, 25k, 50k, and 100k
via sampling from the set of all parallel corpora
for that language pair on OPUS NLP. Minimal fil-
tering is applied to our parallel data sets: we re-
move duplicates, discard sentences with extreme
length ratios, and keep only sentence pairs for
which the fasttext (Joulin et al., 2016) language
ID matches the stated source and target.

Evaluation Following the evaluation setting of
large-scale multilingual models such as FLORES-
101 (Goyal et al., 2022), we score our transla-
tion hypotheses using sentencepiece BLEU (Pa-
pineni et al., 2002) (spBLEU). This avoids the
need for custom post-processing for individual lan-
guages with unusual scripts and/or complex mor-
phology such as Burmese.

Model Training Strategy Our experiments con-
sist of a pre-training stage followed by a fine-
tuning stage. We use the transformer sequence-
to-sequence ‘base’ model architecture (Vaswani
et al., 2017) for all translation experiments. Since
our goal is to gain insight into the relative impor-
tance of various aspects of synthetic pre-training,
our baseline models are created by fine-tuning
randomly initialized models using only the down-
stream task parallel data.

We use fairseq (Ott et al., 2019) to train our
models with the Adam (Kingma and Ba, 2014) op-
timizer. We reset the learning rate scheduler and
optimizer before starting the fine-tuning stage. Pre-
training and fine-tuning continue until the BLEU
score on the validation set converges. Further im-
plementation details can be found in Appendix B.

4.2 Pre-training with Obfuscated Data
Following previous work that showed German-to-
English to be a good pre-training direction for sev-
eral language pairs (Aji et al., 2020), we also use
German-to-English (de-en) for pre-training and
randomly sample two million pairs from its train-
ing corpus to use as obfuscated parallel data. We
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Figure 3: Translation spBLEU scores after pre-training
with different levels of obfuscation and real-world fine-
tuning on downstream language pairs. Scratch refers to
training from scratch using only fine-tuning data. Simi-
lar results on FLORES can be found in Appendix A.2.

vary the obfuscation ratio R from 0% to 100% in
25% increments. After pre-training, we fine-tune
the models on the real-world parallel training cor-
pus (described in Section 4.1) for each downstream
language pair. We also investigate the scaling ef-
fect of different fine-tuning set sizes and show the
results in Appendix A.1.

We report spBLEU scores on the test set for
each language pair in Figure 3. We find that, sur-
prisingly, even when as much as 75% of the pre-
training data is obfuscated, the models are still
able to achieve high or even comparable spBLEU
scores to real-world pre-trained models (i.e., those
with 0% obfuscation). Additionally, most of the
models pre-trained on obfuscated data performed
better than those trained from scratch on real-world
fine-tuning data, even when the pre-training data
was 100% obfuscated (e.g., 100% in id-en, my-en,
and my-tl). This suggests that a small propor-
tion of real-world data can provide the majority of
the benefits of large-scale regular pre-training, im-
plying a promising research direction for efficient
pre-training or improving low-resource NMT.

4.3 Pre-training with Phrase Concatenation

The translation decoding results in Table 1 show
substantial transfer learning benefits from pre-
training with 2m sentence pairs of synthetic data
generated by concatenating uniformly sampled
aligned phrase pairs (phrase-cat). Compared to a
model with no pre-training, i.e. one that trains from
random initialization using only the fine-tuning
data (random-init), we observe large gains of up
to +9.9 spBLEU for language pairs with less than
25k of fine-tuning data (my↔en and id↔en). The

gains of +1.4 to +2.1 for tr↔en are smaller: this
pair has more fine-tuning data (>200k pairs) so the
improved coverage and robustness of synthetic pre-
training is less critical for good performance. It is
important to note that this method does not utilize
any additional real parallel or monolingual data, but
instead derives new data directly from the existing
fine-tuning corpus. Our synthetic pre-training cor-
pus, although unnatural at the sentence-level, con-
tains many phrase-level alignments and reordering
information which reinforces the translation knowl-
edge captured by the model. Any destructive effect
from presenting to the model during pre-training
sentence pairs with unnatural word order or bad
grammar, can be rectified in the fine-tuning stage
by showing the model the original fluent source
and target sentences.

4.4 Pre-Training with Synthetic Data

We pre-train transformer (Vaswani et al., 2017)
models using 2m sentence pairs of synthetic paral-
lel data to match the data size used in our obfusca-
tion experiments. We further explore the effect of
scaling the synthetic pre-training data size in Ap-
pendix A.4. Separate synthetic training sets were
generated for each of the three task variants de-
scribed in Section 3.3. Additional sets of 4000
synthetic pairs were generated as validation data.
Each pre-trained model is subsequently fine-tuned
with real parallel data for a specific language pair:
my↔en, id↔en, and tr↔en. In Table 1, we report
sentencepiece BLEU (spBLEU) (Goyal et al.,
2022) scores for our three synthetic pre-training
task variants. For comparison purposes, we also
show the scores obtained without pre-training – i.e.
a randomly initialized model trained on only the
fine-tuning data.

Our first observation is that synthetic pre-
training with the identity operation task (§3.3.1)
does not perform well. For all three language pairs
it is slightly worse than simply fine-tuning from a
randomly initialized model. This is to be expected
since the pre-training task is too crude: a simple
copy operation from source to target with identi-
cal lengths. Pre-training with the case-mapping
synthetic task (§3.3.2) and deletion probability
ds = dt = 0 improves the scores, with gains
of +1.0 to +5.0 spBLEU over the identity oper-
ation on our test set. Although the case-mapping
pre-training task is still quite crude, it is able to
beat fine-tuning from a randomly initialized model
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my-en id-en tr-en en-my en-id en-tr

Test Flores Test Flores Test Flores Test Flores Test Flores Test Flores

scratch 4.1 1.8 18.2 7.2 14.7 17.7 16.2 6.3 19.1 8.3 17.0 16.4

identity 3.2 1.1 16.8 7.6 12.4 13.8 12.7 4.5 18.1 9.7 13.8 13.5
case-map 6.7 1.6 21.8 12.1 13.4 15.1 16.4 6.0 22.9 13.8 15.6 15.2
pb-trees 11.4 2.5 23.1 12.2 14.4 16.9 18.9 7.0 23.8 14.4 16.6 16.3

phrase-cat 14.0 3.9 27.3 14.4 16.5 19.1 23.0 8.6 28.1 17.0 18.4 18.5

Table 1: Translation decoding results (spBLEU) for three purely synthetic pre-training variants and concatenation of
aligned phrases vs. fine-tuning from a randomly initialized baseline (scratch) (English-centric language pairs).

for both Myanmar-to-English and Indonesian-to-
English. Our best performing synthetic task is pb-
trees (§3.3.3) with a node reordering probability
r = 0.15. This model shows that transfer learn-
ing from synthetic pre-training to real-world tasks
can be substantial, with scores as high as +7.3 sp-
BLEU over the baseline for Myanmar-to-English
and +4.9 for Indonesian-to-English. We do not see
gains for Turkish-to-English for any of our purely
synthetic pre-training tasks. The fine-tuning data
for this language pair is much larger than that of
the other language pairs. As the fine-tuning data
size increases, the benefits of transfer learning from
pre-training diminish.

We also evaluate the strongest of our three purely
synthetic pre-training tasks, pb-trees, on additional
non-English-centric language pairs. Table 8 in
Appendix A.7 shows spBLEU decoding results
for these additional pairs. We compare perfor-
mance over a range of different fine-tuning set
sizes. On both OPUS-Test and FLORES-devtest,
and for the majority of fine-tuning set sizes, syn-
thetic pre-training with the pb-trees task typically
outperforms fine-tuning from a randomly initial-
ized baseline.

5 Analysis and Discussion

5.1 Synthetic Knowledge Transfer

In this section, we discuss what kind of useful rep-
resentations are actually learned by the model when
pre-training with purely synthetic tasks and data.
Our empirical study has shown that pre-training on
synthetic data can result in improved translation
quality after fine-tuning for a specific language pair.
Even though the pre-training data is entirely syn-
thetic, the model must have successfully learned
representations and structures relevant for transla-
tion that can be leveraged via transfer learning to
the downstream task.

In Table 2, we show the word piece overlap be-

tween our tokenized synthetic pre-training corpus
and the real human language corpus for three fine-
tuning language pairs. Our vocabulary consists of
263 paired lowercase-uppercase synthetic tokens,
but after tokenization the number of unique word
pieces is much lower. For example, there are only
3,541 unique source and 2,405 unique target word
pieces after tokenizing a corpus of 2M synthetic
parallel sentence pairs. The fine-tuning data, al-
though much smaller, has a far greater token diver-
sity for English, Indonesian, and Turkish. Myan-
mar is the exception: it is aggressively segmented
by the XLMR sentencepiece model which re-
sults in far fewer unique word pieces.

We compute the intersection between the set of
word pieces in the synthetic pre-training data and
those in the fine-tuning data in the last column of
Table 2. We observe low word piece overlap. For
example, only 35 of the 3541 word pieces that oc-
cur in the source side of the synthetic corpus also
occur in the source side of the my-en corpus. This
number is low because the Myanmar script is so
different from English. But overlap remains low
even for languages such as Indonesian and Turk-
ish which have similar alphabets to English. Low
levels of overlap were also observed in our obfus-
cated pre-training experiments (Table 6). The low
word piece overlap means that most of the word
embeddings learned during pre-training have little
relevance to the fine-tuning or inference stages. We
conclude that any transfer learning benefit exhib-
ited by the model on the downstream task must be
captured in the inner layers of the transformer.

5.2 Lexical and Structural Knowledge

The results in Table 1 show phrase-cat to be an ef-
fective pre-training strategy for low-resource NMT.
Both lexical and structural knowledge is captured
in the aligned phrases. However, since the phrases
are sampled from the uniform distribution, long-
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Pair PT/FT |VPT | |VFT | Overlap

my-en
src: lc/my 3,541 1,598 35
trg: uc/en 2,405 18,514 740

id-en
src: lc/id 3,541 18,095 1,377
trg: uc/en 2,405 18,167 740

tr-en
src: lc/tr 3,541 24,616 1,938
trg: uc/en 2,405 26,236 1,358

Table 2: Tokenized pre-training (PT) and fine-tuning
(FT) word piece counts and overlap statistics: ‘lc’ and
‘uc’ denote lowercase and uppercase synthetic tokens.

distance structure is ignored and only local reorder-
ing information is captured. The pb-trees method
also allows us to encode structural knowledge into
our synthetic data since it is possible to generate
sentence pairs that reorder sub-trees over long dis-
tances. Comparing the effectiveness of both meth-
ods shows that surprising gains in translation qual-
ity are possible even for synthetic data generation
methods such as phrase-cat that encode only very
local structural knowledge. This insight, that it is
mainly collocations (especially, for NMT, parallel
collocations) agrees with the conclusions about the
relative lack of importance of word order to LM
pre-training in Sinha et al. (2021).

5.3 Translation Quality vs. Toxicity

To evaluate model toxicity, we consider catas-
trophic mistranslations (Costa-jussà et al., 2022).
These errors occur when a model hallucinates toxic
terms in the translated text, even though no such
terms occur in the source text. Following the toxic-
ity measurement setup of Goyal et al. (2022), we
use the FLORES Toxicity-2001 word lists to calcu-
late the toxicity rate of translations produced by a
model. The lists cover 200 languages and contain
frequently used profanities, insults, and hate speech
terms. We consider a sentence toxic if it contains
words that match entries in these lists. The toxicity
rate for each model is defined as the proportion of
sentences with hallucinated toxicity in translations
of the test set and a larger set of 100k monolingual
sentences randomly sampled from CC-100 (Wen-
zek et al., 2020; Conneau et al., 2019). We compare
BLEU scores and toxicity rates for various models
including current state-of-the-art large pre-trained
multilingual translation models in Table 3.

Results and Analysis We first observe that mod-
els pre-trained on synthetic data obtain signifi-

1http://github.com/facebookresearch/flores/
tree/main/toxicity

cantly higher BLEU scores than baselines trained
from scratch using only the fine-tuning data. This
confirms that our proposed synthetic tasks in-
deed capture useful knowledge that can be applied
through transfer learning to low-resource NMT
tasks. When compared to the multilingual transla-
tion models FLORES-101 (615M parameters) and
M2M-100 (1.2B parameters), we note that models
pre-trained on synthetic data obtain comparable
performance for languages my-en and even out-
perform multilingual models by a large margin
on de-my, id-en, and my-tl, though with inferior
translation quality on de-id. It should be noted that
some of these language pairs represent zero-shot di-
rections for M2M-100. We compare our synthetic
methods with the standard NMT data augmentation
technique of back-translation in Appendix A.3.

While these results are quite promising, we note
that our goal in this paper is not to surpass the
state-of-the-art in translation quality achieved by
large-scale massively multilingual models on low-
resource NMT. Instead, we seek to further under-
stand which properties of pre-training based on
synthetic tasks and data - along the structural and
lexical knowledge axes of Figure 1 - enhance trans-
fer learning performance, while minimizing toxi-
city and other data issues inherent in models that
rely on large-scale pre-training using real data.

Analyzing toxicity, we observe the presence
of catastrophic mistranslations in all models, but
less frequently when training from scratch in most
cases. This is because the low-resource fine-tuning
data contains very little toxic content. On the other
hand, as noted above, the BLEU scores when train-
ing models from scratch are very low. We see
that the FLORES-101 and M2M-100 models both
exhibit toxicity, since they were pre-trained on real-
world corpora that can include toxic content. Our
results show that synthetic pre-training can produce
models with comparable BLEU scores while signif-
icantly reducing catastrophic mistranslations. We
observe that parallel data generated from permuted
binary trees has the lowest toxicity among the three
synthetic pre-training methods, since it relies on
purely synthetic data. This may indicate that pat-
terns in the data can still trigger toxic terms, even
after the words have been obfuscated or phrases
have been shuffled. We include additional toxicity
results and analysis in Appendix A.5.
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Model
de-id de-my id-en my-en my-tl

BLEU Toxicity BLEU Toxicity BLEU Toxicity BLEU Toxicity BLEU Toxicity

Baseline scratch 6.6 0.68 15.2 0.01 18.2 0.05 4.1 0.02 16.4 0.04

Large Pretrained
Multilingual Model

M2M-100 32.9 0.68 9.1 0.03 30.2 0.28 1.8 0.15 14.2 0.06
FLORES-101 30.0 0.63 12.3 0.03 26.0 0.23 4.6 0.18 12.8 0.08

Synthetic
Pre-training

obfuscation 18.2 0.34 22.4 0.01 29.0 0.11 16.4 0.08 23.6 0.04
phrase-cat 14.7 0.50 19.6 0.02 27.3 0.10 14.0 0.02 22.5 0.03
pb-trees 11.7 0.45 12.3 0.01 23.1 0.10 11.4 0.01 20.7 0.02

Table 3: BLEU scores and toxicity rates for various models on low-resource language pairs. Baseline is training on
fine-tune real-world data as lower bound of performance. Large pre-trained models are upper bound of performance.

6 Conclusion

Our study of synthetic pre-training tasks for NMT
showed that pre-training benefits can still be
achieved even when using synthetic or obfuscated
data. Additionally, we have shown that synthetic
data has the potential to reduce model toxicity com-
pared to models trained on web-scale crawled cor-
pora. Our research provides insights into what
types of knowledge transfer make for a good pre-
trained model. We believe that synthetic data aug-
mentation techniques based on synthetic tasks and
procedurally generated data are a promising so-
lution for addressing pre-training data concerns,
and can lead to efficient, accurate, and trustwor-
thy NMT. In future work, we plan to further in-
vestigate synthetic pre-training by exploring more
advanced data generation models and directly op-
timizing the parameters for specific downstream
fine-tuning tasks. Increasing the effectiveness of
synthetic data at different data scales is also worthy
of further exploration.

7 Limitations

Our work seeks to gain insight into what pre-
training knowledge is transferred and useful for
downstream fine-tuning in NMT using synthetic
tasks and data. We note that changes in the data
generation methods do require re-running the pre-
training stage, which is computationally expensive
compared to the fine-tuning stage.

Our current synthetic data generation methods
are somewhat crude. Although they are designed
to encode varying degrees of lexical and structural
translation knowledge, they do so in a rather sim-
plistic way. For example, sampling phrases from
the normal distribution ignores distributional fre-
quencies which represent information that is likely
useful for the synthetic data generation task. In
this paper we have presented some interesting ini-
tial findings regarding the suitability of synthetic

pre-training for NMT. We plan to explore more so-
phisticated data generation models in future work.

We acknowledge that synthetic pre-training is un-
likely to surpass the quality of real-world massively
multilingual pre-trained models in performance,
especially if synthetic data is the only data used
for pre-training. However, good performance can
probably be achieved by combining synthetic pre-
training and real-data pre-training. Of course, this
risks exposing the model to toxic and sensitive or
private content. Therefore, concerns of both model
quality and data quality should be considered when
evaluating the impact and benefits of synthetic pre-
training. We view synthetic pre-training as a com-
plimentary approach to finding an optimal balance
rather than as a replacement for previous state-of-
the-art NMT pre-training methods.

8 Ethics Statement

All of the training data used in our experiments are
official releases of publicly available benchmarks.
In addition, the toxic word lists used to measure tox-
icity are obtained from the public FLORES repos-
itory which requires a password to access, thus
reducing the risk of hacking by a malicious user
or adversarial bot. In addition, as for the issue
of hallucinated toxicity discussed previously, we
note that our work also has the potential to address
other problematic translation behaviors, such as
hallucinated bias.
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A Supplementary Results

A.1 Scaling Effect of Obfuscated Pre-training

We first evaluate the performance of regular pre-
training and fine-tuning with various quantities of
real-world German-to-English data. The results in
Figure 4 show that the highest BLEU scores are ob-
tained by using regular real-world parallel data (i.e.
0% obfuscation). We compare vs. models trained
solely on the fine-tuning data (‘Scratch’): the result-
ing BLEU scores are quite low when the training
data size is small, confirming the importance and
benefits of pre-training for NMT.

A.2 FLORES Obfuscated Pre-training
Results

We show additional decoding results for the
matched (with source and target fine-tuning lan-
guages that are the same as the pre-training lan-
guages: de-en) vs. unmatched (with source or
target fine-tuning languages that differ from the
pre-training languages: de-id, de-my, id-en,
my-en, my-tl) conditions of obfuscated pre-
training on the FLORES devtest set in Figure 5.

A.3 Back-Translation Comparison

Back-translation (Sennrich et al., 2016) is an effec-
tive technique for improving the quality of machine
translation. It works by creating new parallel sen-
tence pairs by translating target-side monolingual
data into the source language using an inverse direc-
tion MT system. The new sentence pairs consist of
a (possibly noisy) back-translated source sentence
paired with a high-quality target sentence. We com-
pare our synthetic training methods to an NMT
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Figure 4: Translation results after pre-training with dif-
ferent levels of obfuscation and real-world fine-tuning
on the same language pairs, with various quantities of
fine-tuning data in de-en. Scratch refers to training
from scratch using only fine-tuning data.

my-en en-my

Model Test Flores Test Flores

scratch 4.1 1.8 16.2 6.3
back-translation 10.7 2.0 11.1 4.1
phase-cat 14.0 3.9 23.0 8.6
pb-trees 11.4 2.5 18.9 7.0

Table 4: Synthetic pre-training v.s. back-translation on
WMT test set and FLORES devtest set.

system that has been trained on an augmented data
set that includes back-translated parallel data. We
use our baseline models for my-en and en-my to
produce the back-translated sentences. For each
direction my-en and en-my, we generate an addi-
tional set of 2m back-translated sentences. The
results are shown in Table 4. We note that back-
translation provides only limited improvements vs.
the baseline model trained from scratch for my-en
and actually hurts for en-my. This is because back-
translation requires a good quality model in the
target-to-source direction in order to produce ac-
curate and relevant translations. The my-en base-
line model is not of sufficiently high quality to
produce useful back-translations. Our synthetic
methods significantly outperform back-translation
for both translation directions, confirming our ex-
pectation about the limitations of back-translation
in low-resource conditions, and further illustrating
the potential of our proposed synthetic approaches.

A.4 Synthetic Pre-training Data Scaling

Figure 6 shows the data scaling behavior of the
pb-trees and phrase-cat synthetic pre-training meth-
ods. We pre-train each model with proper subsets
of varying sizes sampled from the full 2m pairs
used in the rest of our experiments. For pb-trees,
the scaling is mostly flat. The BLEU scores, while
consistently higher than the baseline (which uses
no pre-training at all), increase only gradually with
additional synthetic training data. The BLEU gains
over the baseline are therefore a result of prim-
ing the model for the task of translation, rather
than learning any useful real-world lexical relation-
ships between the source and target languages. For
phrase-cat, the data scaling curve is much more pro-
nounced. For all three tasks, we observe steadily
increasing BLEU scores with larger synthetic train-
ing set sizes, reaching a plateau at around 1m pairs.
The phrase-cat method benefits from additional
samples and combinations of real phrase pairs since
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Figure 5: Translation decoding results on WMT for (a) regular parallel corpus (0%) vs. obfuscated pre-training as a
function of fine-tuning set size (x-axis) and obfuscation ratio (in different colors), and (b) unmatch conditions.

the synthetic pairs provide additional coverage of
possible word orders and translation relationships
that can aid the subsequent fine-tuning and decod-
ing of the testset.

A.5 Further Analysis of Toxicity

We further analyze the toxicity of our models by
comparing the toxicity rate of source language sen-
tences and their translations. Firstly, we test de-en
translation systems with obfuscated pre-training
on WMT test, as shown in Table 5. We observe
that training with real-world data (i.e. obfuscation
ratio R = 0%) generates translations that contain
toxic terms more frequently than they occur in the
source. This indicates a toxicity amplification ef-
fect, a problem highlighted previously for toxicity
(Costa-jussà et al., 2022) and bias (Leino et al.,
2018). Pre-training with obfuscated data, however,
is a promising way of mitigating this phenomenon,
as shown by the big reduction in toxicity rate as the
obfuscation ratio is increased. We observe a similar
pattern for CC-100 data as well. The sentences in
the CC-100 corpus are more toxic than those in the
WMT testset (0.57% > 0.43%).

A.6 Word-Piece Overlap Statistics for
Obfuscated Pre-Training

Similar to Section 5.1, we also report the token
overlap between completely encrypted pre-training
data (both source and target corpus) and real-world
fine-tuning data, on de-en as shown in Table 5 and
other language directions id-en, my-tn, and tr-en
in Table 7. In de-en translation, we notice that
the overlap is just 0.08% on the source language
and 0.04% on the target language, with the largest
size of the fine-tuning set (1M). On low-resource

language pairs, we can see there is almost no over-
lap between pre-training and fine-tuning on both
source and target sides, as shown in Table 7. This
strong evidence supports the conclusion mentioned
in Section 5.1 – most of the representations in the
first layers are not touched during pre-training, and
the benefits from pre-training may come from the
inner layers which capture the transferable high-
level knowledge for downstream tasks.

A.7 Synthetic Pre-Training: Additional
Language Pairs

Table 8 shows translation decoding results (sp-
BLEU) for additional non-English-centric lan-
guage pairs. We compare synthetic pre-training
on permuted binary trees vs. fine-tuning from a
randomly initialized model as a function of the fine-
tuning set size. Cells marked ‘n/a’ indicate there
was insufficient parallel data to create a fine-tuning
set of the specified size.

B Implementation Details

This section describes implementation details for
facilitating the reproduction of our work.

B.1 Model Architectures
All translation models described in our experiments
are based on the sequence-to-sequence transformer
‘base’ architecture (Vaswani et al., 2017) as imple-
mented in fairseq (Ott et al., 2019). The models
have six encoder layers, six decoder layers, and
eight attention heads. The word embedding size
is 512, and the feed-forward layers have 2048 di-
mensions. All BLEU scores are computed using
SacreBLEU (Post, 2018) with sentencepiece to-
kenization (Goyal et al., 2022). Our SacreBLEU
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Obfuscation RatioFine-Tuning
Set Size 0% 25% 50% 75% 100%

20k 0.57 0.40 0.43 0.37 0.00
50k 0.43 0.53 0.47 0.40 0.03
100k 0.53 0.33 0.40 0.27 0.07
500k 0.50 0.50 0.33 0.33 0.40
1M 0.57 0.47 0.40 0.37 0.37

Obfuscation RatioFine-Tuning
Set Size 0% 25% 50% 75% 100%

20k 0.37 0.33 0.33 0.21 0.01
50k 0.37 0.35 0.37 0.26 0.05
100k 0.43 0.32 0.30 0.23 0.17
500k 0.36 0.38 0.36 0.32 0.27
1M 0.38 0.45 0.36 0.35 0.33

Table 5: Toxicity rate (%) on WMT Test (left) and sampled CC-100 data (right). Results that increase toxicity
compared to the source (0.43% for WMT and 0.57% for CC-100) are colored in red; otherwise they are colored in
green. The degree of toxicity is shown by the darkness of the color.
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Figure 6: Effect on BLEU score of scaling up the size
of the procedurally generated parallel data used during
pre-training for two of our synthetic tasks: permuted
binary trees ‘pb-trees‘ (top), and concatenated aligned
phrases ‘phrase-cat‘ (bottom).

scoring signature2 indicates that both source and
reference are sentencepiece tokenized prior to
scoring.

B.2 Hyper-Parameters and Training
Configuration

Table 9 shows the hyper-parameters and training
settings used for our experiments. We found dif-
ferent warm-up schedules were appropriate for the

2BLEU+case.mixed+numrefs.1+smooth.exp
+tok.spm+version.1.5.1

pre-training and fine-tuning stages. We choose the
best model during training by maximizing the tok-
enized BLEU score on the validation set. For both
pre-training and fine-tuning, we allow training to
continue until the BLEU score has fully converged.
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Model FT size PT/FT Language |VPT | |VFT | Overlap

Obfuscated
Pre-training

20k src: nonsense-de/de 1,289,374 77,284 119
trg: nonsense-en/en 680,221 56,339 15

50k src: nonsense-de/de 1,289,374 148,282 215
trg: nonsense-en/en 680,221 102,900 33

100k src: nonsense-de/de 1,289,374 241,617 270
trg: nonsense-en/en 680,221 163,105 50

500k src: nonsense-de/de 1,289,374 729,937 651
trg: nonsense-en/en 680,221 466,678 164

1m src: nonsense-de/de 1,289,374 1,170,435 950
trg: nonsense-en/en 680,221 730,119 271

Regular
Pre-training

20k src: de/de 1,861,801 77,284 65,006
trg: en/en 1137,015 56,339 49,295

50k src: de/de 1,861,801 148,282 117,827
trg: en/en 1,137,015 102,900 85,111

100k src: de/de 1,861,801 241,617 180,708
trg: en/en 1,137,015 163,105 126,278

500k src: de/de 1,861,801 729,937 435,333
trg: en/en 1,137,015 466,678 291,138

1m src: de/de 1,861,801 1,170 600,922
trg: en/en 1,137,015 730,119 394,598

Table 6: Tokenized pre-training (PT) and fine-tuning (FT) word piece counts and overlap statistics comparing
obfuscated pre-training (upper part) vs. regular pre-training (lower-part) for German-to-English parallel data with
various fine-tuning data set sizes.

Model Language Pair PT/FT Language |VPT | |VFT | Overlap

Obfuscated
Pre-training

id-en
src: nonsense-de/id 1,289,374 18,095 112
trg: nonsense-en/en 680,221 18,167 0

my-en
src: nonsense-de/my 1,289,374 1,598 1
trg: nonsense-en/en 680,221 18,514 0

tr-en
src: nonsense-de/tr 1,289,374 24,616 270
trg: nonsense-en/en 680,221 26,236 0

Regular
Pre-training

id-en
src: de/id 1,861,801 18,095 3,722
trg: en/en 1,137,015 26,236 6,483

my-en
src: de/my 1,861,801 1,598 97
trg: en/en 1,137,015 18,514 4,407

tr-en
src: de/tr 1,861,801 24,616 5,569
trg: en/en 1,137,015 26,236 6,483

Table 7: Tokenized pre-training (PT) and fine-tuning (FT) word piece counts and overlap statistics comparing
obfuscated pre-training (upper part) vs. regular pre-training (lower-part) for additional language directions.
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OPUS-Test FLORES-devtest

Language Pair Model 10k 25k 50k 100k 10k 25k 50k 100k

de-id
random-init 5.6 6.6 10.1 16.0 1.8 4.2 7.1 12.5
pb-trees 6.4 11.7 16.0 19.8 4.1 8.7 12.4 16.3

de-my
random-init 10.7 15.2 19.6 23.6 1.4 2.7 4.2 5.9
pb-trees 12.3 18.3 24.2 28.3 2.1 4.2 6.2 7.8

id-my
random-init 11.8 16.3 18.9

n/a
1.5 2.5 3.4

n/a
pb-trees 11.8 17.0 20.2 1.6 3.4 5.0

id-tl
random-init 15.2 17.6 20.9 23.5 0.2 0.3 0.4 0.6
pb-trees 16.7 18.5 21.8 24.8 0.5 0.9 1.5 2.9

id-tr
random-init 4.1 6.2 8.0 11.5 0.9 1.7 3.0 5.7
pb-trees 4.5 8.1 12.3 16.3 1.1 3.5 6.8 10.5

my-tl
random-init 11.9 16.4 21.6

n/a
2.0 2.8 3.7

n/a
pb-trees 12.8 19.6 27.0 2.4 4.3 5.8

my-tr
random-init 5.1 6.5 8.0 7.7 0.2 0.4 0.3 0.3
pb-trees 5.7 8.1 11.4 14.7 0.2 0.5 1.2 1.8

tl-tr
random-init 2.2 3.1 3.8 5.0 0.3 0.7 1.1 1.8
pb-trees 2.0 3.5 4.9 4.9 0.4 1.0 2.1 2.1

Table 8: Translation decoding results for additional non-English-centric pairs. We report spBLEU for synthetic
pre-training with pb-trees vs. fine-tuning from random initialization as a function of the fine-tuning set size.

Training Settings

Optimizer Adam
Learning Rate 5e-4
Weight Decay 1e-4
Criterion label_smoothed_cross_entropy
Label Smoothing 0.1
Learning Rate Scheduler Inverse sqrt
Warmup Updates (Pre-Training) 4000
Warmup-Updates (Fine-Tuning) 100
Max Token Number 2048
Decoding Strategy Beam Search
Beam size 5
Max Length a 1.2
Max Length b 10

Table 9: Summary of pre-training and fine-tuning parameters for our experiments.
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