
Findings of the Association for Computational Linguistics: ACL 2023, pages 8065–8079
July 9-14, 2023 ©2023 Association for Computational Linguistics

PreQuant: A Task-agnostic Quantization Approach for
Pre-trained Language Models

Zhuocheng Gong1∗, Jiahao Liu2, Qifan Wang3, Yang Yang2, Jingang Wang2, Wei Wu2

Yunsen Xian2, Dongyan Zhao1,4,5†, Rui Yan6,7†
1Wangxuan Institute of Computer Technology, Peking University

2Meituan; 3Meta AI
4National Key Laboratory of General Artificial Intelligence

5Beijing Institute for General Artificial Intelligence
6Gaoling School of Artificial Intelligence, Renmin University of China

7Engineering Research Center of
Next-Generation Intelligent Search and Recommendation, Ministry of Education
{gzhch,zhaody}@pku.edu.cn, ruiyan@ruc.edu.cn, wqfcr@fb.com

{liujiahao12,yangyang113,wangjingang02,xianyunsen}@meituan.com
wuwei19850318@gmail.com

Abstract

While transformer-based pre-trained language
models (PLMs) have dominated a number of
NLP applications, these models are heavy to
deploy and expensive to use. Therefore, effec-
tively compressing large-scale PLMs becomes
an increasingly important problem. Quantiza-
tion, which represents high-precision tensors
with low-bit fix-point format, is a viable so-
lution. However, most existing quantization
methods are task-specific, requiring customized
training and quantization with a large num-
ber of trainable parameters on each individual
task. Inspired by the observation that the over-
parameterization nature of PLMs makes it pos-
sible to freeze most of the parameters during
the fine-tuning stage, in this work, we propose a
novel “quantize before fine-tuning” framework,
PreQuant, that differs from both quantization-
aware training and post-training quantization.
PreQuant is compatible with various quantiza-
tion strategies, with outlier-aware parameter-
efficient fine-tuning incorporated to correct the
induced quantization error. We demonstrate
the effectiveness of PreQuant on the GLUE
benchmark using BERT, RoBERTa, and T5.
We also provide an empirical investigation into
the workflow of PreQuant, which sheds light
on its efficacy.

1 Introduction

Pre-trained language models (PLMs) have shown
superior performance in various NLP applications.

*Work done during internship at Meituan.
†Corresponding authors: Dongyan Zhao

(zhaody@pku.edu.cn) and Rui Yan (ruiyan@ruc.edu.cn).

Despite their impressive success, these transformer-
based models typically contain hundreds of mil-
lions of parameters. Massive model scale is becom-
ing an increasing burden, preventing researchers
from making full use of large-scale PLMs. Accord-
ing to a recent study, only 0.5% to 4% of research
papers published at the recent five NLP confer-
ences tend to adopt large PLMs (PLMs with over
a billion parameters) (Ding et al., 2022). This sug-
gests that the inefficiency of deploying large PLMs
is hampering the development of NLP research.
Therefore, compressing PLMs becomes an urgent
and important problem.

Various model compression methods have been
proposed, such as knowledge distillation (Jiao et al.,
2020; Sanh et al., 2019; Wang et al., 2021; Pass-
ban et al., 2021), weight sharing (Lan et al., 2019),
network pruning (Liang et al., 2021; Gordon et al.,
2020; Li et al., 2021), and quantization (Tao et al.,
2022; Zhang et al., 2020; Bai et al., 2021; Kim
et al., 2021). Among these compression methods,
quantization is a promising solution. The core idea
of quantization is to use low bit precision to store
weight and activation tensors, and use fixed-point
arithmetic to speed up inference. There are some
prior works on quantizing PLMs covering different
strategies and granularities. However, these quan-
tization methods generally neglect the characteris-
tics of PLMs - the distinction between fine-tuning a
model and training a model from scratch - but treat
quantizing PLMs no different from quantizing regu-
lar neural networks. In other words, these methods
are task-specific, which design customized quanti-
zation for PLMs. There are two main limitations:
first, these task-specific methods need to conduct

8065

both quantization and fine-tuning for each down-
stream task, with the quantization being applied
either during or after the fine-tuning stage, which is
inefficient; Second, the number of trainable param-
eters are still very large during fine-tuning, which
is computational expensive.

In this work, we consider the quantization
pipeline specially for the pre-training scenario.
Our motivation starts from the distinction between
“training from scratch” and “pre-training then fine-
tuning”. Unlike the weights from random initializa-
tion, the weights of the pre-trained model already
contain rich information during pre-training. To
utilize such information in a more efficient man-
ner, we propose to directly quantize the pre-trained
model in a task-agnostic way to obtain a “pre-
quantized” model before fine-tuning. We then in-
troduce a parameter-efficient fine-tuning and show
that fine-tuning could be finished with minimal
weight updates. In particular, we freeze most of the
quantized weights in the “pre-quantized” model,
and only fine-tune a very small subset of its model
parameters in the fine-tuning process. Through
an extensive set of explorations and experiments,
we demonstrate the feasibility and advantages of
the “quantizing the PLM first, then fine-tuning”
pipeline, which we name as PreQuant. The main
contributions are summarized as follows:

• We propose a novel quantization framework,
PreQuant, tailored for PLMs. We conduct a
systematic study to overcome the difficulties
of PLM quantization and validate the perfor-
mance through thorough experiments.

• PreQuant performs task-agnostic quantization,
which dramatically reduces the storage re-
quirements for large PLMs and enables effi-
cient deployment of PLMs on different down-
stream tasks. Moreover, PreQuant only fine-
tunes 0.5% of the model parameters, which is
more suitable in resource-limited scenarios.

• PreQuant is highly flexible, which is compat-
ible with a wide range of quantization strate-
gies and fine-tuning techniques. Within this
framework, we evaluate the pros and cons of
various quantization strategies and discuss the
impact of different quantization settings.

2 Related Work

2.1 Efficient Transformer
Compressing transformer-based models has been a
prosperous topic since PLMs showed remarkable
performance in various NLP tasks (Ganesh et al.,
2021). The main idea of model compression is to
reduce the memory and computation consumptions
without too much performance degradation. There
are several strands of research for large-scale trans-
formers compression, including knowledge distilla-
tion (Jiao et al., 2020; Sanh et al., 2019; Wang et al.,
2021; Passban et al., 2021), quantization (Tao et al.,
2022; Zhang et al., 2020; Bai et al., 2021; Kim
et al., 2021), weight sharing (Lan et al., 2019) and
network pruning (Liang et al., 2021; Gordon et al.,
2020; Li et al., 2021). Besides directly compress-
ing transformers, parameter efficient fine-tuning
becomes promising by restricting the number of
trainable parameters during fine-tuning (Houlsby
et al., 2019; Ben Zaken et al., 2022; Hu et al., 2021;
Gong et al., 2022). PreQuant propose an outlier-
aware parameter-efficient fine-tuning method in its
second stage.

2.2 Quantization
Quantization, which represents the weights and
activations of neural networks with low-bit preci-
sion, has been widely studied in computer vision
and natural language processing (NLP) commu-
nities (Gholami et al., 2021). Recently, some re-
searchers attempt to compress PLMs to reduce the
deployment cost with quantization methods (Zadeh
et al., 2020; Wu et al., 2022; Kim et al., 2021; Bon-
darenko et al., 2021). Quantization-aware training
(QAT) (Gupta et al., 2015) is a representative ap-
proach to quantize a PLM while retaining most
of its performance on downstream tasks. Given a
downstream task, QAT performs the quantization
during the task-specific training(i.e., fine-tuning)
process. For example, Q8BERT (Zafrir et al., 2019)
and Q-BERT (Shen et al., 2020) are typical QAT
methods to compress BERT-based models. Un-
like QAT, Post-training quantization (PTQ) dis-
entangles the fine-tuning and quantization. The
quantization procedure is conducted after the task-
specific fine-tuning. In comparison to QAT, PTQ
holds the advantages of flexibility and good com-
patibility. Yao et al. (2022) combines PTQ with
knowledge distillation to achieve efficient com-
pression for large PLMs. In addition to NLP sce-
narios, PTQ is also utilized to compress vision

8066

Figure 1: An illustrative comparison of different quantization methods for PLMs. PTQ directly performs model
qunatization after the fine-tuning stage, while QAT jointly optimizes qunatization and fine-tuning. In contrast, our
PreQuant conducts task-agnostic quantization first, and then performs parameter efficient fine-tuning.

transformers (Liu et al., 2021). Some very re-
cent researches employ quantization and parameter-
efficient fine-tuning jointly.Qadapter (Park et al.,
2022) introduces a lightweight module to produce
quantization-friendly activations by scaling them
channel-wise. AlphaTuning (Kwon et al., 2022)
utilizes binary-coding-quantization (BCQ) by only
updating scaling factors.

2.3 Outlier Phenomenon and its Applications
in Quantization

Outlier phenomenon in PLMs has been observed
in previous research. Kovaleva et al. (2021) reveals
that PLMs are surprisingly fragile to the removal of
a very small number of features in the layer outputs.
More specifically, in case of BERT-based PLMs,
outlier values exist in LayerNorm, the disabling of
which would disrupt both the Masked Language
Modeling (MLM) loss and the downstream task
performance. The outliers are high-magnitude nor-
malization parameters that show up consistently
in the same dimensional positions. Outlier phe-
nomenon has some applications in quantization.
For example, Park et al. (2018) proposes to use a
low-precision format for the center values and a
high-precision format for the outliers in PTQ. Zhao
et al. (2019) proposes an outlier channel splitting
(OCS) method that duplicates and halves the chan-
nels containing outlier value. Bondarenko et al.
(2021) shows that outlier values detected in the acti-
vation of PLMs affect the estimation of correspond-
ing scaling factors, thus disturbs the effectiveness
of quantization. Hence, outlier-aware quantization
has been proposed to promise the quantization per-
formance. In PreQuant, we take the outlier phe-
nomenon into consideration in both stages, which

are first detected and then treated separately in
low-precision quantization. During the fine-tuning
stage, we cast the outliers back to high-precision
representations and only update them.

3 Preliminary

A number of works have been employing various
quantization techniques on the field of pre-trained
language models. Existing quantization methods
can be categorized into two prominent branches:
quantization-aware training and post-training quan-
tization.

Basic Notations We consider uniform quantiza-
tion for both weights and activations. Specifically,
for a given tensor x in full precision, we adopt
the rounding-to-nearest operation to round x to the
nearest unsigned integer grid values xZ, which can
be described as:

xZ = clip
(⌊ x

α
· 2b

⌉
+ z; 0, 2b − 1

)
(1)

where b ∈ N is bit-width, α ∈ R is the scaling
factor, and z ∈ N is zero-point. After obtaining
the quantized tensor xZ, one can approximate the
full-precision version of the tensor x̂:

x̂ =

(
xZ − z

)
α

2b
(2)

Quantization-aware Training (QAT) QAT
methods (Fig. 1(b)) learn the scaling factors (quan-
tization) along with the weights during the fine-
tuning stage. Since the rounding operation in
Eq. 1 is not derivable, gradients through the non-
differentiable operations are usually approximated
with the Straight-through Estimator (STE). As the

8067

Figure 2: The illustration of our two-stage quantization framework. Dark green and light green blocks represent for
weight values in high-precision and low-precision respectively. Blue blocks represent for fine-tuned weights. In
the first stage, all weights are “pre-quantized” to low-precision indiscriminately. In the second stage, a very small
portion of weights are updated while the others are frozen during fine-tuning.

quantization process of QAT is supervised by the
overall training objective, the performance is gen-
erally quite promising.

Post-training Quantization (PTQ) PTQ meth-
ods (Fig. 1(a)) conduct qunatization after the fine-
tuning. Unlike QAT that relies on the full training
data, PTQ requires very little sometimes even zero
calibration data to estimate scaling factors. There-
fore, the overhead of PTQ is relatively small. How-
ever, its ease of use often comes with significant
performance penalties.

Generally, existing quantization solutions (both
QAT and PTQ) for PLMs are task-specific, mean-
ing to quantize either during or after the model
fine-tuning stage. However, in PLMs, “pre-training
then fine-tuning” replaces conventional “training
from scratch”, thus pre-trained weights already con-
tain rich information. We wonder if it is possible
to perform task-agnostic quantization. As shown
in Fig. 1(c), PreQuant first conducts task-agnostic
quantization on the pre-trained model, followed by
parameter-efficient fine-tuning.

4 PreQuant

4.1 Overview

In contrast to PTQ and QAT, we propose to quan-
tize PLMs prior to fine-tuning. Specifically, our
framework consists of two stages, as shown in
Fig. 2. The first stage directly quantizes the pre-
trained weights of PLMs without further adapta-
tion. Hence, the quantization is task-agnostic. The
second stage fine-tunes the “pre-quantized” PLM
for downstream tasks. We can not simply apply
the vanilla fine-tuning setting to a “pre-quantized”
PLM. When the vanilla fine-tuning setting is used,

it converts low-precision weights back into high-
precision representations as weight updates are nec-
essarily in high-precision (low-precision training is
practically impossible). This defeats our purpose
of quantizing these values. To address the issue,
we propose a parameter-efficient tuning method
that freezes most of the quantized weights and only
fine-tune a small subset of model parameters. The
details would be presented in following sections.

4.2 Task-agnostic Quantization
The goal of the uniform quantization in Eq. 1 is
to estimate the optimal scaling factor α for each
parameter matrix. This can be formulated as an
optimization problem that minimizes certain loss
functions, such as mean squared error (Choukroun
et al., 2019). A more convenient solution is to
directly estimate α with statistic information, such
as directly utilizing the range of the tensor as the
scaling factor (Bondarenko et al., 2021).

In our investigation into the weights of PLMs,
we have observed outlier phenomenon: in each pa-
rameter matrix of PLMs, a tiny fraction of weights
(i.e., outliers) holds abnormally greater values than
the other weights. Empirically, most of weights
strictly follow Gaussian distribution while “out-
liers” falls into the tail of the distribution, which
can be detected with:

Woutlier =

{
w

∣∣∣∣
1√
2πσ2

e
− (x−µ)2

2σ2 > ϵ,w ∈ W

}
, (3)

where µ and σ2 are the mean and variance of the pa-
rameter matrix W . Outlier values affect the effec-
tiveness of quantization, causing great quantization
error (Kovaleva et al., 2021). This addresses this is-
sue, we adopt an intuitive quantization method. We
set the quantization scaling factor α to 6σ, which is

8068

big enough to clip all the outlier weights according
to Eq. 1.

It is worth noting that PreQuant is compatible
with the other methods. In addition to the aforemen-
tioned outlier-aware scaling factor, we implement
three other methods for comparison.

• Min-max is a basic method that estimates the
scaling factor with the minimum and maxi-
mum of the tensor (Vanhoucke et al., 2011).

• MSE optimizes the scaling factor by minimiz-
ing the mean squared error between quantized
and full-precision tensors (Choukroun et al.,
2019; Shin et al., 2016; Zhao et al., 2019).

• Row-wise quantization adopts a finer gran-
ularity that assigns different scaling factors
to each dimension of the matrix (Shen et al.,
2020; Bondarenko et al., 2021).

We conduct a thorough comparison on previous
scaling factor estimation methods and discuss the
advantages and disadvantages of each in the exper-
iment section. In comparison to previous quantiza-
tion methods, our quantization method is data-free
and task agnostic, as the quantizations are executed
directly prior to the fine-tuning.

4.3 Outlier-aware Parameter-efficient
Fine-tuning

After obtaining a “pre-quantized” PLM, the sec-
ond stage is to fine-tune the model for specific
downstream tasks. In this stage, we encounter a
dilemma: on one side, fine-tuning requires updat-
ing model weights with high-precision represen-
tations, while on the other side, casting the low-
precision weights back to high-precision weights
will nullify the effect of quantization. To address
the issue, we propose an outlier-aware parameter-
efficient fine-tuning (outlier-aware tuning) strategy
that keeps most of the model parameters frozen in
low-precision. Parameter-efficient fine-tuning aims
to adapt PLMs by tuning only a few number of pa-
rameters (Houlsby et al., 2019; Gong et al., 2022).
(Ben Zaken et al., 2022) and Gong et al. (2022)
have shown that tuning a small subset of parameters
of PLMs can be comparable with full-parameter
fine-tuning in terms of performance. This approach
suits our scenario as it does not modify the model
structure.

However, parameter-efficient fine-tuning is more
challenging in our case since the quantization step

produces pre-quantized PLM wherein the weights
are rounded to low-precision. The induced quan-
tization error correlates to the disturbance of the
weights. If weights do not change much after quan-
tization, the error will be minimal, and significant
if they do. Intuitively, our goal is to identify which
parts of the weights cause the most quantization er-
ror. By only tuning these specific weights, we can
recover much of PLM’s damaged representation
ability.

In our investigation, we find that the majority
of parameters exhibit relatively small disturbance,
hence freezing them could preserve most of the
PLM’s ability. Some particular weights contribute
to the most of the induced error and these weights
are concentrated in specific dimensions. More-
over, these susceptible-to-quantization weights are
exactly outlier weights that we mentioned in the
above section. This is because the abnormally large
values of outliers are generally clipped according to
Eq. 1. We identify the dimensions containing most
of outlier weights, then setting them as trainable
parameters while freezing the rest. Specifically,
in each parameter matrix, we select r outlier di-
mensions as trainable parameters. r is extremely
small, we can guarantee that more than 99% pa-
rameters still remain in low-precision. By tuning
the subnetwork consisting of outlier dimensions,
we expect to recover the damaged representation
ability and adapt to specific downstream task at
minimal trainable parameters.

5 Experimental Evaluation

5.1 Experimental Setup

Settings We evaluate PreQuant on several popu-
lar PLMs including BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019) and T5 (Raffel
et al., 2020). For RoBERTa, we test on both
RoBERTabase and RoBERTalarge. For T5, we em-
ploy PreQuant to the encoder of T53b, denoted as
T5 Encoder. We use a fixed set of hyper-parameters
for all the GLUE tasks. For each layer, we set the
bit-width option b for weights as 4. Besides, we
apply 8-bit min-max uniform quantization to acti-
vations and embeddings. Experimental results of
more bit-width options are listed in Appendix A.4.

Datasets The GLUE benchmark contains a vari-
ety of natural language understanding tasks, includ-
ing textual entailment (RTE), natural language in-
ference (MNLI, QNLI), paraphrase (MRPC, QQP,

8069

Models Methods Bits
Trainable

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg.
Params

BERTbase

FT 32 85M 57.3 84.4 88.3 91.6 89.8 71.0 93.0 89.4 83.1
PTQ 4 85M 43.1 68.2 84.9 79.7 79.4 50.2 90.8 83.1 72.4
QAT 4 85M 57.2 83.7 87.8 91.3 89.6 70.0 92.3 89.1 82.6
PreQuant 4 0.55M 54.6 83.5 88.0 90.7 88.6 68.7 92.3 88.9 81.9

RoBERTabase

FT 32 85M 63.6 87.6 90.2 92.8 91.9 78.7 94.8 91.2 86.4
PTQ 4 85M 46.3 74.5 85.5 81.8 84.3 56.9 92.1 84.5 75.7
QAT 4 85M 61.9 86.9 88.9 91.7 91.3 76.5 94.4 90.5 85.3
PreQuant 4 0.55M 61.5 86.2 89.0 91.6 90.9 76.0 94.0 90.1 84.9

RoBERTalarge

FT 32 302M 68.0 90.2 90.9 94.7 92.2 86.6 96.4 92.4 88.9
PTQ 4 302M 46.6 79.5 86.6 82.2 84.6 56.4 92.6 85.0 76.7
QAT 4 302M 66.5 89.4 88.8 93.8 91.4 86.6 95.8 91.4 87.9
PreQuant 4 1.47M 67.3 89.4 89.0 93.2 91.1 84.7 95.4 90.8 87.6

T5 Encoder

FT 32 1.2B 67.6 91.2 90.9 95.4 91.9 87.1 97.2 92.3 89.2
PTQ 4 1.2B 50.6 82.4 86.5 84.6 85.7 59.1 92.0 87.5 78.6
QAT 4 1.2B 66.5 90.4 90.2 95.3 91.6 86.6 96.7 91.6 88.6
PreQuant 4 11.80M 66.4 90.7 90.0 95.1 92.0 85.1 96.9 91.6 88.5

Table 1: Results on the development set of the GLUE benchmark. We also report the quantity of trainable parameters
(without embeddings) of each method. FT represents for full-precision full-parameter fine-tuning, which achieves
best performance as expected. All the quantization methods are implemented with 4-bits precision representations.

Methods Bits Params GLUE

FT 32 302M 88.9
Qadapter (Park et al., 2022) 8 0.29M 85.1
AlphaTuning (Kwon et al., 2022) 4 1.18M 86.3
PreQuant-α 4 0.29M 86.6
PreQuant 4 1.47M 87.6

Table 2: Results of parameter-efficient PLM quantiza-
tion methods on RoBERTalarge. Full results are supple-
mented in Appendix A.5.

STS-B), sentiment analysis (SST-2) and linguistic
acceptability (CoLA) (Wang et al., 2018). The eval-
uation metrics are Matthews correlation for CoLA,
Spearman correlation for STS-B, and Accuracy for
the other tasks. We supplement fine-tuning details
in Appendix A.1.

Baselines Classical quantization methods includ-
ing PTQ and QAT are adopted as baselines. For
PTQ, we adopt the implementation by Bondarenko
et al. (2021), which introduces the group-wise gran-
ularity to reduce the quantization error. For QAT,
we also implement a group-wise granularity variant.
Results of the vanilla QAT that utilizes straight-
through estimator (STE) (Bengio et al., 2013) to
spread gradients are listed in Apppendix A.4. We
include Qadapter (Park et al., 2022) and AlphaTun-
ing (Kwon et al., 2022) that jointly employ the
quantization and the parameter-efficient fine-tuning

for further comparison.

5.2 Main Results

Comparison with Quantization Methods. The
main comparison results are reported in Table 1.
Due to the precision reduction, all quantization
methods inevitably lead to performance degrada-
tion in comparison to the full-precision fine-tuned
model (FT). There is a considerable performance
gap between 4-bit PTQ and 32-bit FT, although
they are both tuning with a modest amount of cal-
ibration data. QAT outperforms PTQ on all tasks,
demonstrating the benefit of a hybrid approach
of quantization and task-specific fine-tuning. Pre-
Quant is comparable in performance to QAT, but
with much fewer trainable parameters. In order to
evaluate the scalability and robustness of PreQuant,
we report the results for different scale PLMs, rang-
ing from 110M parameters to 1.5B parameters. As
the model size increases, PreQuant performs con-
sistently and stably. Take T51.5b as an example,
PreQuant could achieve 99.21% performance of
FT with only tuning 0.10% trainable parameters.

Comparison with Parameter-efficient PLM
Quantization Methods. Comparisons with
Qadapter and AlphaTuning are reported in Table 2.
For Qadapter, we adopt uniform asymmetric 8-bit
channel-wise quantization for both activation
functions and weights as described in the original

8070

Figure 3: An comparison of different quantization strate-
gies for PLMs. The pre-trained model is RoBERTalarge
and the bit-width is 4.

paper. We implement AlphaTuning with 4-bit
BCQ quantization to make a fair comparison.
Overall, PreQuant achieves the best performance
among these parameter-efficient PLM quantiza-
tion methods, while maintaining a comparable
compression ratio. Inspired by AlphaTuning, we
also implement PreQuant-α, a variant of PreQuant
that only tuning the scaling factors of the uniform
quantization, to estimate the value of AlphaTuning
technique. PreQuant outperforms PreQuant-α by
1 point, indicating the advantage of updating the
model parameters over updating the quantization
parameters.

5.3 Comparison of Quantization Strategies

In this section, we replace the outlier-aware quan-
tization with alternative quantization strategies to
see how different strategies affect the performance.
We evaluate three different strategies (i.e., min-max,
MSE, and Row-wise quantization in Section 4.2)
on 4-bit quantization for RoBERTalarge. The differ-
ences of these strategies are listed in Table 3. As
the disturbance of weights after quantization indi-
cates the induced quantization error, we compute
the L2 distance between quantized weights and
full-precision weights as the measurement of the
quantization error. As the bottom block of Table 3
reveals, the induced quantization error is highly

Min- Outlier-
MSE

Row-
max aware wise

Layer-wise
✔ ✔ ✔ ✘

Granularity

Statistical
✔ ✔ ✘ ✔

Strategy

Quantization
163.1 59.5 42.6 41.7

Error (L2 Dist)

CoLA 15.6 67.3 67.8 68.0
MRPC 77.6 89.0 89.8 90.0
STS-B 84.5 90.8 90.9 91.3
MNLI 79.6 89.4 89.5 89.7

Table 3: Comparison of different quantization strategies
on 4-bits PreQuant of RoBERTalarge.

correlated to the performance on downstream tasks.
The less the error, the better the performance. The
min-max quantization strategy performs worst due
to the negative influence of outlier weights. Mean-
while, outlier-aware, MSE, and row-wise strategies
achieve comparable performance on four tasks as
well as similar quantization error. The MSE quanti-
zation strategy achieve slightly better performance
since it directly optimizes the L2 distance, which
is more complicated than statistical strategies. row-
wise quantization perform slightly better than layer-
wise strategies at the cost of a more expensive com-
putational graph. Above all, the outlier-aware strat-
egy reaches the best trade-off between performance
and complexity.

5.4 Analysis of Outlier-aware Fine-tuning

In this section, we discuss the effect of parameter-
efficient fine-tuning on PreQuant.

Does outlier-aware tuning really work? Pre-
Quant appoints the trainable subnetwork by detect-
ing outlier dimensions, shorted as Outlier. It is
important to show that the outlier dimension re-
ally matters for fine-tuning performance. To this
end, we introduce two variants: 1) Random: We
randomly choose the same amount of trainable
parameters as our method; 2) Ticket: This is a
task-agnostic subnetwork for parameter-efficient
fine-tuning proposed in Gong et al. (2022). The
experimental results on four datasets are shown in
Fig. 3. Random selection of trainable parameters
leads to a significant drop in performance, suggest-
ing that outlier information does help in finding
suitable trainable subnetworks. Outlier and Ticket

8071

Models Size
Trainable

QNLI MRPC
Ratio

RoBERTalarge

FT 100% 94.7 90.9
r = 1024 100% 92.9 90.3
r = 512 50% 92.8 90.2
r = 20 1.95% 93.6 89.4
r = 10 0.98% 93.3 89.1
r = 5 0.49% 93.2 89.0
r = 3 0.29% 93.2 88.8
r = 1 0.10% 86.5 80.5

T5 Encoder

FT 100% 95.4 90.9
r = 1024 100% 94.1 90.4
r = 512 50% 94.2 90.4
r = 20 1.95% 95.1 90.2
r = 10 0.98% 95.1 90.0
r = 5 0.49% 94.6 88.9
r = 3 0.29% 92.3 86.7
r = 1 0.10% 87.5 79.4

Table 4: Validation results on QNLI and MRPC af-
ter applying 4-bits PreQuant to RoBERTalarge and T5
Encoder. The FT line is the result of full-precision
full-parameter fine-tuning.

achieve comparable performance, and both are very
close to the upper-bound performance by the FT.
This suggests that our outlier-aware fine-tuning is
a promising strategy to efficiently adapt PLMs to
downstream tasks while reducing quantization er-
rors. Noting that Outlier and Ticket have similar
performance, we further calculate the subnetwork
overlap ratio of the two methods using the Jaccard
similarity coefficient. As we expected, Outlier and
Ticket have non-negligible overlap (Jaccard similar-
ity coefficient is 0.57.).

What is the optimal size of the trainable subnet-
work? As stated in Section 4.3, we use hyper-
parameter r to control the size of the trainable
high-precision parameters. We then focus on the
effect of r on model performance. We conduct
empirical experiments with various values of r in
{1, 3, 5, 10, 20, 512, 1024}. Smaller value of r indi-
cates fewer trainable parameters, which inevitably
leads to performance degradation. We expect that
more trainable parameters will lead to higher per-
formance. The results are reported in Table 4. We
find that a relatively small r, e.g., 3 or 5, is good
enough to adapt PreQuant to downstream tasks.
Note that r = 512 sets half of the model parame-
ters trainable, and r = 1024 denotes that the whole
model is trainable. From Table 4, we can see that
setting r as 1024 cannot fully recovers the perfor-
mance which is reasonable because the induced

quantization error between high-precision and low-
precision representations could not be completely
eliminated. Setting r to a larger value than 10
brings limited performance improvements but re-
quiring more high-precision computational cost.

Does other parameter-efficient fine-tuning
methods work with PreQuant ? Follow-
ing Ding et al. (2022), we consider three
types of parameter-efficient techniques: addition-
based methods, specification-based methods, and
reparameterization-based methods. Addition-based
methods, such as adapter and prefix-tuning, involve
introducing extra trainable modules or parameters
that cannot be directly applied to PreQuant. On the
other hand, specification-based methods specify
certain parameters in the original model as trainable
parameters, which work well with PreQuantas dis-
cussed in Figure 3. Our outlier-aware fine-tuning
falls into this category. Reparameterization-based
methods, such as low-rank adaptation (LoRA) (Hu
et al., 2021), reparameterizes linear layers. LoRA
updates all parameters in the weight matrix by
adding a low-rank matrix. In our scenario, the
original weight matrix is in low-precision while the
update matrix is in high-precision. The addition of
a high-precision matrix to a low-precision matrix
results in a high-precision matrix, thus nullifying
the quantization effect.

5.5 Extending to Layer-wise Mixed-precision
Quantization

Previous work has shown that allocating differ-
ent bit-widths to different layers leads to a better
accuracy-efficiency trade-off, since not all layers
are equally sensitive to quantization (Tang et al.,
2022). PreQuant can be conveniently extended
to a layer-wise mix-precision variant by assigning
customized bit-widths to each transformer layer.
We implement a pilot mix-precision quantization
paradigm that assigns 2-bits to bottom layers and
4-bits to top layers or vise versa. As can be seen in
Table 5, all mixed-precision methods exhibit perfor-
mance degradation due to the hybrid quantization
setting. An overall conclusion is that top layers are
less sensitive to quantization than bottom layers.
Allocating 2-bits to the top third of layers resulted
in an average loss of less than 3 points, which is
very impressive. Meanwhile, assigning 2-bits to the
bottom one-third of the layers suffers from more
than 10 points of performance loss. These insight-
ful findings could be beneficial to the development

8072

Methods
Layers

QNLI STS-B
1-8 9-16 17-24

FT 32 32 32 95.4 92.3
All 4-bits 4 4 4 95.1 91.6
Bottom one-third 2 4 4 84.9 75.0
Bottom two-thirds 2 2 4 82.4 59.5
Top one-third 4 4 2 92.3 89.6
Top two-thirds 4 2 2 84.7 85.4

Table 5: Layer-wise mixed-precision quantization re-
sults for T5 Encoder on QNLI and STS-B. For the
model with 24 layers, we quantize top (or bottom)
one(or two)-third(s) layers to 2-bits while keeping the
rest of the model in 4-bits.

of better mixed-precision quantization techniques.

6 Conclusions

As the scale of pre-trained language models in-
creases, model compression becomes a prerequisite
prior to model deployment in resource-limited sce-
narios. Quantization is an effective and promising
technique to compress large PLMs. Existing quan-
tization methods including PTQ and QAT perform
quantizations either during or after task-specific
fine-tuning process. Since these approaches are
highly task-specific, it’s hard to transfer them to
different tasks with low cost. In this paper, we
propose a “quantizing the PLM first, then fine-
tuning” framework, PreQuant, which includes a
task-agnostic quantization stage and an outlier-
aware parameter-efficient fine-tuning stage. We
compress widely used PLMs with PreQuant, in-
cluding BERT, RoBERTa and T5 variants. The
experimental results on the GLUE benchmark are
reported to demonstrate the effectiveness of Pre-
Quant. We also reveal that PreQuant is more flexi-
ble and efficient than its competitive counterparts.
An elaborate empirical study is conducted on the
workflow of PreQuant, we hope the findings could
shed some light on the quantization research of
PLMs.

Limitations

Although the proposed PreQuant achieves promis-
ing results especially in reducing the storage and
computational resources, we discuss some limita-
tions of our work in this section. In our exper-
iments, we observe that the performance of Pre-
Quant is highly correlated with the data size. When
fine-tuning with very limited data, PreQuant may
not meet expectation to preserve the performance

of PLMs. Moreover, our model performance also
depends on the number of parameters (i.e. out-
liers) restored in the fine-tuning stage. This hyper-
parameter controls the trade-off between model
performance and parameter efficiency. The opti-
mal choice of the hyper-parameter for different
tasks requires further investigation. Additional dis-
cussion and experimental results are provided in
Appendix A.2.

Acknowledgments

This work is supported by Ministry of Science and
Technology Key R&D Program (2030 Artificial In-
telligence) (No. 2020AAA0106600) and National
Natural Science Foundation of China (NSFC Grant
No. 62122089). We sincerely thank all review-
ers for their valuable comments and suggestions,
which are crucial for improving our work.

References
Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,

Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
2021. BinaryBERT: Pushing the limit of BERT quan-
tization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4334–4348, Online. Association for Computa-
tional Linguistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7947–7969, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel
Kisilev. 2019. Low-bit quantization of neural net-
works for efficient inference. In 2019 IEEE/CVF
International Conference on Computer Vision Work-
shop (ICCVW), pages 3009–3018. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

8073

https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://ieeexplore.ieee.org/abstract/document/9022167/
https://ieeexplore.ieee.org/abstract/document/9022167/
https://arxiv.org/abs/1810.04805

bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Hassan Sajjad, Preslav Nakov, Dem-
ing Chen, and Marianne Winslett. 2021. Compress-
ing large-scale transformer-based models: A case
study on BERT. Transactions of the Association for
Computational Linguistics, 9:1061–1080.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. 2021. A
survey of quantization methods for efficient neural
network inference. arXiv preprint arXiv:2103.13630.

Zhuocheng Gong, Di He, Yelong Shen, Tie-Yan Liu,
Weizhu Chen, Dongyan Zhao, Ji-Rong Wen, and Rui
Yan. 2022. Finding the dominant winning ticket in
pre-trained language models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1459–1472, Dublin, Ireland. Association for
Computational Linguistics.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155, Online. Association for Com-
putational Linguistics.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. 2015. Deep learning with
limited numerical precision. In Proceedings of the
32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning
Research, pages 1737–1746, Lille, France. PMLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W.
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In Proceedings of the 38th
International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Re-
search, pages 5506–5518. PMLR.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. BERT busters: Outlier
dimensions that disrupt transformers. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3392–3405, Online. Association
for Computational Linguistics.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min
Yoo, Jin-Hwa Kim, Baeseong Park, Byeongwook
Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee.
2022. Alphatuning: Quantization-aware parameter-
efficient adaptation of large-scale pre-trained lan-
guage models. arXiv preprint arXiv:2210.03858.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. 2021.
Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational
Linguistics, 9:1442–1459.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained
language models: From model compression to im-
proving generalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6524–6538, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei
Ma, and Wen Gao. 2021. Post-training quantiza-
tion for vision transformer. In Advances in Neural
Information Processing Systems, volume 34, pages
28092–28103. Curran Associates, Inc.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo.
2018. Energy-efficient neural network accelerator
based on outlier-aware low-precision computation.
In Proceedings of the 45th Annual International Sym-
posium on Computer Architecture, ISCA ’18, page
688–698. IEEE Press.

8074

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://doi.org/10.1162/tacl_a_00413
https://doi.org/10.1162/tacl_a_00413
https://doi.org/10.1162/tacl_a_00413
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://proceedings.mlr.press/v37/gupta15.html
https://proceedings.mlr.press/v37/gupta15.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://proceedings.mlr.press/v139/kim21d.html
https://proceedings.mlr.press/v139/kim21d.html
https://doi.org/10.18653/v1/2021.findings-acl.300
https://doi.org/10.18653/v1/2021.findings-acl.300
https://arxiv.org/abs/2210.03858
https://arxiv.org/abs/2210.03858
https://arxiv.org/abs/2210.03858
https://openreview.net/attachment?id=H1eA7AEtvS&name=original_pdf
https://openreview.net/attachment?id=H1eA7AEtvS&name=original_pdf
https://doi.org/10.1162/tacl_a_00436
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2021/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/ISCA.2018.00063
https://doi.org/10.1109/ISCA.2018.00063

Minseop Park, Jaeseong You, Markus Nagel, and
Simyung Chang. 2022. Quadapter: Adapter for gpt-2
quantization. arXiv preprint arXiv:2211.16912.

Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh,
and Qun Liu. 2021. Alp-kd: Attention-based layer
projection for knowledge distillation. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13657–13665.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Sungho Shin, Kyuyeon Hwang, and Wonyong Sung.
2016. Fixed-point performance analysis of recurrent
neural networks. In 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 976–980. IEEE.

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Wen
Ji, Yaowei Wang, and Wenwu Zhu. 2022. Mixed-
precision neural network quantization via learned
layer-wise importance. In Computer Vision –
ECCV 2022, pages 259–275, Cham. Springer Nature
Switzerland.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2022.
Compression of generative pre-trained language mod-
els via quantization. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4821–
4836, Dublin, Ireland. Association for Computational
Linguistics.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao.
2011. Improving the speed of neural networks on
cpus.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,

pages 2140–2151, Online. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li,
and Yuxiong He. 2022. Extreme compression for
pre-trained transformers made simple and efficient.
arXiv preprint arXiv:2206.01859.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad,
and Andreas Moshovos. 2020. Gobo: Quantiz-
ing attention-based nlp models for low latency and
energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 811–824. IEEE.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36–39. IEEE.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. TernaryBERT:
Distillation-aware ultra-low bit BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
509–521, Online. Association for Computational Lin-
guistics.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,
and Zhiru Zhang. 2019. Improving neural network
quantization without retraining using outlier channel
splitting. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 7543–
7552. PMLR.

8075

https://arxiv.org/abs/2211.16912
https://arxiv.org/abs/2211.16912
https://ojs.aaai.org/index.php/AAAI/article/view/17610
https://ojs.aaai.org/index.php/AAAI/article/view/17610
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=1u1I_xmPJLx
https://openreview.net/forum?id=1u1I_xmPJLx
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v34i05.6409
https://ieeexplore.ieee.org/abstract/document/7471821/
https://ieeexplore.ieee.org/abstract/document/7471821/
https://link.springer.com/chapter/10.1007/978-3-031-20083-0_16#citeas
https://link.springer.com/chapter/10.1007/978-3-031-20083-0_16#citeas
https://link.springer.com/chapter/10.1007/978-3-031-20083-0_16#citeas
https://doi.org/10.18653/v1/2022.acl-long.331
https://doi.org/10.18653/v1/2022.acl-long.331
https://research.google/pubs/pub37631/
https://research.google/pubs/pub37631/
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2206.01859
https://arxiv.org/abs/2206.01859
https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2206.01861
https://ieeexplore.ieee.org/abstract/document/9251854
https://ieeexplore.ieee.org/abstract/document/9251854
https://ieeexplore.ieee.org/abstract/document/9251854
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://proceedings.mlr.press/v97/zhao19c.html
https://proceedings.mlr.press/v97/zhao19c.html
https://proceedings.mlr.press/v97/zhao19c.html

A Appendix

Figure 4: Visualization of quantization error on
BERTbase key matrix from several layers. We com-
pare the weights before and after the quantization, and
plot the positions with large difference.

A.1 Training Details
For all the tasks, we adopt AdamW (Loshchilov
and Hutter, 2018) as the optimizer and search
batch size in {16, 32}. For full-parameter fine-
tuning baselines, the learning rate for PreQuant
is searched within {1e-5, 2e-5, 3e-5, 4e-5} for
BERTbase, RoBERTabase, and RoBERTalarge and
{1e-4, 2e-4, 3e-4} for T5 Encoder. For PreQuant,
the learning rate is searched within {1e-4, 3e-4, 5e-
4, 7e-4, 9e-4}. We set the dropout rate to 0.1 and
weight decay to 0.01. For all tasks, the model is
trained for 10 epochs at maximum and the best per-
formance on the validation set is reported. Experi-
ments are conducted upon the Huggingface Trans-
formers library (Wolf et al., 2020).

A.2 Results in Low-resource Scenarios

Dataset Size 2k 4k 6k 8k full

Full-ft 86.6 87.3 88.2 88.4 91.2
PreQuant (4-bits) 83.2 85.9 87.4 87.8 90.7
Diff -3.4 -1.4 -0.8 -0.6 -0.5

Table 6: Results in low-resource scenario. We randomly
sample subsets from MNLI as training set and test on
the standard validation set.

During investigation, we find quantization is

more challenging in small datasets. We further ex-
plore the effect of data size on quantization and fine-
tuning. To this end, we randomly sample MNLI
training set to {2k, 4k, 6k, 8k} examples and fine-
tune T5 Encoder on them. As seen in Table 6,
smaller data size leads to larger performance gap
between the full-precision model and the quantized
one.

A.3 Visualization of Quantization Error
Fig. 4 is an example of quantization error induced
by uniform quantization. Several outlier dimen-
sions tend to have larger error after quantization
due to their large value.

A.4 Scaling to Other Bit-widths

Figure 5: Averaged performance of all GLUE tasks on
RoBERTalarge.

As shown in Fig. 5, when the number of bits
for weight is 8, the performance of all quantization
methods is close. However, when the bit-width
decreases to 4, performance disparities between
various approaches start to become apparent. PTQ
fails to predict reasonable answers on 4-bit quanti-
zation, indicating that the quantization error is too
strong to be minimized with a modest amount of
calibration data. QAT and PreQuant still remain an
acceptable performance for 4-bit quantization.

A.5 Detailed Results of More Quantization
Methods

8076

Methods Bits
Trainable

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg.
Params

FT 32 302M 68.0 90.2 90.9 94.7 92.2 86.6 96.4 92.4 88.9
QAT-vanilla 4 302M 66.8 89.2 89.0 83.5 91.1 86.4 95.6 91.0 86.6
Qadapter 8 0.29M 55.4 87.8 86.7 91.9 90.5 84.4 93.6 90.7 85.1
AlphaTuning 4 1.18M 57.8 88.7 88.6 93.2 91.2 84.8 95.2 91.2 86.3
PreQuant 4 1.47M 67.3 89.4 89.0 93.2 91.1 84.7 95.4 90.8 87.6

Table 7: Full results on the GLUE benchmark of the vanilla QAT and parameter-efficient quantization methods on
RoBERTalarge.

8077

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�7 A2. Did you discuss any potential risks of your work?
We use widely adopted open-source data in our paper. We believe there is no possibility of causing
any risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4

�3 B1. Did you cite the creators of artifacts you used?
4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
4

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
GLUE benchmark is widely adopted in the NLP community and we get the data from trusted sources.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
GLUE benchmark is widely adopted in the NLP community. The documentation can be easily found
on the Internet.

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

8078

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

8079

