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Abstract

Due to the absence of explicit connectives, im-
plicit discourse relation recognition (IDRR) re-
mains a challenging task in discourse analy-
sis. The critical step for IDRR is to learn high-
quality discourse relation representations be-
tween two arguments. Recent methods tend to
integrate the whole hierarchical information of
senses into discourse relation representations
for multi-level sense recognition. Neverthe-
less, they insufficiently incorporate the static
hierarchical structure containing all senses (de-
fined as global hierarchy), and ignore the hi-
erarchical sense label sequence corresponding
to each instance (defined as local hierarchy).
For the purpose of sufficiently exploiting global
and local hierarchies of senses to learn better
discourse relation representations, we propose
a novel GlObal and Local Hierarchy-aware
Contrastive Framework (GOLF), to model two
kinds of hierarchies with the aid of multi-task
learning and contrastive learning. Experimen-
tal results on PDTB 2.0 and PDTB 3.0 datasets
demonstrate that our method remarkably out-
performs current state-of-the-art models at all
hierarchical levels. !

1 Introduction

Implicit discourse relation recognition (IDRR)
aims to identify logical relations (named senses)
between a pair of text segments (named arguments)
without an explicit connective (e.g., however,
because) in the raw text. As a fundamental task
in discourse analysis, IDRR has benefitted a wide
range of Natural Language Processing (NLP) appli-
cations such as question answering (Liakata et al.,
2013), summarization (Cohan et al., 2018), infor-
mation extraction (Tang et al., 2021), etc.

The critical step for IDRR is to learn high-quality
discourse relation representations between two ar-
guments. Early methods are dedicated to manually

'0ur code is publicly available at https://github.

com/YJiangcm/GOLF_for_IDRR

That attracts attention . . . it was just another one of
the risk factors that led to the company’s decision to
withdraw from the bidding.

root (

Top-level sense: Contingency

Second-level sense: Cause

.
\ Implicit connective:

Figure 1: An IDRR instance in the PDTB 2.0 corpus
(Prasad et al., 2008). Argument 1 is in italics, and
argument 2 is in bold. The implicit connective is not
present in the original discourse context but is assigned
by annotators. All senses defined in PDTB are organized
in a three-layer hierarchical structure (defined as global
hierarchy in our paper), and the implicit connectives
can be regarded as the most fine-grained senses.

designing shallow linguistic features (Pitler et al.,
2009; Park and Cardie, 2012) or constructing dense
representations relying on word embeddings (Liu
and Li, 2016; Dai and Huang, 2018; Liu et al.,
2020). Despite their successes, they train multiple
models to predict multi-level senses independently,
while ignoring that the sense annotation of IDRR
follows a hierarchical structure (as illustrated in
Figure 1). To solve this issue, some researchers
propose global hierarchy-aware models to exploit
the prior probability of label dependencies based
on Conditional Random Field (CRF) (Wu et al.,
2020) or the sequence generation model (Wu et al.,
2022).

However, existing hierarchy-aware methods still
have two limitations. Firstly, though they exploit
the fact that there are complex dependencies among
senses and such information should be encoded into
discourse relation representations, their manners of
encoding the holistic hierarchical graph of senses
may not be sufficient, since they fail to strengthen
the correlation between the discourse relation rep-
resentation and its associated sense labels, which is
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(1) Manufacturers' backlogs of unfilled orders rose 0.5%
in September to $497.34 billion, helped by strength in
the defense capital goods sector. Excluding these
orders, backlogs declined 0.3%.

Top: Comparison, Sec: Contrast, Conn:

(2) That attracts attention . . . it was just another one of
the risk factors that led to the company’s decision
to withdraw from the bidding.

Top: Contingency, Sec: Cause, Conn:

(3) She offered Mrs. Yeargin a quiet resignation and
thought she could help save her teaching certificate.
Mrs. Yeargin declined.

Top: Comparison, Sec: Contrast, Conn:

Figure 2: Three instances from PDTB 2.0. The sense
label sequence of each instance is defined as local hier-
archy in our paper.

highly useful for classification (Chen et al., 2020a).
Secondly, they only consider the graph of the en-
tire label hierarchy and ignore the benefit of the
label sequence corresponding to each instance. As
shown in Figure 2, the label sequences of Instances
(1) and (2) differ at both the top and second lev-
els, while the label sequences of Instances (1) and
(3) only differ at the most fine-grained level. The
similarity between label sequences provides valu-
able information for regularizing discourse relation
representations, e.g., by ensuring that the distance
between representations of Instance (1) and (2) is
farther than the distance between representations of
Instance (1) and (3). Under such an observation, we
categorize the sense hierarchy into global and local
hierarchies to fully utilize the hierarchical informa-
tion in IDRR. We define global hierarchy as the
entire hierarchical structure containing all senses,
while local hierarchy is defined as a hierarchical
sense label sequence corresponding to each input
instance. Therefore, global hierarchy is static and
irrelevant to input instances, while local hierarchy
is dynamic and pertinent to input instances.

Built on these motivations, we raise our research
question: How to sufficiently incorporate global
and local hierarchies to learn better discourse re-
lation representations? To this end, we propose
a novel GlObal and Local Hierarchy-aware Con-
trastive Framework (GOLF), to inject additional
information into the learned relation representation
through additional tasks that are aware of the global
and local hierarchies, respectively. This is achieved
via the joint use of multi-task learning and con-

trastive learning. The key idea of contrastive learn-
ing is to narrow the distance between two seman-
tically similar representations, meanwhile, push-
ing away representations of dissimilar pairs (Chen
et al., 2020b; Gao et al., 2021). It has achieved
extraordinary successes in representation learning
(He et al., 2020). Finally, our multi-task learning
framework consists of classification tasks and two
additional contrastive learning tasks. The global
hierarchy-aware contrastive learning task explicitly
matches textual semantics and label semantics in
a text-label joint embedding space, which refines
the discourse relation representations to be seman-
tically similar to the target label representations
while semantically far away from the incorrect la-
bel representations. In the local hierarchy-aware
contrastive learning task, we propose a novel scor-
ing function to measure the similarity among sense
label sequences. Then the similarity is utilized
to guide the distance between discourse relation
representations.

The main contributions of this paper are three-
fold:

* We propose a novel global and local hierarchy-
aware contrastive framework for IDRR, which
sufficiently incorporates global and local hier-
archies to learn better discourse relation rep-
resentations.

* To our best knowledge, our work is the first at-
tempt to meticulously adapt contrastive learn-
ing to IDRR considering the global and local
hierarchies of senses.

* Comprehensive experiments and thorough
analysis demonstrate that our approach de-
livers state-of-the-art performance on PDTB
2.0 and PDTB 3.0 datasets at all hierarchi-
cal levels, and more consistent predictions on
multi-level senses.

2 Related Work

2.1 Implicit Discourse Relation Recognition

Early studies resort to manually-designed features
to classify implicit discourse relations into four top-
level senses (Pitler et al., 2009; Park and Cardie,
2012). With the rapid development of deep learn-
ing, many methods explore the direction of building
deep neural networks based on static word embed-
dings. Typical works include shallow CNN (Zhang
et al., 2015), LSTM with Multi-Level Attention
(Liu and Li, 2016), knowledge-augmented LSTM
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(Dai and Huang, 2018, 2019; Guo et al., 2020),
etc. These works aim to learn better semantic rep-
resentations of arguments as well as capture the
semantic interaction between them. More recently,
contextualized representations learned from large
pre-trained language models (PLMs) and prompt-
ing (Schick and Schiitze, 2021) have substantially
improved the performance of IDRR. More fined-
grained levels of senses have been explored by (Liu
et al., 2020; Long and Webber, 2022; Chan et al.,
2023b). Besides, researchers such as (Wu et al.,
2020, 2022) utilize the dependence between hier-
archically structured sense labels to predict multi-
level senses simultaneously. However, these meth-
ods may be insufficient to exploit the global and
local hierarchies for discourse relation representa-
tions.

2.2 Contrastive Learning

Contrastive learning is initially proposed in Com-
puter Vision (CV) as a weak-supervised represen-
tation learning method, aiming to pull semantically
close samples together and push apart dissimilar
samples (He et al., 2020; Chen et al., 2020b). In
NLP, contrastive learning has also achieved extraor-
dinary successes in various tasks including seman-
tic textual similarity (STS) (Gao et al., 2021; Shou
et al., 2022; Jiang et al., 2022), information re-
trieval (IR) (Hong et al., 2022), relation extraction
(RE) (Chen et al., 2021), etc. Though intuitively
supervised contrastive learning could be applied to
IDRR through constructing positive pairs accord-
ing to the annotated sense labels, it ignores the hier-
archical structure of senses. This paper is the first
work to meticulously adapt contrastive learning to
IDRR considering the global and local hierarchies
of senses.

3 Problem Definition

Given M hierarchical levels of defined senses S =
(S1,...,8™, ..., SM), where S™ is the set of senses
at the m-th hierarchical level, and a sample input
consisting of two text spans, or x; = (arg, args),
our model aims to output a sequence of sense y; =
(Yl ooy y™s ooy yM), where y* € S™.

4 Methodology

Figure 3 illustrates the overall architecture of our
multi-task learning framework. Beginning at the
left part of Figure 3, we utilize a Discourse Re-
lation Encoder to capture the interaction between

two input arguments and map them into a discourse
relation representation h. After that, the discourse
relation representation h is fed into a Staircase Clas-
sifier to perform classification at three hierarchical
levels dependently. While training, we will use
two additional tasks, the global hierarchy-aware
contrastive loss Lio0pq; (in the upper right part of
Figure 3) and the local hierarchy-aware contrastive
loss L1ocqar (in the lower right part of Figure 3)
as additional regularization to refine the discourse
relation representation h. During inference, we
only use the Discourse Relation Encoder and the
Staircase Classifier for classification and discard
the Global and Local Hierarchy-aware Contrastive
Learning modules. Detailed descriptions of our
framework are given below.

4.1 Discourse Relation Encoder

Given an instance x; = (arg;,args), we
concatenate the two arguments and formu-
late them as a sequence with special tokens:
[CLS] arg; [SEP] args [SEP], where [CLS]

and [SEP] denote the beginning and the end of
sentences, respectively. Then we feed the sequence
through a Transformer (Vaswani et al., 2017) en-
coder to acquire contextualized token representa-
tions H. Previous works (Liu and Li, 2016; Liu
et al., 2020) indicate that deep interactions between
two arguments play an important role in IDRR. To
this end, we propose a Multi-Head Interactive At-
tention (MHIA) module to facilitate bilateral multi-
perspective matching between arg; and args. As
shown in the left part of Figure 3, we separate
H into H,g, and H,4,, denoting as the contex-
tualized representations of arg; and args. Then
MHIA reuses the Multi-Head Attention (MHA)
in Transformer, but the difference is that we take
Hpg, as Query, Hg;q, as Key and Value and vice
versa. The intuition behind MHIA is to simulate hu-
man’s transposition thinking process: respectively
considering each other’s focus from the standpoint
of arg; and args. Note that the MHIA module
may be stacked for L; layers. Finally, we use the
representation of [CLS] in the last layer as the
discourse relation representation and denote it as h
for simplicity.

4.2 Staircase Classifier

Given the discourse relation representation h; of
an instance, we propose a "staircase” classifier in-
spired by (Abbe et al., 2021) to output the label
logits ¢" at each hierarchical level m € [1, M] in
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Figure 3: The overall architecture of our framework. The squares are denoted as discourse relation representations.
Among the local hierarchy-aware contrastive loss L£,.q;, We use colored squares to denote discourse relation
representations of various instances in a mini-batch and list their sense label sequences on the left. Besides, note
that the numbers on the right are similarity scores between sense label sequences calculated by our scoring function.

a top-down manner, where the higher-level logits
are used to guide the logits at the current level:

7 = h W+t WS b 1)

where WJ" € R&WXIS™I g e RIST XIS
b e RIS™, t) = 0. Then the cross-entropy loss
of the classifier is defined as follows:

M
Lok = —ﬁ S Egn[LogSoftmax(t™)]  (2)

1€EN m=1

where ¢/ is the one-hot encoding of the ground-
truth sense label ;™.

4.3 Global Hierarchy-aware Contrastive
Learning

The Global Hierarchy-aware Contrastive Learning
module first exploits a Global Hierarchy Encoder
to encode global hierarchy into sense label embed-
dings. Then, it matches the discourse relation rep-
resentation of an input instance with its correspond-
ing sense label embeddings in a joint embedding
space based on contrastive learning.

4.3.1 Global Hierarchy Encoder

To encode label hierarchy in a global view, we
regard the hierarchical structure of senses as an

undirected graph, where each sense corresponds to
a graph node. Then we adopt a graph convolutional
network (GCN) (Welling and Kipf, 2016) to induce
node embeddings for each sense based on proper-
ties of their neighborhoods. The adjacent matrix
A € RISIXIS1 is defined as follows:

Loifi=j;
if child(i) = j or child(j) =14  (3)
0, otherwise.

where S is the set of all senses, i,j € S,
child(i) = j means that sense j is the subclass
of sense 7. By setting the number layer of GCN
as Lo, given the initial representation of sense ¢
as r? € R%, GCN updates the sense embeddings
with the following layer-wise propagation rule:

_1 _1
ri=ReLU(D D;2AiD2ri ‘W' +1) (4
JES

where [ € [1, Ly], W' € R¥*dr and b € R are
learnable parameters at the [-th GCN layer, D;; =
>_; Aij. Finally, we take the output {riL2 }ies of
the Lo-th layer as the sense embeddings and denote
them as {r; };cs for simplicity.
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4.3.2 Semantic Match in a Joint Embedding
Space

In this part, we match textual semantics and label
semantics in a text-label joint embedding space
where correlations between text and labels are ex-
ploited, as depicted in the upper right part of Figure
3. We first project the discourse relation representa-
tion h; of an instance x; and the sense label embed-
dings {r; };cs into a common latent space by two
different Multi-Layer Perception (MLP) ¢; and
®5. Then, we apply a contrastive learning loss to
capture text-label matching relationships, by regu-
larizing the discourse relation representation to be
semantically similar to the target label representa-
tions and semantically far away from the incorrect
label representations:

‘ZZ jev,

iEN jES
exp (sim (@1(%), ‘1>2(7“j)) /7')
Y ies €xp (sim ('1>1(h¢), ‘i’z(Tj))/T>

(%)

X log

where N denotes a batch of training instances, y;
is the sense label sequence of instance z;, sim(-)
is the cosine similarity function, 7 is a tempera-
ture hyperparameter. By minimizing the global
hierarchy-aware contrastive learning loss, the dis-
tribution of discourse relation representations is
refined to be similar to the label distribution.

Here we would like to highlight the key differ-
ences between our model and LDSGM (Wu et al.,
2022), since we both utilize a GCN to acquire la-
bel representations. Firstly, We use a different
approach to capture the associations between the
acquired label representations and the input text.
In (Wu et al., 2022), the associations are implic-
itly captured using the usual attention mechanism.
In contrast, our model explicitly learns them by
refining the distribution of discourse relation rep-
resentations to match the label distribution using
contrastive learning. Secondly, our work introduces
a novel aspect that has been overlooked by earlier
studies including (Wu et al., 2022): the utilization
of local hierarchy information, which enables our
model to better differentiate between similar dis-
course relations and achieve further improvements.

4.4 Local Hierarchy-aware Contrastive
Learning

Following (Gao et al., 2021), we duplicate a batch
of training instances NV as N and feed N as well

as N through our Discourse Relation Encoder E
with diverse dropout augmentations to obtain 2|V |
discourse relation representations. Then we apply
an MLP layer @3 over the representations, which
is shown to be beneficial for contrastive learning
(Chen et al., 2020Db).

To incorporate local hierarchy into discourse re-
lation representations, it is tempting to directly ap-
ply supervised contrastive learning (Gunel et al.,
2021) which requires positive pairs to have identi-
cal senses at each hierarchical level m € [1, M]:

L:L/ = — | Z Z <H ]1 m_yWL)
ZENJ€N+ m=1
im( ®3(hs), Ps(h;
g (i (s, #sh) i)

ZjeN+ exp (sim (<I>3 (hs),

s (h;)) /7)

However, Equation (6) ignores the more subtle se-
mantic structures of the local hierarchy, since it
only admits positive examples as having identical,
no account for examples with highly similar anno-
tations. To illustrate, consider Instances (1) and
(3) in Figure 2, where their sense label sequences
only differ at the most fine-grained level. However,
they are regarded as a negative pair in Equation
(6), rather than a "relatively" positive pair. The
standard of selecting positive pairs is too strict in
Equation (6), thus may result in semantically sim-
ilar representations being pulled away. To loosen
this restriction, we regard all instance pairs as posi-
tive pairs but assign the degree of positive, by using
a novel scoring function to calculate the similarity
among label sequences y; = (v}, ...,y ...,yM)
and y; = (yjl, T ,y]M)

In our case, there exist three hierarchical levels
including Top, Second, and Connective, and we use
T, S, and C to denote them. Consequently, there
are in total K = 6 sub-paths in the hierarchies, i.e.,
P ={T,S,C,TS,SC, TSC}. Then we calculate
the Dice similarity coefficient for each sub-path
among the hierarchical levels and take the average
as the similarity score between y; and y;, which is
formulated below:

K

Z ice(P; ,Pk @)
k:

where Dice(A, B) = (2/ANB|)/( ), PF
is the k-th sub-path label set of y;. Taking Instances
(1) and (3) in Figure 2 as examples, their label
sequences are Top: Comparison, Sec: Contrast,

Score(ys,y;) =
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Conn: but and Top: Comparison, Sec: Contrast,
Conn: however, respectively. Then the similarity
1/2x1 2x1 2x0 2x2 2x1
score wouldbe 5 (5 + 57+ 17 555 + 33 T
M) ~ 0.7
3+3 . ’ ) . .
Finally, our local hierarchy-aware contrastive
loss utilizes the similarity scores to guide the dis-

tance between discourse relation representations:

Lr= —ﬁ > > Score(yiy;)

exp (sim<'1>3(hi)7 ‘193(hj)) /7'>
> jent Xp (sim (4’3(’12')7 ‘I)B(hj)) /T>

Compared with Equation (6), Equation (8) consid-
ers more subtle semantic structures of the local
hierarchy for selecting positive pairs. It increases
the relevance of representations for all similarly
labeled instances and only pushes away instances
with entirely different local hierarchies. Thus, the
local hierarchical information is sufficiently incor-
porated into discourse relation representations.

The overall training goal is the combination of
the classification loss, the global hierarchy-aware
contrastive loss, and the local hierarchy-aware con-
trastive loss:

x log (3

L=Lce+M Lo+ LL )

where A\ and \s are coefficients for the global and
local hierarchy-aware contrastive loss, respectively.
We set them as 0.1 and 1.0 while training, accord-
ing to hyperparameter search (in Appendix C).

5 Experiments

5.1 Dataset

The Penn Discourse Treebank 2.0 (PDTB 2.0)
PDTB 2.0 (Prasad et al., 2008) is a large-scale
English corpus annotated with information on dis-
course structure and semantics. PDTB 2.0 has three
levels of senses, i.e., classes, types, and sub-types.
Since only part of PDTB instances is annotated
with third-level senses, we take the top-level and
second-level senses into consideration and regard
the implicit connectives as third-level senses. There
are 4 top-level senses including Temporal (Temp),
Contingency (Cont), Comparison (Comp), and Ex-
pansion (Expa). Further, there exist 16 second-level
senses, but we only consider 11 major second-level
implicit types following previous works (Liu et al.,
2020; Wu et al., 2022). For the connective classifi-
cation, we consider all 102 connectives defined in
PDTB 2.0.

The Penn Discourse Treebank 3.0 (PDTB 3.0)
PDTB 3.0 (Webber et al., 2019) is the updated ver-
sion of PDTB 2.0, which includes an additional
13K annotations and corrects some inconsistencies
in PDTB 2.0. Following the preprocess of PDTB
2.0, we consider 4 top-level senses, 14 majority
second-level senses, and all 186 connectives de-
fined in PDTB 3.0.

Appendix A shows the detailed statistics of the
PDTB corpora. We follow early works (Ji and
Eisenstein, 2015; Liu et al., 2020; Wu et al., 2022)
using Sections 2-20 of the corpus for training, Sec-
tions 0-1 for validation, and Sections 21-22 for
testing. In PDTB 2.0 and PDTB 3.0, there are
around 1% data samples with multiple annotated
senses. Following (Qin et al., 2016), we treat them
as separate instances during training for avoiding
ambiguity. At test time, a prediction matching one
of the gold types is regarded as the correct answer.

5.2 Baselines

To validate the effectiveness of our method, we con-
trast it with the most advanced techniques currently
available. As past research generally assessed one
dataset (either PDTB 2.0 or PDTB 3.0), we utilize
distinct baselines for each. Due to PDTB 3.0’s
recent release in 2019, there are fewer baselines
available for it compared to PDTB 2.0.

Baselines for PDTB 2.0

e NNMA (Liu and Li, 2016): a neural network
with multiple levels of attention.

* KANN (Guo et al., 2020): a knowledge-
enhanced attentive neural network.

* PDRR (Dai and Huang, 2018): a paragraph-
level neural network that models inter-
dependencies between discourse units as well
as discourse relation continuity and patterns.

* IDRR-Con (Shi and Demberg, 2019): a neu-
ral model that leverages the inserted connec-
tives to learn better argument representations.

* IDRR-C&E (Dai and Huang, 2019): a neural
model leveraging external event knowledge
and coreference relations.

* MTL-MLoss (Nguyen et al., 2019): a neural
model which predicts the labels and connec-
tives simultaneously.
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¢ HierMTN-CRF (Wu et al., 2020): a hierar-
chical multi-task neural network with a condi-
tional random field layer.

« BERT-FT (Kishimoto et al., 2020): a model
applying three additional training tasks.

* RoBERTa (Fine-tuning): a RoBERTa-based
model fine-tuned on three sense levels sepa-
rately.

¢ BMGF-RoBERTa (Liu et al.,, 2020): a
RoBERTa-based model with bilateral multi-
perspective matching and global information

fusion.
¢« LDSGM (Wu et al, 2022): a label
dependence-aware sequence generation

model.

¢ ChatGPT (Chan et al., 2023a): a ChatGPT-
based method equipped with an in-context
learning prompt template.

Baselines for PDTB 3.0

* MANF (Xiang et al., 2022a): a multi-attentive
neural fusion model to encode and fuse both
semantic connection and linguistic evidence.

* RoBERTa (Fine-tuning): a RoBERTa-based
model fine-tuned on three sense levels sepa-
rately.

¢« BMGF-RoBERTa (Liu et al., 2020): we re-
produce the model on PDTB 3.0.

* LDSGM (Wu et al., 2022): we reproduce the
model on PDTB 3.0.

e ConnPrompt (Xiang et al., 2022b): a PLM-
based model using a connective-cloze Prompt
to transform the IDRR task as a connective-
cloze prediction task.

5.3 Implementation Details

We implement our model based on Huggingface’s
transformers (Wolf et al., 2020) and use the pre-
trained RoBERTa (Liu et al., 2019) (base or large
version) as our Transformer encoder. The layer
number of MHIA and GCN are both set to 2. We
set temperature 7 in contrastive learning as 0.1. We
set &1, o, 3 as a simple MLP with one hidden
layer and fanh activation function, which enables

the gradient to be easily backpropagated to the en-
coder. The node embeddings of senses with the
dimension 100 are randomly initialized by kaim-
ing_normal (He et al., 2015). To avoid overfitting,
we apply dropout with a rate of 0.1 after each GCN
layer. We adopt AdamW optimizer with a learn-
ing rate of le-5 and a batch size of 32 to update
the model parameters for 15 epochs. The evalua-
tion step is set to 100 and all hyperparameters are
determined according to the best average model
performance at three levels on the validation set.
All experiments are performed five times with dif-
ferent random seeds and all reported results are
averaged performance.

5.4 Results

Multi-label Classification Comparison The pri-
mary experimental results are presented in Table
1, which enables us to draw the following conclu-
sions:

* Firstly, our GOLF model has achieved new
state-of-the-art performance across all three
levels, as evidenced by both macro-F1 and
accuracy metrics. Specifically, on PDTB 2.0,
GOLF (base) outperforms the current state-of-
the-art LDSGM model (Wu et al., 2022) by
2.03%, 1.25%, and 1.11% in three levels, re-
spectively, in terms of macro-F1. Additionally,
it exhibits 1.34%, 0.83%, and 0.65% improve-
ments over the current best results in terms
of accuracy. Moreover, in the case of PDTB
3.0, GOLF (base) also outperforms the cur-
rent state-of-the-art ConnPrompt model (Xi-
ang et al., 2022b) by 1.37% F1 and 1.19%
accuracy at the top level.

* Secondly, employing RoBERTa-large embed-
dings in GOLF leads to a significant improve-
ment in its performance. This observation in-
dicates that our GOLF model can effectively
benefit from larger pre-trained language mod-
els (PLMs).

* Finally, despite the impressive performance
of recent large language models (LLMs) such
as ChatGPT (OpenAl, 2022) in few-shot and
zero-shot learning for various understanding
and reasoning tasks (Bang et al., 2023; Jiang
et al., 2023), they still lag behind our GOLF
(base) model by approximately 30% in PDTB
2.0. This difference suggests that ChatGPT
may struggle to comprehend the abstract sense
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. Top-level Second-level Connective
Model Embedding . P e m e R e
PDTB 2.0
NNMA (Liu and Li, 2016) GloVe 46.29 57.57 - - - -
KANN (Guo et al., 2020) GloVe 4790 57.25 - - - -
PDRR (Dai and Huang, 2018) word2vec 48.82 57.44 - - - -
IDRR-Con (Shi and Demberg, 2019)  word2vec 46.40 61.42 - 47.83 - -
IDRR-C&E (Dai and Huang, 2019) ELMo 52.89 59.66 3341 4823 - -
MTL-MLoss (Nguyen et al., 2019) ELMo 53.00 - - 49.95 - -
HierMTN-CRF (Wu et al., 2020) BERT 5572 6526 3391 53.34 10.37 30.00
BERT-FT (Kishimoto et al., 2020) BERT 5848 65.26 - 54.32 - -
RoBERTa (Fine-tuning) RoBERTa 62.96 6998 4034 59.87 10.06 3145
BMGF-RoBERTa (Liu et al., 2020) RoBERTa 63.39  69.06 - 58.13 - -
LDSGM (Wu et al., 2022) RoBERTa 63.73 71.18 4049 60.33 10.68 32.20
ChatGPT (Chan et al., 2023a) - 36.11 44.18 1620 24.54 - -
"GOLF(base) @~ RoBERTa 6576 7252 41.74 61.16 11.79 32.85
GOLF (large) RoBERTa 69.60 74.67 4791 6391 14.59 4235
PDTB 3.0
MANF (Xiang et al., 2022a) BERT 56.63 64.04 - - - -
RoBERTa (Fine-tuning) RoBERTa 68.31 71.59 50.63 60.14 14.72 39.43
BMGF-RoBERTa (Liu et al., 2020) RoBERTa 63.39  69.06 - 58.13 - -
LDSGM (Wu et al., 2022) RoBERTa 68.73 73.18 5349 61.33 17.68 40.20
ConnPrompt (Xiang et al., 2022b) RoBERTa 69.51 73.84 - - - -
"GOLF(base) ~ RoBERTa  70.88 75.03 5530 6357 1921 4254
GOLF (large) RoBERTa 7421 7639 60.11 6642 20.66 45.12

Table 1: Model comparison of multi-class classification on PDTB 2.0 and PDTB 3.0 in terms of macro-averaged F1

(%) and accuracy (%).

Exp. Cont. Comp.  Temp. GOLF GOLF
Model (53%) Q7%) (14%) (3%) Second-level Senses BMGF LDSGM (base) (large)
BMGF (Liu et al., 2020) 77.66 6098 5944  50.26 Exp.Restatement (20%) 53.83 58.06 59.84  59.03
LDSGM (Wuetal,2022) 7847 6437 6166  50.88 Exp.Conjunction (19%) 60.17 57.91 60.28  61.54
" GOLF (base) 7~ 7941 © 6290 T 67.71 ~ 5455 Exp.Instantiation (12%) 67.96 72.60 75.36 77.98
GOLF (large) 80.96 6654  69.47 6140 Exp.Alternative (1%) 60.00 63.46 6349  61.54
Exp.List (1%) 0.00 8.98 2778  43.48
Table 2: Label-wise F1 scores (%) for the top-level gom.gause (26?1)7) 50966(? 6(;‘-0306 6056305 60569(?
. . ont. ragmanc 0 . . . A

senses of PDTB 2.0. The proportion of each sense is
. . Comp.Contrast (12%) 59.75 63.52 6195  61.57
listed below its name. Comp.Concession (2%) 0.00 0.00 0.00 1.1
Temp.Asynchronous (5%) 56.18 56.47 63.82 65.49
Temp.Synchrony (1%) 0.00 0.00 0.00 13.33

of each discourse relation and extract the rel-
evant language features from the text. There-
fore, implicit discourse relation recognition
remains a challenging and crucial task for the
NLP community, which requires further ex-
ploration.

Label-wise Classification Comparison Here we
present an evaluation of GOLF’s performance on
PDTB 2.0 using label-wise F1 comparison for
top-level and second-level senses. Table 2 show-
cases the label-wise F1 comparison for the top-
level senses, demonstrating that GOLF signifi-
cantly improves the performance of minority senses
such as Temp and Comp. In Table 3, we com-
pare GOLF with the current state-of-the-art mod-
els for the second-level senses. Our results show

Table 3: Label-wise F1 scores (%) for the second-level
senses of PDTB 2.0. The proportion of each sense is
listed behind its name.

that GOLF (base) enhances the F1 performance
of most second-level senses, with a notable in-
crease in Expa.List from 8.98% to 27.78%. Fur-
thermore, by using RoBERTa-large as embeddings,
our GOLF (large) model breaks the bottleneck of
previous work in two few-shot second-level senses,
Temp.Synchrony and Comp.Concession. To further
validate our model’s ability of deriving better dis-
course relation representations, we compare the
generated representations of GOLF with those of
current state-of-the-art models for both top-level
and second-level senses in Appendix B.
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Top-level

Second-level

Connective

Model 2 Ace i Ace I Ace Top-Sec  Top-Sec-Conn
GOLF 65.76 72,52 41.74 61.16 11.79 32.85 59.65 27.55
~-w/oMHIA 6497 71.85 41.07 6052 10.80 31.69 5852 2618
-w/o staircase 6543 7225 41.12 60.81 10.81 31.40 58.43 26.08
-w/o MHIA and staircase ~ 64.77 7198 40.99 60.10 10.76 31.65 58.49 26.22
-w/o L¢ 65.37 71.61 40.78 6040 11.56 32.73 59.01 26.86
-w/o L1, 6434 7132 4024 6042 10.76 31.88 58.69 26.37
-w/o Lg and L, 63.85 71.04 3998 5992 10.72 30.47 58.23 25.89
-rp. L with L/ 6458 71.56 4120 61.07 11.43 3255 59.24 27.05

Table 4: Ablation study on PDTB 2.0 considering the accuracy and F1 of each level as well as consistencies between
hierarchies. “w/0” stands for “without”; “r.p.” stands for “replace”; "MHIA" stands for the Multi-Head Interactive
Attention; L stands for the Global Hierarchy-aware Contrastive loss; £, stands for the Local Hierarchy-aware

Contrastive loss.

Model Top-Sec  Top-Sec-Conn
PDTB 2.0
HierMTN-CRF 46.29 19.15
BMGF-RoBERTa 47.06 21.37
_LDSGM 5861 2685
GOLF (base) 59.65 27.55
GOLF (large) 61.79 36.00
PDTB 3.0
HierMTN-CRF 50.19 27.82
BMGF-RoBERTa 52.33 29.16
JLDSGM 6032 3457
GOLF (base) 61.31 36.97
GOLF (large) 64.86 38.26

Table 5: Comparison with current state-of-the-art mod-
els on the consistency among multi-level sense predic-
tions.

Multi-level Consistency Comparison Follow-
ing (Wu et al., 2022), we evaluate the consistency
among multi-level sense predictions via two met-
rics: 1) Top-Sec: the percentage of correct predic-
tions at both the top-level and second-level senses;
2) Top-Sec-Con: the percentage of correct predic-
tions across all three level senses. Our model’s
results, as displayed in Table 5, demonstrate more
consistent predictions than existing state-of-the-art
models in both Top-Sec and Top-Sec-Con, verify-
ing the effectiveness of our model in integrating
global and local hierarchical information.

6 Ablation Study

Firstly, we investigate the efficacy of individual
modules in our framework. For this purpose,
we remove the Multi-Head Interactive Attention
(MHIA), the "staircase" in Classifier, the Global
Hierarchy-aware Contrastive loss L, and the Lo-
cal Hierarchy-aware Contrastive loss £y from

GOLF one by one. Note that removing the "stair-
case" in Classifier means that we keep the cross-
entropy loss but remove the dependence between
logits from different hierarchical levels. Table 4
indicates that eliminating any of the four modules
would hurt the performance across all three levels
and reduce the consistency among multi-level label
predictions. At the same time, the Local Hierarchy-
aware Contrastive loss contributes mostly. Besides,
removing both the Global Hierarchy-aware Con-
trastive loss L and the Local Hierarchy-aware
Contrastive loss L, significantly hurts the perfor-
mance. The results show that incorporating label
hierarchies from both the global and local perspec-
tives is indeed beneficial. Secondly, we replace the
Local Hierarchy-aware Contrastive loss L, (Equa-
tion (8)) with the hard-label version £;, (Equation
(6)) and find that the performance drops notably.
It verifies the usefulness of the scoring function in
Equation 7, which considers more subtle semantic
structures of local hierarchy. In Appendix C, We
also analyze the effects of various hyperparameters
consisting of the number layer of MHIA and GCN,
the coefficients \; and Ao, and the temperature 7.

7 Conclusion

In this paper, we present a novel Global and Local
Hierarchy-aware Contrastive Framework for im-
plicit discourse relation recognition (IDRR). It can
sufficiently incorporate global and local hierarchies
to learn better discourse relation representations
with the aid of multi-task learning and contrastive
learning. Compared with current state-of-the-art
approaches, our model empirically reaches better
performance at all hierarchical levels of the PDTB
dataset and achieves more consistent predictions
on multi-level senses.
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Limitations

In this section, we illustrate the limitations of our
method, which could be summarized into the fol-
lowing two aspects.

Firstly, since the cumbersome data annotation
leads to few publicly available datasets of IDRR
tasks, we only conduct experiments on English
corpora including PDTB 2.0 and PDTB 3.0. In
the future, we plan to comprehensively evaluate
our model on more datasets and datasets in other
languages.

Secondly, considering that instances of PDTB
are contained in paragraphs of the Wall Street Jour-
nal articles, our approach ignores wider paragraph-
level contexts beyond the two discourse arguments.
As shown in (Dai and Huang, 2018), positioning
discourse arguments in their wider context of a
paragraph may further benefit implicit discourse
relation recognition. It is worth exploring how to
effectively build wider-context-informed discourse
relation representations and capture the overall dis-
course structure from the paragraph level.

Ethics Statement

Since our method relies on pre-trained language
models, it may run the danger of inheriting and
propagating some of the models’ negative biases
from the data they have been pre-trained on (Ben-
der et al., 2021). Furthermore, we do not see any
other potential risks.
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A Data Statistics

Train Dev Test

2,814 258 200
2,430 260 211
1,100 106 118

Second-level Senses

Exp.Conjunction
Exp.Restatement
Exp.Instantiation

Exp.List 330 9 12
Exp.Alternative 150 10 9
Cont.Cause 3,234 281 269
Cont.Pragmatic cause 51 6 7
Comp.Contrast 1,569 166 128
Comp.Concession 181 15 17
Temp.Asynchronous 540 46 54
Temp.Synchrony 148 8 14
Total 12,547 1,165 1,039

Table 6: The data statistics of second-level senses in
PDTB 2.0.

Train Dev Test

3,566 298 237
2,698 274 214
1,215 117 127

Second-level Senses

Exp.Conjunction
Exp.Level-of-detail
Exp.Instantiation

Exp.Manner 1,159 57 53
Exp.Substitution 405 32 31
Exp.Equivalence 256 25 30
Cont.Cause 4,280 423 388
Cont.Purpose 688 66 59
Cont.Cause+Belief 140 13 14
Cont.Condition 138 17 14
Comp.Concession 1,159 105 97
Comp.Contrast 813 87 62
Temp.Asynchronous 1,025 103 105
Temp.Synchronous 331 24 35
Total 17,873 1,641 1,466

Table 7: The data statistics of second-level senses in
PDTB 3.0.

B Visualization of Discourse Relation
Representations

Here we investigate the quality of discourse relation
representations generated by our GOLF model with
visualization aids. Figure 4 depicts the 2D t-SNE
(Van der Maaten and Hinton, 2008) visualization
of discourse relation representations for top-level
and second-level senses on the PDTB 2.0 test set.
As we can see, compared with current state-of-the-
art models BMGF-RoBERTa (Liu et al., 2020) and
LDSGM (Wu et al., 2022), our model can generate
more centralized discourse relation representations
belonging to the same senses (e.g., Temporal at
the top level, marked in red), and more separated

representations belonging to different senses. It
verifies our model’s capability of deriving better
discourse relation representations.

C Effects of Hyperparameters

Here we investigate the effects of various hyper-
parameters on the development set of PDTB 2.0.
These hyperparameters include the number layer
L; of MHIA (Figure 5), the number layer Ly of
GCN (Figure 6), the coefficient A1 of the global
hierarchy-aware contrastive loss (Figure 7), the co-
efficient A9 of the local hierarchy-aware contrastive
loss (Figure 8), and the temperature 7 in contrastive
learning (Figure 9). Note that we only change one
hyperparameter at a time.

D Label-wise Classification on PDTB 3.0

Top-level Senses GOLF (base) GOLF (large)
Exp (47%) 80.01 80.50
Cont (32%) 74.54 74.83
Comp (11%) 64.67 71.59
Temp (10%) 64.80 70.92

Table 8: Label-wise F1 scores (%) for the top-level
senses of PDTB 3.0. The proportion of each sense is
listed behind its name.

Second-level Senses GOLF  GOLF
(base)  (large)
Exp.Conjunction (16%) 64.09 63.69
Exp.Level-of-detail (15%)  52.60 59.29
Exp.Instantiation (9%) 72.53 73.77
Exp.Manner (4%) 63.53 62.61
Exp.Substitution (2%) 66.67 72.22
Exp.Equivalence (2%) 25.39 24.00
Cont.Cause (26%) 69.47 72.49
Cont.Purpose (4%) 71.60 72.73
Cont.Cause+Belief (1%) 0.00 0.00
Cont.Condition (1%) 66.67 92.31
Comp.Concession (7%) 59.09 63.37
Comp.Contrast (4%) 43.33 60.27
Temp.Asynchronous (7%)  68.79 77.55
Temp.Synchronous (2%) 41.00 42.27

Table 9: Label-wise F1 scores (%) for the second-level
senses of PDTB 3.0. The proportion of each sense is
listed behind its name.
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Figure 4: t-SNE visualization of discourse relation representations for the top-level and second-level senses on
PDTB 2.0 test set.
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Figure 5: Effects of the number layer L; of MHIA on the development set.
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Figure 6: Effects of the number layer Lo of GCN on the development set.

8061




Fl

Acc

Fl1

Acc

Fl

Acc

o4 38 11

63 374 10 4

621 361 9

61 T T T T 351~ T T T T 8- T T - v
0.0 0.1 0.5 1.0 2.0 0.0 0.1 0.5 1.0 2.0 0.0 0.1 0.5 1.0 2.0

72 58 36

714 571 351

70 56 34 4

69— T T T T 55— T T T T 33— T T T T
0.0 0.1 0.5 1.0 2.0 0.0 0.1 0.5 1.0 2.0 0.0 0.1 0.5 1.0 2.0

A A A

a) Top-level sense classification

Figure 7: Effects of the coefficient \;

b) Second-level sense classification

¢) Implicit connective classification

of the global hierarchy-aware contrastive loss on the development set.
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Figure 9: Effects of the temperature 7 in contrastive learning on the development set.
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