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Abstract

Large Language Models, the dominant starting
point for Natural Language Processing (NLP)
applications, fail at a higher rate for speakers
of English dialects other than Standard Ameri-
can English (SAE). Prior work addresses this
using task-specific data or synthetic data aug-
mentation, both of which require intervention
for each dialect and task pair. This poses a scal-
ability issue that prevents the broad adoption
of robust dialectal English NLP. We introduce
a simple yet effective method for task-agnostic
dialect adaptation by aligning non-SAE dialects
using adapters and composing them with task-
specific adapters from SAE. Task-Agnostic
Dialect Adapters (TADA) improve dialectal ro-
bustness on 4 dialectal variants of the GLUE
benchmark without task-specific supervision.!

1 Introduction

Large Pretrained Language Models (LLMs; Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020)
have been shown to perform much worse for En-
glish dialects other than Standard American En-
glish (SAE) (Ziems et al., 2022, 2023). Existing
work on dialectal English NLP is task-specific, us-
ing manually annotated dialect data (Blodgett et al.,
2018; Blevins et al., 2016), weak-supervision (Jgr-
gensen et al., 2016; Jurgens et al., 2017), or data
augmentation (Ziems et al., 2022, 2023).

As LLMs become a general-purpose technology,
they are applied in an increasing number of sce-
narios by users who are not formally trained in
Machine Learning (Bommasani et al., 2021). Non-
experts rarely look beyond accuracy (Yang et al.,
2018), making them less likely to value robustness
above the cost of training (Ethayarajh and Jurafsky,
2020). Unmitigated dialect bias in this long tail of
tasks has the potential to exacerbate harms due to
unfair allocation of resources (Bender et al., 2021).

'We release code for training both traditional and task-

agnostic adapters for English dialects on GitHub and finetuned
models, adapters, and TADA modules on HuggingFace.
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Figure 1: TADA trains adapters with both sequence and
token level alignment loss between SAE and a target di-
alect. When stacked before task-specific SAE adapters,
TADA provides dialect robustness for the target task.

Dialectal discrepancies originate in biases in the
filtering of LLM pretraining data before finetun-
ing (Gururangan et al., 2022). Despite dialects
being definitionally similar, training which enables
task-agnostic zero-shot transfer is underexplored
relative to potential utility (Bird, 2022). Such task-
agnostic transfer methods are natural, practical, and
offer a scalable solution for English dialects across
the growing spectrum of NLP applications.

This work contributes the first pursuit
of these goals with Task-Agnostic Dialect
Adapters (TADA). Adapters, bottlenecks
placed between transformer layers, provide a
parameter-efficient (Houlsby et al., 2019) and
composable (Pfeiffer et al., 2020) foundation
for task-agnostic dialect adaptation, given the
low-resourced nature of most dialects. As shown
in Figure 1, TADA modules are trained to align
non-SAE dialect inputs with SAE inputs at multi-
ple levels with both a sequence-level contrastive
loss and a novel morphosyntactic loss.

We show the empirical effectiveness of TADA
on 4 dialect variants of GLUE (Wang et al., 2018)
with perturbations from Ziems et al. (2023). We re-
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lease TADA as a plug-and-play tool for mitigating
dialect discrepancies, launching a scalable pathway
to dialect-inclusive English NLP.

2 Related Work

NLP For English Dialects Existing work on
NLP for English dialects has largely focused on
data collection and weak supervision. Jgrgensen
et al. (2016) uses online lexicons to provide weak
supervision for AAE. Blevins et al. (2016) man-
ually annotates a small dataset and uses domain
adaptation methods to enable transfer. Jurgens et al.
(2017) collects a geographically diverse set of En-
glish data and uses distant supervision signals to
annotate a large and representative language ID
corpus. Multi-VALUE (Ziems et al., 2022, 2023)
develops a data augmentation framework for task-
specific training in many common English dialects.
Our work proposes a complementary task-agnostic
intervention for English NLP.

Cross-Lingual Alignment Cross-lingual align-
ment has become a common approach for task-
agnostic zero-shot transfer across languages. Ex-
plicit lexical alignment can be used to learn
cross-lingual word embeddings for downstream
tasks (Duong et al., 2016; Adams et al., 2017;
Artetxe et al., 2018; Grave et al., 2019). More
recent work shows that end-to-end models can im-
plicitly learn to align representations (Zoph et al.,
2016; Conneau and Lample, 2019; Conneau et al.,
2020; Xue et al., 2021). These alignment methods
often perform better on highly similar languages,
making them theoretically well-suited for dialects.
By using explicit alignment with composable mod-
ules, our work is the first to explore such techniques
for English dialectal NLP.

Adapters A growing body of research has been
devoted to finding scalable methods for adapt-
ing increasingly large-scale pre-trained models.
Houlsby et al. (2019) adapt large models using
bottleneck layers (with skip-connection) between
each layer. This idea has been extended in many do-
mains (Stickland and Murray, 2019; Pfeiffer et al.,
2021; Rebulffi et al., 2017; Lin et al., 2020). Most
relevant, Pfeiffer et al. (2020) showed that discrete
language modeling adapters and task adapters can
be composed for effective cross-lingual multi-task
transfer. Our experiments exploit specialized di-
alectal data augmentation to extend this approach
to English dialects using explicit alignment loss.

3 TADA: Task-Agnostic Dialect Adapters

As an initial effort, TADA aims to provide task-
agnostic dialect robustness for English NLP. To do
so, we build on work from both multilingual NLP
and computer vision and apply explicit alignment
losses for transfer learning. Concretely, we first
generate a synthetic sentence-parallel corpus us-
ing the morphosyntactic transformations created
by Ziems et al. (2023). Using these parallel sen-
tences, we train TADA to align using a contrastive
loss at the sequence level and an adversarial loss at
the token level. At test time, TADA modules are
stacked with task-specific adapters trained on SAE
to improve the dialect performance on the target
task without further training.

3.1 Synthetic Parallel Data

While cross-lingual transfer has leveraged the
wealth of sentence parallel bi-texts from machine
translation to learn alignment, there are no large-
scale parallel English dialectal datasets. There-
fore, we leverage Multi-VALUE, a rule-based mor-
phosyntactic SAE to a non-SAE translation system
to create parallel data (Ziems et al., 2023).

We start with SAE sentences sampled from
the Word-in-Context (WiC) Dataset (Pilehvar and
Camacho-Collados, 2019). WiC is designed to
contain lexically diverse sentences and is sourced
from high-quality lexicographer written exam-
ples (Miller, 1994; Schuler, 2005). This avoids
our alignment modules overfitting to specific vo-
cabulary or noise from low-quality examples. We
generate 1,000 such pairs, an amount which could
be feasibly replaced with human-translated data.

This data limitation is intentional, as Multi-
VALUE could alternatively used to do large-scale
pretraining on transformed data (Qian et al., 2022).
With smaller data limitations, the data used to train
TADA can be manually curated native speakers
and linguists to most accurately describe the di-
alect via minimal pairs (Demszky et al., 2021). Ad-
ditionally, it opens the potential for TADA to be
used for non-English dialects, related languages,
and codeswitched variants where small amounts of
manually translated data already exists (Diab et al.,
2010; Salloum and Habash, 2013; Klubicka et al.,
2016; Costa-jussa, 2017; Costa-jussa et al., 2018;
Popovi¢ et al., 2020; Chen et al., 2022; Agarwal
et al., 2022; Hamed et al., 2022) Furthermore, us-
ing a small amount of data, in combination with a
parameter-efficient method, reduces compute costs
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Dialect Adaptation Details AAE Glue Performance
Approach ~ Method  Task-Agnostic Dialect Params. | COLA | MNLI | QNLI | RTE | QQP | SST2 | STS-B | Mean
N/A Finetuning 4 0 13.5 82.0 893 | 71.8 | 87.1 | 92.0 89.9 75.1
N/A Adapters v 0 14.1 83.7 903 | 67.1 | 86.8 | 92.1 88.7 74.7
"~ VALUE Finetuning x Tx110M | 198 | 849 | 90.8 | 744 | 89.6 | 924 | 909 | 775
VALUE  Adapters X T x 895K 40.2 85.8 922 | 73.6 | 89.7 | 93.6 90.3 80.8
- TADA  Adapters Vo 895K | 29.5+ | 84.8+ | 91.7+ | 67.2+ | 88.1+ | 91.9 | 89.6+ | 77.5+

Table 1: Dialect Adaptation GLUE results of RoOBERTa Base (Liu et al., 2019) for the 7 GLUE Tasks (Matthew’s
Corr. for CoLA; Pearson-Spearman Corr. for STS-B; Accuracy for all others). T is the number of target tasks for
dialect adaptation. Tasks where TADA improves the performance of task-specific SAE adapters, are marked with +.

as a barrier for dialect speakers to develop and
own language technology within their communi-
ties (Ahia et al., 2021).

3.2 Contrastive Sequence Alignment

Multilingual NLP has shown that Lo alignment on
small amounts of data can provide competitive per-
formance gains to augmentation using translated
data during finetuning (Conneau et al., 2018). This
operates on the intuition that similar input repre-
sentations are likely to lead to similar outputs.
TADA extends this approach to dialects by min-
imizing the Lo distance between a frozen repre-
sentation of an SAE input CLS;,. and the TADA
representation of a non-SAE input CLS 4;,;:

Lseq = ’CLSsae - CLSdial’Q (1)
3.3 Adversarial Morphosyntactic Alignment

Since our translated data is aligned at the sequence
level, the contrastive loss is only applied to the
CLS representations. However the variation, and
therefore our ideal alignment procedure, operates
at the morphosyntactic level.

Lacking token-level aligned data, we instead pur-
sue morphosyntactic alignment using unsupervised
adversarial alignment methods (Zhang et al., 2017,
Lample et al., 2018). Since our goal is to capture
morphosyntactic differences, we use an adversary
which pools the entire sequence using a single-layer
transformer (Vaswani et al., 2017) with a two-layer
MLP scoring head. A transformer adversary has
the expressive capacity to identify misalignment in
both individual tokens and their relationships.

We leave the source dialect frozen which has
been shown in computer vision to lead to repre-
sentations that are composable with downstream
modules (Tzeng et al., 2017). Given the adversarial
scoring network Adv, a frozen SAE representation
SAE, and a Non-SAE representation after TADA
Dial, we train Adv to maximize:

Laay = Adv(Dial) — Adv(SAE)  (2)

Then, define the morphosyntactic loss for TADA
by minimizing the critic loss from Adv:

Lpms = — Adv(Dial) 3)

3.4 Plug-And-Play Application

Finally, we propose a procedure for applying
TADA to downstream tasks. We use composable
invertible adapters (Pfeiffer et al., 2020) as our start-
ing point. Using the 1,000 sentences from WiC,
we train these adapters to minimize the combined
contrastive and adversarial loss functions:

LTADA = Lseq + Lms (4)

At test time TADA modules can be stacked be-
hind traditional task adapters (Houlsby et al., 2019).
TADA serves to directly align the representations
of Non-SAE inputs to the SAE embedding space
that these task adapters were trained on. Our exper-
iments show that this consistently improves adapter
performance without further training.

4 Evaluating TADA

We benchmark TADA on 4 VALUE (Ziems et al.,
2022, 2023) transformed versions of the GLUE
Benchmark (Wang et al., 2018). As discussed in
our limitations, these benchmarks are artificial but
enable the evaluation of TADA across multiple
tasks and dialects. First, we show how TADA com-
pares to SAE models and task-specific baselines
for African American English (AAE). Then, we
show that TADA is effective across 4 global di-
alects of English. Finally, we perform an ablation
to evaluate the contribution of each loss function.

For all TADA experiments, we train using 1,000
WiC sentences as described in Section 3.1. We
train for 30 epochs with early stopping based on
the lowest contrastive loss on a development set
of 100 held-out WiC sentences. In Section 5, we
report full hyperparameters along with the training
details for SAE and VALUE models.
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5 Training Details

TADA is trained with the ADAM optimizer for 30
epochs with batch size of 16 and with a hyperpa-
rameter search of 5e-4. We keep the model and
epoch with lowest Ly loss on the 100 held-out ex-
amples. Training takes approx. 30 minutes on an
Nvidia GeForce RTX 2080 Ti.

To find this hyperparameter setup, we performed
a grid search over batch sizes from 8§, 16, 32 and
learning rates from 5 - 1073, 5-1074,5 - 10~° for
AAVE and used the configuration with the lowest
L5 loss on the 100 held-out examples.

For all SAE and VALUE GLUE models, we
finetune RoBERTa base for 10 epochs with the
ADAM optimizer, a learning rate of 2-10~°, a batch
size of 16, and a linear learning rate warm-up of
6%. For all SAE and VALUE GLUE adapters, we
finetune the original adapter architecture (Houlsby
et al., 2019) inside RoBERTa base for 20 epochs
with the ADAM optimizer, a learning rate of 1 -
10~*, a batch size of 16, and a linear learning rate
warm-up of 6%. Training all baseline models took
approx. 3 days on an Nvidia GeForce RTX 2080
Ti. Additionally, we report experimental results on
the BERT-base model in Appendix Al.

5.1 TADA vs. Task-Specific

Since ours is the first work to attempt task-agnostic
dialect adaptation, we benchmark TADA in com-
parison to prior task-specific methods in Table 1.
We first establish pure SAE baselines for both
full finetuning and adapter training (Houlsby et al.,
2019). Interestingly, the gap between SAE per-
formance and AAE performance is similar for
adapters (-8.8) and full finetuning (-8.9) when
trained on SAE. The minimal effects of the limited
capacity of adapters on disparity indicate that di-
alectal discrepancy is largely within the pretrained
LLM before finetuning. Without mitigation, SAE
models alone perform poorly on non-SAE input.
We then train two task-specific dialect mitiga-
tion following the approach of VALUE, which aug-
ments training data with pseudo-dialect examples
during finetuning. This is a strong baseline, as it
allows the model to adapt specifically to in-domain
augmented examples rather than the general sen-
tences used to align TADA modules. When trained
on augmented data, adapters (80.7 Avg.)’> seem to
outperform full finetuning (77.5 Avg.). We hypoth-
esize that random initialization of adapters prevents

2Avg. refers to the mean performance across GLUE tasks.

conflicting gradients across dialects which can lead
to negative transfer (Wang et al., 2020).

Finally, we combine TADA with task-specific
SAE modules for our task-agnostic approach.
TADA succeeds in our goal of generalizable per-
formance improvements, yielding improved robust-
ness for 6 out of 7 tasks for an average increase
of 2.8 points on the GLUE benchmark. How-
ever, TADA performs 4% worse on average than
task-specific VALUE-augmented adapters. These
adapters are trained on larger amounts of dialectal
training data directly from each task than TADA,
which likely explains their superiority. However,
as noted in the table these approaches scale train-
ing and storage linearly with the number of tasks,
while TADA requires only a constant overhead.

These results are the first to indicate the possibil-
ity of task-agnostic dialect adaptation. While per-
formance lags behind the task-specific intervention,
these results indicate similar quality is possible
with vastly improved scalability. This scalability
across tasks is key to truly addressing dialect dispar-
ities as NLP has a growing impact across a larger
number of tasks.

5.2 Cross-Dialectal Evaluation

We then confirm that TADA generalizes across re-
gional dialects using 3 global dialect translations
introduced from Ziems et al. (2023) in Table 2. Be-
yond AAE, we select Nigerian English and Indian
English as they are each estimated to have over 100
million English speakers?, Singaporean English as
it was identified as particularly challenging.

Despite not explicitly encoding any linguistic
features, TADA is not dialect-agnostic. TADA im-
proves average performance by +2.8, +0.3, +0.4,
and +3.9 respectively for African American, Indian,
Nigerian, and Singaporean Englishes.

Ultimately, this applicability across dialects rein-
forces TADAS potential as a general tool, but with
key limitations at fully removing the dialect gap.
Truly dialect-robust NLP requires generalization
across both tasks and dialects, making measuring
the performance of both essential. We recommend
future works on dialect modeling evaluate both.

5.3 Ablation Study

Finally, we show the resuilts from an ablation in
Table 3 to evaluate the contributions of each loss

3Speaker estimates from the Oxford English Dictionary
Introduction to Nigerian English and the Indian Census.
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CoLA MNLI QNLI RTE QQP SST2 STSB Mean
Test Dialect | Orig. TADA | Orig. TADA |Orig. TADA |Orig. TADA |Orig. TADA |Orig. TADA |Orig. TADA |Orig. TADA
SAE 583 872 | 872 872|932 932 |70.8 708 [93.9 939 |[90.5 90.5 |90.5 90.5 |83.5 83.5
"~ AAVE | 141 295 |837 848 [903 917 [67.1 67.1 |86.8 88.1 |92.1 919 887 89.6 | 747 775 (+2.8)
Indian 164 150 |82.6 83.6 | 8.1 903 |66.8 668 |86.4 87.0 {909 91.1 |885 889 |744 74.7(+0.3)
Nigerian |23.7 272 | 843 84.8 |91.2 91.1 | 650 64.6 |882 882 |922 92.1 |89.3 88.7 |763 76.7(+0.4)
Singaporean| -0.4 203 | 814 83.0 |87.7 89.3 | 632 643 |852 873 |909 91.1 |88.1 885 |70.9 74.8(+3.9)

Table 2: Multi-Dialectal evaluation results across all Tasks (Matthew’s Corr. for CoLA; Pearson-Spearman Corr.
for STS-B; Accuracy for all others) for 4 Non-SAE Dialect Variants of GLUE created using Multi-VALUE.

AAE Glue Performance
Method COLA | MNLI | QNLI | RTE | QQP | SST2 | STS-B |  Mean
TADA 295 | 84.8 | 91.7 | 67.1 [ 88.1 | 919 | 89.6 715
. —Lms(Eq.3) | 29.1 | 850 | 91.5 [ 66.1 | 88.0 | 91.6 | 894 | 77.2(-03)
—Lgeq(Eq. ) | 00 | 31.8 | 505 | 36.8 | 473 | 509 | 10.7 | 32.6(-44.9)

Table 3: TADA Loss Ablation results for RoOBERTa Base for the 7 GLUE Tasks (Matthew’s Corr. for CoLA;
Pearson-Spearman Corr. for STS-B; Accuracy for all others) for African-American English. Our results show that
the combined loss functions of TADA lead to the strongest results.

function to the final TADA methods. Contrastive
loss alone yields close performance to TADA; it
consistently underperforms the combined loss func-
tions on 6 out of 7 tasks (-0.3 Avg.). This extends
evidence for the efficacy of this simple loss func-
tion from the multilingual (Conneau et al., 2018)
to the dialectal domain.

When contrastive loss is removed, the adversar-
ial loss quickly becomes unstable and suffers from
mode collapse. This leads to pathological results,
with the resulting adapters harming performance
for all tasks (-44.9 Avg.).

6 Conclusions

English dialects are underserved by NLP, but are
both tractable targets for transfer learning and have
huge speaking populations (Bird, 2022). Models
which serve English speakers inherently serve a
global population who use the language natively
and as a second tongue.

However, current approaches to improve dialec-
tal robustness in English have so far focused only
on one task at a time. The scalability of these task-
specific methods limits their impact as language
technology applications become increasingly di-
verse and pervasive. We argue that task-agnostic
dialectal methods are a clear, yet unexplored path
to serve these communities effectively.

We propose a simple yet effective technique
TADA to address this, utilizing morphosyntactic
data augmentation and alignment loss at both the
sequence and morphosyntactic level to train adapter
modules. When composed with SAE task adapters,

TADA modules improve dialectal robustness con-
sistently on the multi-task GLUE benchmark. Fu-
ture work should work to further reduce the dialect
discrepancy to create more inclusive and equitable
English language technology.

Limitations

TADA makes use of the pseudo-dialectal trans-
lation systems of prior work Ziems et al. (2022,
2023). We rely on them as they are validated by
dialect speakers and have been shown to be predic-
tive of performance on Gold Dialect data. How-
ever, they were designed as stress tests of robust-
ness which isolates morphology and syntax. We
are therefore unsure how TADA performs when
it faces the topical and register shifts which of-
ten are associated with naturally occurring dialects.
These limitations are similar to localization issues
in translated benchmarks (Moradshahi et al., 2020).

In this work, we evaluate TADA on only
Encoder-only LLMs. Increasingly, both Encoder-
Decoder and Decoder-only models are seeing wide-
scale use due to their flexibility (Wang et al., 2022).
Evaluating TADA and developing alternate tai-
lored task-agnostic methodologies on these alter-
nate LLLM architectures is left to future work.

Ethics Statement

This work refers to linguist-drawn boundaries
around dialects. However, dialects are not mono-
lithic and are used in varied ways across sub-
communities of speakers. Readers should there-
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fore not understand TADA to remove discrepan-
cies across all speakers as improvements may vary
within subcommunities within a dialect (Koenecke
et al., 2020). Additionally, as TADA is task-
agnostic, it is especially vulnerable to dual use. To
mitigate this, we will release TADA under a license
that forbids usage with intent to deceive, discrimi-
nate, harass or surveil dialect-speaking communi-
ties in a targeted fashion.
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Dialect Adaptation Details AAE Glue Performance
Approach ~ Method  Task-Agnostic Dialect Params. | COLA | MNLI | QNLI | RTE | QQP | SST2 | STS-B | Mean
N/A Finetuning v 0 36.0 79.6 89.2 | 653 | 86.2 | 89.7 87.4 76.2
N/A Adapters v 0 314 80.8 89.2 | 62.1 | 86.0 | 89.8 86.9 75.1
" VALUE Finetuning X Tx110M | 362 | 83.0 | 89.7 | 614 | 88.6 | 89.6 | 882 | 76.7
VALUE  Adapters X T x 895K 36.3 82.0 89.5 | 66.8 | 85.6 | 88.8 88.5 76.8
- TADA  Adapters v 895K | 383 | 815 | 89.0 | 62.1 | 87.0 | 90.0 | 88.0 | 76.6

Table Al: Dialect Adaptation GLUE results of BERT Base (Devlin et al., 2019) for the 7 GLUE Tasks (Matthew’s

Corr. for CoLA; Pearson-Spearman Corr. for STS-B; Accuracy for all others). T is the number of target tasks for
dialect adaptation.
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