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Abstract

Code-mixing is ubiquitous in multilingual so-
cieties, which makes it vital to build models
for code-mixed data to power human language
interfaces. Existing multilingual transformer
models trained on pure corpora lack the abil-
ity to intermix words of one language into the
structure of another. These models are also
not robust to orthographic variations. We pro-
pose CoMix1, a pretraining approach to im-
prove representation of code-mixed data in
transformer models by incorporating phonetic
signals, a modified attention mechanism, and
weak supervision guided generation by parts-
of-speech constraints. We show that CoMix
improves performance across four code-mixed
tasks: machine translation, sequence classifi-
cation, named entity recognition (NER), and
abstractive summarization. It also achieves
new SOTA performance for English-Hinglish
translation and NER on LINCE Leaderboard
and provides better generalization on out-of-
domain translation. Motivated by variations in
human annotations, we also propose a new fam-
ily of metrics based on phonetics and demon-
strate that the phonetic variant of BLEU corre-
lates better with human judgement than BLEU
on code-mixed text.

1 Introduction

Code-mixing, i.e., embedding linguistic units of
one language (embedded language LE) into a sen-
tence grammatically structured as per another lan-
guage (matrix language LM ), is common in multi-
lingual communities. Growing mobile penetration
coupled with the increased adoption of informal
conversational interfaces is leading to further rise
in such communication. Currently, over 20% of
user generated content from South Asia and parts
of Europe is code-mixed (Choudhury et al., 2019).
Hinglish (code-mixed Hindi-English) has nearly

1CoMix is not a trademark and only used to refer to our
models for code-mixed data for presentational brevity.

350 million speakers (GTS, 2019) making it one of
the most widely spoken languages. Recent litera-
ture suggests that multilingual users associate code-
mixing with cultural affinity and prefer chatbots
that can code-mix (Bawa et al., 2020). Code-mixed
modeling is, thus, a foundational prerequisite for
linguistic systems targeted towards such users.

Transformer models such as BART (Lewis et al.,
2020) and BERT (Devlin et al., 2018) have been
successful across various NLP tasks. These mod-
els can readily capture code-mixing semantics if
a large corpus was available for training. Un-
fortunately, that is not true for most code-mixed
languages. Existing approaches rely on learning
from a parallel corpus of embedded and matrix
languages (e.g., English and Hindi for Hinglish).
Recent work (Chen et al., 2022), however, shows
that multilingual models such as mBERT trained on
monolingual sources fail to effectively interleave
words from topologically diverse languages.

Adapting transformers to code-mixed data re-
quires addressing the following challenges: 1.
Divergent grammatical structure. For code-
mixed languages such as Hinglish, where LE and
LM have different Parts-of-Speech (POS) patterns,
models trained on monolingual corpora do not yield
similar representations for equivalent words across
languages, which is needed to facilitate interleaving
of LE and LM words. Linguistic theories propose
certain syntactic constraints for code-mixed gen-
eration (Poplack, 1980), but these are not usually
incorporated into the modeling. 2. Code-mixing
diversity. Code-mixed languages also exhibit a
wide diversity in the degree of code-mixing (e.g.,
ratio of LE to LM words). Fig 1 shows multiple
Hinglish constructions for a given sentence in En-
glish. Accounting for this variation in code-mixing
is necessary for high fidelity modeling. 3. Or-
thographic variations. The informal nature of
code-mixed interactions and lack of standardized
transliteration rules leads to users employing adhoc
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phonological rules while writing code-mixed con-
tent. Fig 1 shows Hinglish sentences with similar
sounding words and their variations (“kis”, “kys”).
Contributions. In this paper, we adapt transformer
models for code-mixed data by addressing the
above challenges. To ensure applicability to multi-
ple downstream tasks, we focus on pretraining.
1. We propose CoMix, a set of generic pretraining
methods to improve code-mixed data representa-
tions that can be applied to any transformer model
assuming the availability of POS-tagger and pho-
netic transcription tools. These include: (a) Do-
main Knowledge-based Guided Attention (DKGA)
mechanism that facilitates intermixing of linguis-
tic units of LE into the structure of LM through a
modified attention function, (b) Weakly Supervised
Generation (WSG) that generates code-mixed data
for training in a controllable fashion driven by lin-
guistic constraints, and (c) inclusion of phonetic
signals to align embeddings of similar sounding
with different orthographic representation.
2. We instantiate CoMix pretraining for BART
and BERT and demonstrate efficacy on multiple
downstream NLP tasks, namely Machine Transla-
tion, NER, Sequence Classification, and Abstrac-
tive Summarization with relative improvements of
up to 22%. CoMixBART and CoMixBERT achieve
new state-of-the-art (SOTA) results for English-
Hinglish translation and Hinglish NER tasks on
LINCE Leaderboard (Aguilar et al., 2020), beating
previous best mT5 (Jawahar et al., 2021) and XLM-
R (Winata et al., 2021) models, despite having less
than 0.5x and 0.1x model size respectively.
3. We evaluate out-of-domain code-mixed trans-
lation performance on two test sets, one created
in-house and other one adapted from GupShup cor-
pus (Mehnaz et al., 2021), and show that CoMix
generalizes better than other models. To the best of
our knowledge, this is the first such evaluation for
English-Hinglish translation. We hope our bench-
mark will assist the community to improve out-of-
domain generalization of code-mixed translation, a
critical need for low-resource regimes.
4. To address the limitations of existing metrics
in handling orthographic variations in code-mixed
data, we propose a new family of natural lan-
guage generation (NLG) metrics based on phonetic
adaptation of existing metrics. We observe that
PhoBLEU, the phonetic variant BLEU, is better
aligned to human judgement (+0.10 - 0.15 on Pear-
son correlation) than BLEU on Hinglish.

Figure 1: [Top] Divergent POS structure of Hindi (LM )
and English (LE) with CoMix output following LM

structure better than that of IndicBART. [Bottom] Dif-
ferent types of valid variations in code-mixed data.

2 Related Work

Multilingual and Code-Mixed NLP. Recent ad-
vances in large multilingual pre-trained models
such as mBERT (Devlin et al., 2018) and mBART
(Liu et al., 2020) have led to significant gains on
many multilingual NLP tasks. However, evaluation
of these models on code-mixed content for machine
translation (Chen et al., 2022), sequence classifica-
tion (Patwa et al., 2020), summarization (Mehnaz
et al., 2021) and other tasks (Aguilar et al., 2020)
points to their inability to intermix words from two
languages since these are pretrained on monolin-
gual text without any language alternation. Our
CoMix approach encourages the model to learn
representations that allows appropriate embedding
of words from one language into structure of an-
other via domain knowledge guided attention and
through weakly supervised code-mixed generation.
Prior work (Sanad Zaki Rizvi et al., 2021) focuses
on generating synthetic code-mixed data using con-
straints from linguistic theories followed by learn-
ing. We perform joint generation and learning us-
ing pretrained models that has dual benefit of data
generation and improving model representations,
and has been shown to be effective for anomaly
detection in medical images (Li et al., 2019).
Incorporating Phonetics in Language Modeling.
Combined modeling of phonemes and text has been
a topic of recent interest and has contributed in im-
proving robustness to ASR errors (Sundararaman
et al., 2021). In code-mixed domain, Soto et al.
(Soto and Hirschberg, 2019) engineered spelling
and pronunciation features by calculating distance
between pairs of cognate words to improve perplex-
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ity of English-Spanish models. We also incorpo-
rate phonetic signals to learn robust representations.
Sentence Evaluation Metrics. Automated sen-
tence evaluation metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004) for comparison
of unstructured sentences led to rapid innovation in
NLP by facilitating ready evaluation of NLP sys-
tems against ground truth without additional human
annotations. However, these metrics are unreliable
for code-mixed content as they disregard widely
prevalent orthographic variations. We propose a
new family of metrics to address this gap.

3 CoMix Approach

Given a corpus of sentence pairs from LM and LE ,
our goal is to adapt transformer models such as
BART and BERT to overcome the key challenges
in modeling code-mixed data. To ensure applica-
bility to multiple downstream tasks, we focus on
the pretraining phase. We assume access to POS
tagging and phonetic transcription tools 2 which is
true for many languages (see Section 7). Below we
summarize our approach for each of the challenges.
P1 - Divergence in POS structure of LE and LM :
To enable transformer models to extrapolate from
LE and LM to code-mixed data, we rely on lin-
guistic constraints. We observe that coarse groups
of POS labels of concepts are preserved across
translation (see Section 7) and that code-mixed
sequences often retain the POS structure of LM se-
quence. Assuming access to POS labels the above
constraints provide token-level correspondence for
parallel training sentences, which can be used to
augment the transformer attention mechanism and
lead to representations that facilitate accurate inter-
leaving of LE and LM words. [Section 3.1]
P2 - Variations in the level of code-mixing: To ac-
curately model variations in code-mixed data such
as the mixing propensity, we propose a weakly su-
pervised approach that combines POS constraints
with a control on the code-mixing probability
to generate code-mixed sequences from parallel
monolingual corpora3 for training. [Section 3.2]
P3 - Orthographic variations: To align similar
sounding words with orthographic variations, we
incorporate phonetic signal as an additional input
channel. We modify the transformer architecture

2We use Stanza for POS-tagging and Refined Soundex
implementation Pyphonetics for phonetic transcription.

3By parallel monolingual corpora we mean parallel cor-
pora wherein each one of the parallel sentences are in
pure/monolingual form of their corresponding language.

Figure 2: DKGA mechanism to force intermixing of
LE tokens (clothes, I) into LM . DKGA blocks attention
on red dots and guides attention on yellow, green col-
ored box tokens with green tick denoting right choice.
C1,C2,C3 are POS groups defined in Appendix A.1.

to include two multi-head self-attention layers, one
each for text and phoneme channels. [Section 3.3]

3.1 Domain Knowledge Guided Attention

Attention (Vaswani et al., 2017) is an essential
mechanism of transformer architecture that con-
verts an input sequence into a latent encoding using
representational vectors formed from the input, i.e.,
queries, keys and values to determine the impor-
tance of each portion of input while decoding. Let
X and Z denote the sequence of input tokens and
the associated representations. Further, let Q, K,
V denote the sequences of query, key and value
vectors derived from appropriate projections of Z.
In this case, attention is typically defined in terms
of the scaled dot-product of Q and K.

To incorporate domain knowledge, we propose
augmenting attention with an additional indepen-
dent term fDKGA(X) defined on the input:

Attention(Q,K, V ) = softmax(QKT+fDKGA(X)√
dk

)V,

(1)
where dk is the dimension of query and key vectors.
While the notion of DKGA is general, to aid with
code-mixing, we focus on linguistic constraints.
We construct three groups of POS labels (see A.1)
that are preserved during translation (see 7). Let
X denote the concatenation of the parallel mono-
lingual sentences, i.e., X = XM∥XE , where XM

and XE are sentences in LM and LE respectively.
Let POSGP(x) denote the group of the POS label
of a token x. The linguistic constraints require that
aligned token pairs from XM and XE belong to
the same POS label group. Hence, for matrix to-
kens, we restrict attention to compatible embedded
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words by choosing fDKGA(X) = [fDKGA
ij ], where

fDKGA
ij =





0 if POSGP(xi) = POSGP(xj)

and xi ∈ XM , xj ∈ XE

or i = j for xi ∈ XE

−∞ otherwise.
(2)

Note that the above asymmetric choice is moti-
vated by the fact that code-mixed sentences retain
the POS structure of LM . Fig 2 shows how to-
kens from XE are selected using the above strategy
which coupled with self-attention ensures learning
representations that facilitate better intermixing of
LE tokens into LM structure. See A.4.9 for ex-
ample. Instead of a hard constraint on POS-label
preservation, the DKGA function can also be mod-
ified to incorporate soft transition probabilities of
POS labels during an LM to LE translation, which
could be learned from parallel sentence pairs with
token level alignment. We can also extend DKGA
to include other sources for attention guidance, e.g.,
domain ontologies, word-alignment and also for
cross-attention.
Pretraining with DKGA. We modify all self-
attention blocks in the encoder with DKGA and
pretrain CoMixBERT with masked language mod-
eling (MLM) objective (Devlin et al., 2018) and
CoMixBART with denoising objective (text infill-
ing with span=1). We mask the tokens of XM for
which we want DKGA to guide attention to embed-
ded words (e.g., in Fig 2, "kapde" will be masked).

3.2 Weakly Supervised Generation (WSG)

Lack of large code-mixed corpora poses a big chal-
lenge for code-mixed modeling. Hence, to facilitate
direct training and allow control over desired prop-
erties such as the level of code mixing, we propose
a weakly supervised mechanism for code-mixed
generation using any transformer-based encoder-
decoder model. The key idea is to nudge a pre-
trained multilingual model to code-mix by restrict-
ing the search space in the autoregressive step to
a small suitable set of LE tokens exploiting the
the fact that tokens with similar meaning and POS
labels in LE are likely to replace the LM token.

Fig 3 shows the generative mechanism (Equa-
tion 3 shows the corresponding equations). At each
auto-regressive step, we first determine the choice
to code-mix, denoted by Mi, sampled based on
the mixing probability pMix of the POS label of
the token xi ∈ XM and an overall code-mixing

Figure 3: Flow chart for WSG generative mechanism.

level τ . The vocabulary search space denoted by
Vi is chosen as the POS-compatible words (same
POS group as that of xi) from XE for code-mixing,
and the entire vocabulary V all otherwise. The next
token is generated via greedy search with teacher
forcing. In case of code-mixing, the target yi is
set to the predicted value ŷi and xi otherwise. We
train the model with negative log-likelihood loss
using XM as the input, Y = [yi]

N
i=1 as the tar-

get, Ŷ = [ŷi]
N
i=1 as the prediction. Due to the

self-dependency in WSG, the efficacy depends on
whether the underlying model can correctly order
the tokens in Vi, which is a reasonable expectation
from SOTA pretrained multilingual models.

ŷi = argmaxy∈Vi
P (y|y1, y2, ..., yi−1, XM ),

yi =

{
ŷi if Mi = 1

xi if Mi = 0
,

Vi =





{xj |xj ∈ XE ,

POSGP(xj) = POSGP(xi)} if Mi = 1

V all if Mi = 0

,

Mi ∼ Bernoulli(τpMix
POS(xi)

). (3)

In our experiments, we set τ = 1 and pMix

to 1 for POS groups {NOUN, PROPN,ADJ,
ADV, V ERB} where code-mixing is frequent and
0 for the rest but can learn it from a small code-
mixed corpus in future. The proposed WSG mech-
anism can also be applied to encoder-only models
such as BERT by considering a similar restriction
of the vocabulary set Vi at the last layer.

3.3 Mixing Phonetic Signal
Given a text sequence X , let XPh denote the corre-
sponding phonetic sequence. To incorporate both
the signals, we replace the multi-head self atten-
tion layer in the transformer encoder layer with
two multi-head self attention layers, one each for
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Figure 4: CoMix Transformer Encoder. Positional
embeddings and feed-forward expansion weights are
shared between the phonetic and textual channels.

text and phoneme channel. Text sequence shares
feed-forward layers with the phonetic sequence as
shown in Fig 4 since we want phonetic representa-
tions to be in the same space as text representations
. To keep the number of parameters in check, we
add phonetics part of the encoder to only alternate
encoder layers. Our decoder uses the concatenated
sequence of contextual embeddings from X and
XPh as keys and values for cross attention.
Pretraining with Phonetics. We pretrain
CoMixBERT for phonetics with MLM objective
(as in BERT) and CoMixBART with denoising ob-
jective (text infilling with span length 1).

4 Phonetic Sentence Comparison Metrics

Lack of standardized transliteration rules is a key
challenge not only for modeling but also for evalu-
ating code-mixed or multi-lingual NLG tasks, e.g.,
English to Hinglish translation Human annotators
employ orthographic variations and are also incon-
sistent in the use of punctuation and upper-lower
casing as shown in Fig 1. Most NLG evaluation
metrics such as BLEU, do not account for these
variations, which leads to pessimistic and inaccu-
rate estimates of the performance of NLG systems.
To address this gap, we propose a new family of
metrics based on the phonetic representation. Let
s(·, ·) be any metric such as BLEU and ROUGE
(Banerjee and Lavie, 2005) that facilitates compar-
ison of a word sequence against a reference one.
Given a pair of sentences (X,Y ), we define the
phonetic metric as Pho-s(X,Y ) = s(XPh, Y Ph),
where XPh, Y Ph are the phonetic sequences. In
this paper, we limit our focus to PhoBLEU and

Baseline Compared against
SOTA Metrics

Named Entity
Recognition

Indic
BERT

XLM-R Large
Weighted
F1-Score

Classification - Micro F1-Score
Machine Translation Indic

BART
mT5 BLEU, PhoBLEU

Abstractive
Summarization

PEGASUS, BART
BLEU, PhoBLEU,

ROUGE

Table 1: Baselines, metrics and SOTA models.

present observations in Sec 6.6.

5 Experiments

5.1 Downstream Tasks, Baselines and Metrics

Table 1 lists the four downstream tasks, baselines,
SOTA models and metrics used in the evaluation4.
For translation on HooD dataset (Sec 5.2), we also
include Echo baseline which just passes the input
sequence as output and helps measure the contri-
bution of input-output overlap to the final perfor-
mance.

Previous studies (Dabre et al., 2021) (Kakwani
et al., 2020) indicate that IndicBART (Dabre et al.,
2021) and IndicBERT (Kakwani et al., 2020) are
competitive relative to mBART and mBERT respec-
tively on Indic languages. Further, since we ini-
tialize our models CoMixBART and CoMixBERT
with weights from IndicBART and IndicBERT, we
consider these as strong baselines for our evaluation
of generative and classification tasks respectively.

5.2 Datasets for Downstream Tasks

We evaluate on LINCE Eng-Hinglish dataset for
translation (Chen et al., 2022), SemEval-2020
Hinglish Sentimix dataset for sequence classifica-
tion (Patwa et al., 2020), GupShup Hinglish chats
to summaries (GupShup H2H) dataset (Mehnaz
et al., 2021) for summarization and LINCE
Hinglish (Singh et al., 2018) dataset for the NER
task. Table 9 in Appendix A.3.2 lists data statistics.
Hinglish Out-of-Domain Translation Dataset
(HooD). We introduce two out-of-domain trans-
lation test-sets for Hinglish. Of these, the first
one from shopping domain was prepared by in-
house human experts who translated English sen-
tences generated by humans and models like GPT3,
following the guidelines in Appendix A.3.1. The
second test set was prepared from GupShup cor-
pus (Mehnaz et al., 2021) from parallel English-
Hinglish summaries of conversations created by lin-
guists (Gliwa et al., 2019). These datasets can help

4Formulations of all tasks are in A.2.
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# datapoints Avg. # of all tokens Avg. # of tokens in Target Code-Mixing
Index (CMI) (Das and Gambäck, 2014)Source Target English Hindi

HooD Shopping 1050 16.63 17.76 3.35 14.41 19.2
HooD Open Domain 6831 20.29 22.46 6.16 16.29 28.96

Table 2: Data statistics for Hinglish Out-of-Domain (HooD) dataset.

assess the zero-shot transfer capabilities of mod-
els from movies to shopping and open-domain for
models trained on LINCE English-Hinglish dataset.
Table 2 shows statistics of the HooD dataset.

5.3 Experimental Setup

5.3.1 Pretraining
Initialization. Training large transformer mod-
els from scratch requires thousands of GPU hours,
which can be prohibitive. To ensure broader ac-
cessibility and best utilise existing models, we ini-
tialize CoMixBART decoder and encoder’s non-
phonetic weights (NPW) from IndicBART and
CoMixBERT’s NPW from IndicBERT. These are
pretrained using Samanantar English-Hindi parallel
corpus (Ramesh et al., 2021).
CoMixBART. We pretrain CoMixBART with
DKGA on 1M sentences from Samanantar for 36k
steps (∼ 2 epochs) on three 24GB GPUs with batch
size of 2816 tokens, linear learning rate warmup
and decay with 16k warmup steps. We use Adam
optimizer with max learning rate of 1e-3, label
smoothing of 0.1, dropout of 0.1 and token mask-
ing probability of 0.4. For WSG, we pretrain the
DKGA model for additional 2k steps with the
same setup except label smoothening and mask-
ing probability of 0. Learning curve for pretrain-
ing with DKGA and WSG is shown in Appendix
A.4.2. Since pretraining CoMixBART for phonet-
ics from scratch is computationally prohibitive be-
cause of its size, we devise a way to obtain reason-
able weights for downstream training. We initialize
embeddings of phonetic tokens with the mean of
embeddings of the text tokens that map to it. We
also initialize phonetic self-attention layer parame-
ters with the same weights as that of corresponding
text channel’s self-attention layer.
CoMixBERT. We pretrain CoMixBERT with
DKGA, WSG and Phonetics on 100k sentences
from Samanantar on six 32GB GPUs with batch
size of 20 per GPU, starting with a learning rate of
5e-5, linear learning rate warmup and AdamW op-
timizer. We pretrain DKGA and WSG for 1k steps
and Phonetics for 3k steps. We are able to pretrain
CoMixBERT with Phonetics because it has 7x less

parameters than CoMixBART.

5.3.2 Downstream Fine-tuning
CoMixBART. The pretrained model is fine-tuned
for downstream tasks in two stages. First, we at-
tach a custom task-specific head to the decoder and
train its weights, CoMixBART’s NPW (encoder
and decoder) for 5k steps on three 24GB GPUs
with batch size of 2048 tokens, linear learning rate
warmup, and decay with 2k warmup steps and max.
learning rate of 5e-4 using Adam optimizer. In
the second stage, phonetic weights of CoMixTrans-
former encoder are initialized as per section 5.3.1.
Then, in downstream training of complete model,
the weights from previous step are optimised with
smaller learning rate than CoMixBART encoder’s
phonetic weights for additional 5k steps. We use
beam search (size 4) for decoding. We train base-
line IndicBART model for all tasks using YAN-
MTT (Dabre, 2022), as prescribed in IndicBART
repository (IndicBART, 2022) with the same setup
as CoMix models. In all cases, we pick the model
with best validation score after 5k training steps.
CoMixBERT. We attach a custom task-specific
head to the model and train using standard fine-
tuning procedure. For NER, we also have CRF
layer attached after all models including baseline.
Since its possible to combine encoder only models
without sequential training, we report ensemble re-
sults obtained by averaging logits for DKGA+WSG
and DKGA+WSG+Phonetic variants as they were
better than sequential training. We use grid search
to find the right set of hyperparameters for all mod-
els including baseline and pick the model with best
validation score. We custom-build CoMixBART
and CoMixBERT implementation using transform-
ers (Wolf et al., 2020), YANMTT (Dabre, 2022),
and PyTorch (Paszke et al., 2019).

6 Results and Analysis

6.1 Machine Translation

Table 5 shows the results for the LINCE Leader-
board English-Hinglish translation task. CoMix

5We show punctuation-less metrics for Echo baseline for
HooD in brackets to correct for the inconsistent punctuation.
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Movies to Shopping domain transfer Movies to open domain transfer

Echo Indic
BART

CoMix Echo Indic
BART

CoMix

DKGA DKGA+
WSG

DKGA+WSG
Phonetics DKGA DKGA+

WSG
DKGA+WSG

Phonetics
BLEU 9.88 (6.49) 10.37 11.95 11.95 12.15 13.23 (10.35) 16.36 17.16 17.53 18.67

BLEUuncase 11.72 (6.79) 11.82 13.47 13.32 13.57 14.07 (10.48) 17.11 18.6 18.91 19.98
PhoBLEU 7.59 (7.59) 12.75 14.97 14.88 14.97 11.99 (11.99) 19.04 20.78 21.16 22.13

Table 3: Metrics for models trained on LINCE English-Hinglish dataset and tested on HooD dataset.5

Indic
BART

CoMix

DKGA DKGA
+WSG

DKGA
+Phonetics

DKGA+WSG
+Phonetics

BLEU 11.86 13.43 13.25 13.88 13.85
BLEUuncase 13.98 15.65 15.66 16.35 16.34
PhoBLEU 17.38 18.63 18.43 19.10 19.13

Table 4: Val set results on LINCE Eng-Hinglish dataset.

Indic
BART

m
BART

mT5+
CMDR

CoMix
DKGA+

Phonetics
DKGA
+WSG

DKGA+WSG
+Phonetics

BLEU 11.20 11 12.67 12.98 12.41 12.51
#params 244M 610M 580M 273M 244M 273M

Table 5: LINCE Leaderboard scores on English-
Hinglish translation test set.

achieves the new SOTA result with 12.98 BLEU
points beating previous best mT5 based model that
is more than double the size. Validation set scores
in Table 4 show that CoMix beats IndicBART by
over 2 BLEU and 1.7 PhoBLEU points besides
yielding faster convergence (see Appendix A.4.3).
To test the generalization capabilities, we also eval-
uate the above models on out-of-domain HooD
data. Table 3 shows the results with CoMix improv-
ing over IndicBART on both the HooD datasets in
terms of both BLEU and PhoBLEU metrics, point-
ing towards better generalization capabilities of
CoMix. HooD Open-Domain dataset has higher
Code-Mixing Index (CMI) (shown in section 5.2)
than HooD Shopping dataset, which is where
DKGA+WSG model improves over DKGA model
owing to its pretraining procedure which encour-
ages code-mixing (see Appendix A.4.7). To reduce
overfitting for phonetic weights on the downstream
dataset, here we train DKGA+Phonetic model on
actual training data and 40k unlabelled English sen-
tences and DKGA model’s predictions. Fig 12 in
Appendix A.4.4 compares few sample generated
translations from IndicBART and CoMix.

6.2 Named Entity Recognition

Table 6 shows weighted F1-score from LINCE
leaderboard for Hinglish NER task. All the
CoMixBERT components and their combinations
beat baseline IndicBERT by 0.77-2.42 points and

Baseline CoMix

Indic
BERT Phonetics DKGA WSG DKGA

+WSG

DKGA
+WSG+

Phonetics
NER 80.65 82.16 81.42 81.78 82.4 83.07
CLS 64.51 65.71 64.87 66.37 67.47 67.61

Table 6: Weighted and Micro F1-score on test sets of
NER and Classification (CLS) tasks. For NER, Pho-
netics model beats previous best XLM-R large model
(Winata et al., 2021) by 1.46 points despite being 10x
smaller. DKGA+WSG+Phonetics beats XLM-R large
model by 2.37 points. Val set results in Appendix A.4.8

SOTA XLM-R large model, which has 10x more
parameters, by 0.72-2.37 points. Since combina-
tions yield upto 1.65 points boost, it is likely they
capture different facets of code-mixing.

6.3 Sequence Classification

Table 6 shows micro-F1 score for Hinglish senti-
ment classification task where individual CoMix
components beat IndicBERT model by 0.36-1.86
points and DKGA+WSG+Phonetics model beats it
by over 3 points. Similar to the mBERT training in
(Patwa et al., 2020), we train our model in a mini-
malistic fashion without any data-augmentation or
weighted adversarial loss or token ids that can im-
prove performance. Hence, we do not compare our
results against other solutions in Semeval-2020 task
and only compare against mBERT and IndicBERT.

6.4 Abstractive Summarization

On Gupshup H2H summarization dataset, CoMix
beats IndicBART on all metrics (BLEU, PhoBLEU,
R1, R2 and RL) by margin of 0.8 to 2 points as
shown in Table 7. CoMix even beats previously
published best BLEU results obtained from PE-
GASUS model (Zhang et al., 2019) but is worse
on R1 and R2 metrics. CoMix is worse on recall-
based metrics (R1, R2) and better on precision
based metrics (BLEU) than PEGASUS and BART
likely because of their ability to recall English-
based words in the Hinglish summaries as they
were pretrained only on English and the Gupshup
dataset has been adapted from English conversa-
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IndicBART PEGASUS BART CoMix

DKGA DKGA
+WSG

DKGA
+Phonetics

DKGA+WSG
+Phonetics

BLEU 5.9 6.16 5.96 6.4 6.25 6.72 6.09
R1,R2,RL 30.73, 9.35, 24.74 35.69, 11.01, - 36.28, 11.45, - 32.39, 10.11, 25.87 32.18, 10.13, 25.73 32.73, 10.12, 26.02 31.72, 9.8, 25.37

BLEU_uncase 6.15 - - 6.55 6.42 6.9 6.35
PhoBLEU 6.6 - - 7.33 7.01 7.64 7.18

Table 7: Results on Gupshup H2H test set where "-" indicates metrics not reported in prior work.

Figure 5: Cosine similarity score distribution of contex-
tual embeddings. Red is for dissimilar words, Green is
for similar words. Comix is able to separate similar and
dissimilar words better than IndicBART.

tional summarization corpus due to which it con-
tains a lot of English named entities and words. We
believe CoMixBART performance can further im-
prove if we do pretraining with phonetics in future.

6.5 Qualitative Analysis

We examine how well the models in Section 6.1
separate 3655 pairs of words (178 similar, 3477
dissimilar) from 20 sentences in Appendix A.4.6.
Figure 5 shows the distribution of cosine similarity
of contextual embeddings (phonetic and textual for
CoMix, textual for IndicBART) for similar (green)
and dissimilar (red) pairs . We note that CoMix
text embeddings separate the similar and dissimilar
pairs better relative to IndicBART. Note that the
scores for phonetic embeddings are on the higher
side most likely due to initialisation choice (mean
of all text tokens mapped to a phonetic token) and
the smaller (0.25x of text) vocab size for phonetics.

6.6 Efficacy of PhoBLEU on code-mixed data

On English-Hinglish translation for the LINCE
dataset, we observe that annotations from human
experts fluent in both Hindi and English achieve a
BLEU score of 10.43 BLEU, which is lower than
most MT models. Further analysis revealed that
BLEU is unable to account for valid variations in

Figure 6: Mean automated scores corresponding to hu-
man rating levels.

Pearson Spearman
Correlation P-value Correlation P-value

BLEU 0.178 0.021 0.176 0.023
BLEUuncase 0.194 0.012 0.197 0.01

BLEUuncase,nopunct 0.23 0.002 0.257 0
PhoBLEU 0.333 0 0.359 0

Table 8: Correlation between human ratings and auto-
mated metrics for generative code-mixed text.

spellings, pronouns, and language switching (LE

vs. LM ) as shown in Fig 1. To address these gaps,
we consider PhoBLEU [as defined in Section 4]
and evaluate its correlation with human judgements.
We randomly selected 200 English-Hinglish sen-
tence pairs and their system-generated translations
to be rated by professional on a scale of 1 to 5, with
1 as poor and 5 as perfect. Completeness (no infor-
mation lost) and fluency (grammatical correctness)
were considered as the rating criteria. Results in
Table 8 and Figure 6 show that PhoBLEU is signif-
icantly more correlated with human judgement and
that its distribution is better aligned with human
ratings than other BLEU variants.

7 Extensibility of CoMix

The proposed ideas of domain-knowledge guided
attention, weak supervision, and phonetic repre-
sentations are not specific to Hinglish and readily
generalize to any language pair where we have a
parallel corpus of embedded and matrix language
content and tools for POS tagging and phonetic
transcription. Below we discuss these requirements
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along with other assumptions on the POS structure
that permits extensions of our methodology to most
common code-mixed language pairs.

Assumption 1: Availability of parallel corpora.
Most common code-mixed languages happen to
include English among the language pair which
is typically transcribed in Latin script that per-
mits easy phonetic transcription through tools such
as Pyphonetics. Currently, there also exist mul-
tiple large parallel corpora (e.g. Flores, CCMa-
trix, Samanantar) where sentences in English are
paired with that of multiple other languages. There
are also many ongoing initiatives for creating such
parallel corpora even for low-resource languages.
Hence, the requirement of a large parallel corpus of
matrix and embedded language content is satisfied
by most common code-mixed pairs.

Assumption 2: Availability of pretrained multi-
lingual models. With the proliferation of massively
multilingual foundational models (e.g., mBART
(50 languages), mBERT (104 languages), T5 (101
languages)) including advances in synthetic data
augmentation, our assumption on the availability of
pretrained LLMs or datasets to pretrain those mod-
els is also a reasonable one. We choose to work
with IndicBART and IndicBERT which support
11 and 12 Indic languages respectively because
they provide stronger baselines for Indic Languages
and are faster to experiment with because of their
smaller size, but the proposed ideas can be readily
applied with any pre-trained transformer model.

Assumption 3: Languages of LM and LE share
the same POS set and access to POS tagging util-
ities. (Petrov et al., 2012) proposed Universal POS
tagset comprising 12 categories that exist across
languages and had developed a mapping from 25
language-specific tagsets to this universal set. They
demonstrated empirically that the universal POS
categories generalize well across language bound-
aries and led to a open community initiative by
universaldependencies.org on creating Universal
POS tags (Nivre et al., 2020) for 90 languages. In
our work, we use these universal POS tags to build
three coarse groups (nouns-pronouns, adjectives-
verbs-adverbs, rest) of POS tags (see Fig 7). Note
that even though we utilize POS-tagging, the struc-
tural constraints are imposed with respect to these
three coarse groups. Fig 7 in A.1 lists the POS tags
from the universal POS tags website, which we use
in our work. Further, Stanza provides Universal
POS-tagging utilities for around 66 languages.

Assumption 4: Equivalent word pair from LM

and LE share the same coarse POS group. We
assume that equivalent words in an LM and LE pair
share the same coarse POS group (from Fig 7 ) and
not necessarily the same POS tag. A small-scale
empirical analysis of 50 Hindi-English-Hinglish
sentences from the HooD dataset (Sec 5.2) indi-
cates this assumption is true in 88.6% of the cases.
POS-tags provide complementary (weak) supervi-
sion for intermixing (in DKGA) and generation (in
WSG) in addition to word semantics already cap-
tured in embeddings. Further, even though our cur-
rent guiding function fDKGA assumes a hard con-
straint on the word pairs to be in the same coarse
POS group, our methodology is general and can
be extended to the case where the two languages
have different POS tag sets. In particular, given em-
pirical probabilities that a matrix token with POS
tag A maps to an embedded token with POS tag B
for all possible pairs of POS tags (A,B), we can
define the guiding function’s value fDKGA

ij associ-
ated with matrix token xi and embedded token xj
as the log of the empirical transition probability of
the POS tags of the matrix token xi and embedded
token xj . The current choice is the special case
where transition probability is uniform for all POS
tag pairs within a coarse group and 0 for the rest.

8 Conclusion

We presented CoMix, a pretraining approach for
code-mixed data that combines (a) domain knowl-
edge guided attention (DKGA), (b) weakly su-
pervised code-mixed generation based on POS-
structure constraints, and (c) transformer encoder
modification to include phonetic signal. We
showed that CoMix yields improvements across
multiple code-mixed tasks, achieving new SOTA
result for Eng-Hinglish translation and Hinglish
NER on LINCE Leaderboard with superior perfor-
mance on out-of-domain translation. Our approach
is applicable to code-mixing with all languages
where POS tagging and phonetic transcription is
possible. Motivated by gaps in current NLG evalu-
ation metrics for code-mixed data, we proposed a
new family of metrics based on phonetic represen-
tation and show that PhoBLEU is better correlated
with human judgement than BLEU on Hinglish.
In future, we plan to extend the applicability of
DKGA and WSG to other settings that can benefit
from domain knowledge, and explore new metrics
for code-mixed NLG with a large scale evaluation.
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Limitations

Our CoMix approach assumes availability of paral-
lel bilingual (embedded and matrix language) cor-
pora and mature tools for POS tagging and phonetic
transcription for both the embedded and matrix lan-
guages which does not hold true for every language.
But these assumptions are reasonable for a large
number of languages as shown in Appendix 7. Sec-
ond, our current choice of guiding function for
attention fDKGA and mixing probability pMix are
based on limited knowledge of the linguistic struc-
ture specific to English and Indic languages, and
might need to be adapted for other language fam-
ilies. Additionally, as discussed in Section 4, due
to multiple variations in code-mixed generation,
current automated metrics that compare system
generated text with reference text do not provide
a true reflection of a system’s ability to generate
code-mixed text. Lastly, as with large language
models, our CoMix models are also vulnerable to
biases inherent in the training corpus.

Ethics Statement

Our research motivation is to address the inequities
in language resources and AI systems for multi-
lingual societies such as India. The primary con-
tribution of our work is a new modeling approach
CoMix, which is especially designed to leverage
existing pretrained models with moderate compu-
tation so that it is accessible to a wider community
and does not create an adverse environmental im-
pact. We also created two new Hinglish datasets
for out-of-domain evaluation (HooD), which we
described in detail in Section 5.2. There are no pri-
vacy or intellectual property rights associated with
either of these datasets. We will open-source HooD,
our models and code in future post organizational
approval. Human translations and evaluations re-
ported in the paper have been done by professional
annotation teams and are reflective of typical per-
formance. Similar to other large language models,
our CoMix model also encodes biases in the origi-
nal training corpus and the domain constraints used
as supervision. While the performance might be
acceptable for natural language understanding, it is
important to have guardrails while using the models
directly for natural language generation.
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A Appendix

A.1 Classes of POS tags

Figure 7 shows the POS tag groups used by DKGA.
We built these groups using information from Uni-
versal Dependencies (Dependencies, 2014).

Figure 7: Classes of POS Tags (POS Groups) used by
guiding function in DKGA.

A.2 Formulations of Downstream tasks

A.2.1 Machine Translation
Given a source sequence X = [x1, x2, ...xS ] and
target sequence Y = [y1, y2, ...yT ], autoregressive
neural machine translation system learns to model
the following distribution

P (Y |X) =
T∏

t=1

P (yt|y0, y1, ..., yt−1, x1, x2, ..., xS)

(4)
Given a training set D = {⟨X(i), Y (i)⟩}Mi=0

with M data points, we aim to maximize Lθ =∑M
i=0 logP (Y (i)|X(i); θ) where θ is set of model

parameters.

A.2.2 Sequence Classification
In sequence classification task, we are given a
sequence X = [x1, x2, ...xS ] and corresponding
label y ∈ {y1, y2, ..., yk} from fixed set of k
classes. Given a training set D = {⟨X(i), y(i)⟩}Mi=0

with M data points, we aim to maximize Lθ =∑M
i=0 logP (y(i)|X(i); θ)

A.2.3 Abstractive Summarization
Mathematical formulation for summarization is
same as translation so we avoid repeating it here for
brevity. In abstractive summarization, unlike trans-
lation, target sequence Y is a concise summary of
source sequence X , usually much shorter in length
than X .

A.2.4 Token Classification
In token classification task, we are given a se-
quence X = [x1, x2, ...xS ] and corresponding
label ys ∈ {y1, y2, ..., yk}∀s ∈ {1, S} for ev-
ery input token, where {y1, y2, ..., yk} is the fixed
set of k classes. Given a training set D =
{⟨X(i), Y (i)⟩}Mi=0 with M data points, we aim to
maximize Lθ =

∑M
i=0 logP (Y (i)|X(i); θ)

A.3 More details about datasets

A.3.1 Guidelines for preparing HooD
Shopping dataset

Figure 8 shows the guidelines given to human anno-
tators for translating English sentences to Hinglish
for HooD Shopping dataset.

A.3.2 Data statistics of public datasets
Table 9 shows statistics for public datasets which
we have used for downstream tasks.
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Figure 8: Guidelines given to Human annotators for
translating English sentences to Hinglish.

Dataset
Name

Number of Datapoints
Train Dev Test

LINCE English - Hinglish
Translation Dataset

8060 942 960

SemEval 2020 Task-9
Hinglish Sentimix

14000 3000 3000

Gupshup H2H 5831 500 500
LINCE Hinglish NER 1243 314 522

Table 9: Statistics of public datasets we have used for
code-mixed Machine Translation, Sequence Classifica-
tion, Abstractive Summarization and NER.

A.4 Additional experimental details and
results

A.4.1 Details about tokenization
For Phonetics data, we train our own sub-word
tokenizer using sentencepiece6. For text data we
use pretrained IndicBART’s tokenizer for CoMix-
BART and IndicBERT’s tokenizer for CoMix-
BERT. We consider sub-words POS to be same
as the POS of the word from which sub-words have
been created.

A.4.2 More details on pretraining with DKGA
and WSG

Figure 9 shows the learning curve for pretraining
CoMixBART. As you can see from the curve, loss
stabilizes after 25k steps and does not change much.
Figure 10 shows the learning curve for pretraining
ComixBART with WSG.

Table 10 shows few sample inputs which went
into the model during WSG training and cor-
responding targets constructed by the model.
These generated sentences can be used for data-

6https://github.com/google/sentencepiece

Figure 9: Change in negative log-likelihood loss with
training steps for Pretraining CoMixBART with DKGA.

Figure 10: Change in negative log-likelihood loss with
training steps for Pretraining CoMixBART with WSG.

augmentation which we plan to explore in the fu-
ture.

A.4.3 Convergence for IndicBART vs CoMix
on LINCE Leaderboard translation
task

Figure 11 shows the convergence speed for In-
dicBART and CoMix models for LINCE English-
Hinglish translation task. As you can see from the
curve, CoMix is better than baseline IndicBART
throughout training.

Figure 11: Change in BLEU score with training steps
for IndicBART and CoMix.

A.4.4 Qualitative Analysis on few sample
predictions for Code-Mixed Translation

Figure 12 shows few example translations gener-
ated by IndicBART and CoMix and their qualitative
analysis.

A.4.5 Set of sentences for cosine similarity
distribution

Figure 13 shows the 20 sentences from which every
pair of word was labelled similar/dissimilar man-
ually and then used to create Figure 5 that shows
cosine similarity score distribution of contextual
embeddings obtained from the encoder of CoMix
and IndicBART.
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Input Target built by WSG
hamen koi naaraazgi bhi nahin he. |||| We dont have any complaint. hamen koi complaint bhi nahin he.

jald hi aapako apadet milegaa. |||| There will be an update soon. jald hi aapako update milegaa.
vaatayan antarrashtriya puraskaar, landan ke vaatayan-euke sanghathan

dwaara diya jaataa he ||||
Vatayan International Awards given by the Vatayan -

UK organization in London, honours poets,
writers and artists for their exemplary work in their respective fields

vaatayan work puraskaar, UK ke artists sanghathan
dwaara International jaataa he

LIVE / jharkhand main shuruaati rujhaanon main bhaajapa
18 congress+ 37 siton par aage ||||

Congress leading 37 seats, BJP ahead in 18

LIVE / jharkhand main ahead rujhaanon main bhaajapa 18
Congress 37 seats par leading

iske baad vidhayak vahaan se hate. |||| The MLA then left the venue. iske baad MLA vahaan se left

Table 10: Few sample inputs which went into the model during WSG training and corresponding targets built by the
model. Words in bold are the embedding language (English) words.

Figure 12: Few example translations generated by IndicBART and CoMix.

A.4.6 CoMix vs IndicBART Cosine Similarity
Distribution of Contextual Embeddings

Figure 11 shows the mean and variance of the co-
sine similarity distribution of 3655 word pairs con-
structed from the 20 sentences in Figure 13 along
different subsets of positive pairs and close neg-
ative pairs. We observe that the cosine score for
positive pairs based on CoMix text embeddings has
a bimodal distribution with high scores for those
with same language and spelling, but relative low
scores when that is not the case. However, even
these low scoring positive pairs are comparable
or score higher than close negatives. In the case
of IndicBART, we again observe a bimodal dis-
tribution for the negative pairs with high scores
for pairs that have different semantics but share ei-
ther the spelling or phonetic representation, which
makes it difficult to separate it from the positive
pairs. CoMix phonetic embeddings by itself does
not seem to be very discriminatory but it is helpful

in making up for the shortcomings of CoMix text
embeddings for handling phonetic variations.

A.4.7 DKGA vs WSG. Who’s code-mixing
more?

Since in WSG we’re nudging the model to code-
mix, that behaviour is visible in the generated trans-
lations by the two models as well. Figure 14 shows
few randomly sampled translations generated by
DKGA and DKGA+WSG models. It is visible
from the translations that DKGA+WSG model is
switching between matrix and embedded language
more often, because of its pretraining.

A.4.8 NER and Classification Results
Table 12 shows results on validation and test sets
for NER and Sequence Classification tasks.

A.4.9 Example DKGA attention matrix
Fig 15 shows DKGA attention matrix for an exam-
ple sentence.
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Figure 13: 20 sentences containing words with semantic, phonetic and orthographic similarity and differences.

Comix Text Comix Phonetics IndicBART Example
All Pairs (0.31,0.14) (0.89,0.04) (0.47,0.16)

Positive Pairs

All (0.68,0.20) (0.95,0.04) (0.73,0.23)

Same language & spelling (0.86, 0.10) (0.97,0.03) (0.94, 0.04)
(mein school jaa raha hun,

I am going to school)
Same language & phonetics,

but different spelling
(0.56,0.12) (0.97, 0.03) (0.64,0.13)

(Maine has a beautiful coast,
Maine ka coost aakarshak hai)

Same language but different
spelling & phonetics

(0.51, 0.13) (0.91, 0.03) (0.64,0.11)
(Maine ka coost aakarshak hai,

Maine ka kinara sundar hai)
Different language,

spelling & phonetics
(0.48, 0.09) (0.92, 0.02) (0.44, 0.09)

{Maine ka coost aakarshak hai,
Maine has a beautiful coast}

Negative Pairs

All (0.29,0.10) (0.88,0.04) (0.46,0.15)
Different language but same

spelling
(0.65,0.12) (0.99, 0.00) (0.82 0.08)

{main karan kya hai,
main paatshala jaa raha hun}

Same language & phonetics,
but different spelling

(0.43, 0.07) (0.95, 0.07 (0.67,0.10)
{main karan kya hai,

Maine ka coast sundar hai}
Different language and spelling,

but same phonetics
(0.53,0.11) (0.97,0.02) (0.64,0.12)

{maine rang badal diya,
main vajah kya hai}

Table 11: Mean and Variance of the cosine similarity distribution of 3655 word pairs constructed from the 20
sentences in Figure 13 along different subsets of positive pairs and close negative pairs.

IndicBERT CoMix
Phonetics DKGA WSG DKGA+WSG DKGA+WSG+Phonetics

NER Val 79.9 80.48 81.31 79.85 82.25 81.28
Test 80.65 82.16 81.42 81.78 82.4 83.07

Classification Val 59.41 59.57 58.9 60.14 60.8 60.9
Test 64.51 65.71 64.87 66.37 67.47 67.61

Table 12: Validation and Test set results of NER and Classification set
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Figure 14: Comparing randomly sampled 10 translations generated by DKGA vs DKGA+WSG. We see that
DKGA+WSG model switches between matrix and embedded language more often than DKGA because of how we
nudge the WSG model to code-mix during pretraining.

Figure 15: DKGA attention matrix and contextual embeddings construction for example sentence. Green ticks is
where DKGA will guide attention. If we choose to intermix embedding language token at a position then "Choice
2" tokens will be considered else "Choice 1" tokens will be considered for constructing contextual embeddings.
C1,C2,C3 are POS groups defined in Appendix A.1.
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