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Abstract

Neural language models are vulnerable to
word-level adversarial text attacks, which gen-
erate adversarial examples by directly substi-
tuting discrete input words. Previous search
methods for word-level attacks assume that the
information in the important words is more in-
fluential on prediction than unimportant words.
In this paper, motivated by this assump-
tion, we propose a self-supervised regulariza-
tion method for Similarizing the Influence of
Words with Contrastive Learning (SIWCon)
that encourages the model to learn sentence
representations in which words of varying im-
portance have a more uniform influence on pre-
diction. Experiments show that SIWCon is
compatible with various training methods and
effectively improves model robustness against
various unforeseen adversarial attacks. The
effectiveness of SIWCon is also intuitively
shown through qualitative analysis and visual-
ization of the loss landscape, sentence repre-
sentation, and changes in model confidence.

1 Introduction

Neural language models have achieved impressive
performance in various natural language processing
(NLP) tasks, but they are also proven vulnerable
to adversarial examples, which induce incorrect
model output by adding small perturbations to nat-
ural inputs (Szegedy et al., 2014; Jia and Liang,
2017). Unlike attacks on images, which are per-
formed by directly adding imperceptible contin-
uous noise to the input, adversarial text attacks
are commonly performed by substituting input text
due to the discrete and non-differentiable nature of
text (Gao et al., 2018; Alzantot et al., 2018; Li et al.,
2019; Zhan et al., 2022b; Garg and Ramakrishnan,
2020). Among the various granularities of adversar-
ial text attacks, word-level attacks have been more
focused on by recent works for their effectiveness
in maintaining semantic similarity and grammatical
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Figure 1: The motivation of SIWCon. The normally
trained model considers the information in important
words to have a significant impact on prediction, and
as a result, search methods that prioritize substituting
important words are more likely to find adversarial ex-
amples. SIWCon, on the other hand, considers the in-
formation in both important and unimportant words to
have a similar degree of influence on prediction, thus
making it less possible for search methods that focus
on important words to find optimal substitutions.

correctness. Unlike character-level and sentence-
level attacks, word-level attacks are less likely to
be detected by spell checkers or to undermine the
overall coherence of a sentence (Ebrahimi et al.,
2018; Iyyer et al., 2018; Liang et al., 2018).

Under a unified framework, word-level attacks
can always be formulated as a combinatorial opti-
mization problem (Yoo et al., 2020; Morris et al.,
2020a,b), and various attack methods can be de-
composed into Search Space and Search Method.
The search space contains the possible substitutions
for each word, while the search method determines
the substitution order and strategy for selecting the
optimal substitution from the search space. Since
the search space may be model-agnostic, we should
focus on the search method for the potential of im-
proving the robustness against word-level attacks.

Previous search methods for word-level attacks
are based on the assumption: different words in
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a sentence contribute differently to model predic-
tion, with the information in important words being
more influential than the information in unimpor-
tant words. Therefore, following the word impor-
tance scores obtained through attribution methods,
the attack can be seen as a process of iteratively sub-
stituting words in a sentence, with important words
substituted first, followed by unimportant words.
For example, the search methods Word Importance
Ranking (WIR) (Gao et al., 2018; Jin et al., 2020;
Li et al., 2020) and PWWS (Ren et al., 2019) ob-
tain word importance using Occlusion (Zeiler and
Fergus, 2014), then WIR performs substitution in
descending order of word importance and PWWS
formulates token scores that use word importance
as weights to guide the attack.

Following this assumption, the success of word-
level attacks can be explained. The words in a sen-
tence can be classified as important words, which
contain more influential information for prediction,
or unimportant words, which contain less influen-
tial information. Search methods that substitute
important words first can perturb more influential
information in each attack step, making the model
more likely to be deceived. Therefore, it is natural
to wonder: will the model be more robust when
the information in both important and unimportant
words has a similar degree of influence on predic-
tion? Motivated by this question, we propose a self-
supervised regularization method for Similarizing
the Influence of Words with Contrastive Learn-
ing (SIWCon) that improves the model robustness
against word-level attacks. The motivation of our
method is illustrated in Figure 1. We summarize
our main contributions as follows:

1. We discuss the relationship between model
robustness and the influence of information in
words of different importance.

2. We propose SIWCon, a contrastive learning
method that improves the robustness of lan-
guage models by encouraging models to learn
sentence representations that consider the in-
formation in words of different importance to
have a more similar influence on prediction.

3. We evaluate SIWCon against several attack
methods on three models of different architec-
tures and on Movie Review (MR), SST2, and
IMDB datasets. Results show that SIWCon
improves the model robustness against unfore-
seen adversarial attacks without learning from

any adversarial perturbation.

4. We provide qualitative analysis and visualiza-
tion on loss landscape, sentence representa-
tion, and model confidence change, intuitively
showing the effectiveness of SIWCon.

2 Related Works

Robustness of Language Models. The current
methods for improving the robustness of language
models ignore the assumption discussed in §1.
While some works attempt to detect or trans-
form potential adversarial examples before the
model (Zhou et al., 2019; Mozes et al., 2021), this
does not actually improve the model’s robustness.
Other methods, such as performing certifiably ro-
bust training through interval bound propagation
(IBP), can be computationally costly and difficult
to scale to large models like BERT (Jia et al., 2019;
Huang et al., 2019). Additionally, it has been re-
ported that while IBP improves adversarial accu-
racy, it comes at the huge cost of reduced clean
accuracy (Wang et al., 2021). Some works try to
perform adversarial training by incorporating ad-
versarial examples in the training set (Jin et al.,
2020; Li et al., 2021), while this method can only
improve the robustness against the adversarial per-
turbations that the model has seen. Moreover, gen-
erating adversarial examples is time-consuming,
thus adversarial training is difficult to scale to a
large dataset. In this paper, based on the ignored
assumption, we discuss the model robustness from
new perspectives, focusing on attribution and sen-
tence representation.

Contrastive Learning. Contrastive learning is
first proposed in computer vision tasks to help
models learn better image representation (Chen
et al., 2020a,b; He et al., 2020; Pan et al., 2021).
This self-supervised learning method alleviates the
dependence on the costly labeled data. Recently,
encouraged by the superior performance, various
contrastive learning methods have been proposed
for NLP tasks. Following the discrete nature of text,
some previous works construct the pair examples
by augmenting the input sentence (Giorgi et al.,
2021; Wu et al., 2020; Fang and Xie, 2020; Zhan
et al., 2022a; Gao et al., 2021), e.g., by word delet-
ing, reordering, substituting, and back-translating,
or by augmenting the word embedding (Yan et al.,
2021), e.g., by shuffling, cutting off, dropping out
the embedding matrix. Unlike the previous works
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that aim to improve the downstream performance,
we focus on improving the model robustness.

3 Methodology

3.1 Preliminaries
Suppose we have the input text X ∈ X and the
output labels Y ∈ Y = {1, . . . , C} that follow the
data distribution D. A model fθ : X → Y that
maps the input text to the output probability space
is trained by minimizing Lce(X, Y ;θ):

E(X,Y )∼D[− log
exp(wTY rθ(X))

∑C
k=1 exp(wTk rθ(X))

] , (1)

where wY ∈ W denotes the model classification
parameters toward class Y ,W is the overall clas-
sification parameters, and rθ(·) denotes the latent
sentence representation encoded by the model f
with parameters θ. The well-trained model can
learn the distribution of data and predict the input
sentence based on the posterior probability:

P (Ytrue|X) =
exp(wTtruerθ(X))

∑C
k=1 exp(wTk rθ(X))

, (2)

where wtrue denotes the classification parameters
toward the ground-truth class Ytrue. To attribute the
prediction P (Ytrue|X), i.e., identifying the words
that are most influential on the prediction (Li et al.,
2016b; Ross et al., 2017; Sundararajan et al., 2017;
Kim et al., 2020), we use the gradient-based attri-
bution method (Feng et al., 2018; Li et al., 2016a;
Arras et al., 2016; Situ et al., 2021). The influence
score of word xi ∈X can be formally defined as:

Score(xi) =

∥∥∥∥
∂ wTtruerθ(X)

∂ emb(xi)

∥∥∥∥
2

, (3)

where emb(·) denotes embedding, and ‖·‖2 denotes
L2 norm. The influence of a word is the norm of
the influence score of every embedding dimension.

3.2 Word-level Adversarial Attack
Following the analysis of word-level adversarial
attacks in §1, an adversarial example Xadv gen-
erated by search methods from a normal example
X = (xn)n∈{1,...,N} can be formulated as:

Xadv = O(X) = o(xn)n∈{1,...,N},

s.t. ∀n ∈ {1, . . . , N}, ∆xn < δ,

and ∆X < ε,

and argmax
Y ∈Y

P(Y |Xadv) 6= argmax
Y ∈Y

P(Y |X),

(4)

where O(X) denotes performing word-level sub-
stitution on sentenceX , o(xn) denotes substituting
the word xn with a new word from a finite search
space that contains all qualified substitutions, if
possible. ∆xn and δ respectively denote the differ-
ence and the maximum allowed difference between
xn and o(xn), ∆X and ε respectively denote the
difference and the maximum allowed difference
between X and O(X). δ and ε are used to filter
qualified substitutions in the search space, which
may mainly focus on the semantics and the Lp

norm of the embedding distance of each word and
the entire sentence, ensuring the adversarial exam-
ple is imperceptible to humans.

To generate adversarial examples more effec-
tively, the search methods of current attacks, i.e.,
the strategies to perform o(·), follow the assump-
tion that the information in important words is more
influential than the information in unimportant
words, and heavily rely on attribution results like
(3). These methods attempt to substitute important
words first to perturb more influential information
in each attack step. Therefore, if different words
in a sentence have a similar slight influence on pre-
diction, the attacks should only slightly impact the
model prediction in each attack step. To this end,
we detail the SIWCon regularization method next.

3.3 The SIWCon Regularization
Recall that the goal of SIWCon is to similarize
the influence of words. After regularization, the
influence of different words on prediction should
be similarly slight. To formally define this goal,
we first define the 40% of words in a sentence
with the highest and lowest influence scores as
the important and unimportant words, respectively,
following the attribution results of (3). We then
propose two efficient non-deterministic data aug-
mentation operations, timp(·) and tump(·), which
respectively means randomly removing important
and unimportant words in a sentence. Therefore,
under the training scenario of (1), the primary goal
of SIWCon can now be formulated as:
min
θ

||Qimp. −Qump.|| :

Qimp. = E
(X,Y )∼D

X imp∼timp(X)

[P(Ytrue|X)− P(Ytrue|X imp)] ,

Qump. = E
(X,Y )∼D

Xump∼tump(X)

[P(Ytrue|X)− P(Ytrue|Xump)] ,

(5)

where X imp is an augmentation sampled from
timp(X), and Xump is an augmentation sampled
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from tump(X). Qimp and Qump measure the extent
of model confidence decrease when a random part
of information in the important and unimportant
words is lost, indicating the overall influence of the
information in words of different importance on
prediction. The complete objective of SIWCon can
be further decomposed into two perspectives:

Objective 1: The influence of different words
should be similar, thus the model should treat the
sentences with information in words of different
importance lost (X imp andXump) similarly.

Objective 2: The influence of different words
should be slight, thus the model should treat the
sentences with different information lost (X imp and
Xump) similarly to the original sentence that con-
tains complete information (X).

To achieve Objective 1 and Objective 2, and
further the goal of SIWCon, we use a contrastive
loss objective from the perspective of sentence rep-
resentation. To define the contrastive loss objective,
for convenience, we first define the calculation S:

S(k,l)(i,j) = exp(sim[rθ(Xk
i ), rθ(X l

j)]/τ) , (6)

where k, l ∈ {imp, ump, ·}, respectively indicate
the augmentation sampled from timp(·), the aug-
mentation sampled from tump(·), and the normal ex-
ample, i, j are the example indices, sim[ri, rj ] =
rTi rj/‖ri‖‖rj‖ is the cosine similarity, τ is a
temperature parameter similar to the NT-Xent
loss (Chen et al., 2020a; van den Oord et al., 2018).
Then the contrastive loss function for an example
in a mini-batchXi ∈ {Xi}Bi=1 is defined as:

LSIWCon(Xi;θ) = E
{Xi}Bi=1∼D
Xump

i ∼tump(Xi)

X imp
i ∼timp(Xi)

[− log
Spositive∑B

j=1(Snegative)
] ,

(7)

where

Spositive = S(imp,ump)
(i,i) + S(·,ump)

(i,i) + S(·,imp)
(i,i) ,

Snegative = S(·,·)(i,j) + 1[i 6=j][S(·,ump)
(i,j) + S(·,imp)

(i,j) ] ,

B is the batch size, 1[·] is an indicator function
that equals 1 if the condition [·] is true; otherwise,
it equals 0. Specifically, to calculate the loss for
each mini-batch, we first randomly sample the aug-
mentationsXump

i from tump(Xi) and the augmen-
tations X imp

i from timp(Xi) for each example in
the mini-batch. The general framework of SIWCon
is shown in Figure 2.

I really like this great movie.

I really like this great movie.

I really like this great movie.

The movie is a mess.

The movie is a mess.

The movie is a mess.

sentence representationmaximize agreement

minimize agreement model Influence

Figure 2: The framework of SIWCon. The word impor-
tance for each sentence is obtained through attribution
(3), and the augmentations of each sentence are sam-
pled from the non-deterministic transformations timp

and tump. The contrastive objective is calculated on the
sentence representations learned by the same model fθ.

To achieve Objective 1, we use the term
S(imp,ump)
(i,i) in the numerator. This constraint maxi-

mizes the similarity between the representations of
the augmentations with important and unimportant
words removed, making the different degrees of
incomplete information in the augmentations have
a similar impact on the prediction.

To achieve Objective 2, we use the term S(·,ump)
(i,i)

and S(·,imp)
(i,i) in the numerator. These constraints

maximize the similarity between the original sen-
tence and the two augmentations, making the in-
complete information in the remaining words of
the augmentations have a similar influence as the
complete information in the normal sentence.

Intuitively, the semantics of different examples
should be different, and following the constraints
in Spositive, the semantics of the augmentations of
different examples should also be different. There-
fore, the three terms in Snegative denote that, given
an example within a mini-batch, we treat both the
other examples and the augmentations derived from
other examples as negative examples.

The final loss of SIWCon regularization is com-
puted across all examples in a mini-batch. When
SIWCon is used in the normal training scenario (1),
the overall objective is:

minθ Lce(X, Y ) + α LSIWCon(X) , (8)

where α is a parameter balancing the supervised
part and the contrastive regularization part.
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MR SST2 IMDB

DeepWordBug TextFooler DeepWordBug TextFooler DeepWordBug TextFooler

Model Method ACC. ↑ AUA. ↑ ACC. ↑ AUA. ↑ ACC. ↑ AUA. ↑ ACC. ↑ AUA. ↑ ACC. ↑ AUA. ↑ ACC. ↑ AUA. ↑

LSTM

Normal 77.01 3.66 77.01 0.33 80.96 4.67 80.96 0.33 77.38 0.30 77.38 0.00
+SIWCon 76.84 23.00 76.74 1.67 81.19 12.00 80.39 4.67 76.32 15.67 78.55 8.33

AT 76.45 40.00 75.79 2.00 78.78 46.33 80.05 1.67 74.41 47.67 77.32 0.33
+SIWCon 76.08 54.00 75.04 6.00 78.56 55.33 79.59 3.68 74.07 56.67 76.03 3.67

TextCNN

Normal 77.58 9.66 77.58 3.33 79.47 15.67 79.47 4.33 76.60 2.33 76.60 5.67
+SIWCon 77.67 15.67 76.64 6.33 78.73 19.33 80.73 8.00 76.01 22.00 75.24 9.67

AT 75.23 43.00 73.73 10.33 73.74 68.67 75.11 10.67 74.34 33.00 76.72 9.00
+SIWCon 74.26 53.00 74.48 14.33 73.28 71.33 75.22 16.00 73.73 45.67 75.58 22.67

BERT

Normal 86.12 9.67 86.12 8.33 91.74 24.67 91.74 12.33 83.44 12.33 83.44 5.67
+SIWCon 85.46 60.33 84.31 30.67 90.94 32.00 90.83 19.33 83.93 22.33 83.92 10.33

AT 86.68 68.33 84.80 34.67 91.63 72.00 91.51 34.67 83.46 51.67 83.24 31.33
+SIWCon 86.49 77.33 84.90 40.00 90.85 76.33 91.63 41.67 83.16 64.67 83.62 37.33

Table 1: The comparisons of model accuracy (ACC.) and accuracy under attack (AUA.). The bold values of ACC.,
AUA. indicate the best performance and best robustness, respectively. Normal and Normal+SIWCon are under
the unforeseen scenario, indicating the model do not learn from any adversarial perturbation. Conversely, AT and
AT+SIWCon are under the foreseen scenario, indicating the model learn from adversarial perturbation in training.

4 Experiment

4.1 Metrics

We measure the model performance with Accuracy
(ACC.), the model robustness with Accuracy Un-
der Attack (AUA.), and the influence of words with
three Area Over the Perturbation Curve (AOPC)
metrics (DeYoung et al., 2020; Samek et al., 2017;
Nguyen, 2018). AOPCComp. and AOPCSuff. respec-
tively measure the overall influence of the informa-
tion in important and unimportant words on predic-
tion. AOPCComp. is formulated as:

1
K+1

K∑
k=1

P(Ytrue|X)− P(Ytrue|timp
/k (X)), (9)

and AOPCSuff. is formulated as:

1
K+1

K∑
k=1

P(Ytrue|X)− P(Ytrue|tump
/k (X)), (10)

where timp
/k and tump

/k are deterministic transforma-
tions that remove the k most and least impor-
tant words in a sentence, respectively. We also
use AOPCDiff. to indicate the difference between
AOPCComp. and AOPCSuff., measuring how the goal
of SIWCon is achieved.

4.2 Experiment Setup

Setup. We conduct experiments on MR (Pang
and Lee, 2005), SST2 (Socher et al., 2013),
and IMDB (Maas et al., 2011) datasets. We
use LSTM (Hochreiter and Schmidhuber, 1997),
TextCNN (Kim, 2014), and the base version of

BERT (Devlin et al., 2019) as models. More de-
tails of the datasets and models can be found in
Appendix A.1 and A.2. We use Normal training (1)
and Adversarial training (AT, detailed in Appendix
A.3) as basic training methods. In the main exper-
iment, we use DeepWordBug (Gao et al., 2018)
and TextFooler (Jin et al., 2020) as attack methods.
We also use BAE (Garg and Ramakrishnan, 2020),
TextBugger (Li et al., 2019), and PWWS (Ren et al.,
2019) in the analysis.

Implementation Details. The K in (9) and (10)
are set as 40% of each sentence’s length. We use
Adam (Kingma and Ba, 2015) as the optimizer. For
LSTM and TextCNN, we use the average token em-
bedding before the last dense layer as the sentence
representation. For BERT, we use the [CLS] token
embedding as the sentence representation. Unless
otherwise specified, the batch size is set as 32, the
learning rate/α/τ for LSTM, TextCNN, and BERT
is 1e-3/1.2/0.01, 1e-3/1.2/0.05, and 3e-5/0.005/1.5.
The reported results are the average of five individ-
ual runs with randomly picked seeds.

4.3 Main Results

In the main experiment, we train the models on
three datasets with different training methods and
then measure their robustness by attacking 600 ex-
amples randomly picked from the testing set. Fol-
lowing Jin et al. (2020) and Li et al. (2021), for
adversarial training, we incorporate the adversarial
examples of 10% randomly picked training data
into the new training set, which are generated by
the same attack method for measuring robustness.
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DeepWordBug TextFooler

Model Method AComp. ASuff. ADiff. ↓ AComp. ASuff. ADiff. ↓

MR

LSTM

Normal 0.096 0.046 0.050 0.096 0.046 0.050
+SIWCon 0.070 0.035 0.035 0.070 0.032 0.038

AT 0.084 0.037 0.047 0.072 0.032 0.040
+SIWCon 0.066 0.040 0.026 0.048 0.021 0.027

TextCNN

Normal 0.094 0.024 0.070 0.094 0.024 0.070
+SIWCon 0.090 0.028 0.062 0.058 0.004 0.054

AT 0.096 0.037 0.059 0.087 0.031 0.056
+SIWCon 0.114 0.063 0.051 0.076 0.024 0.052

BERT

Normal 0.064 0.018 0.046 0.064 0.018 0.046
+SIWCon 0.030 0.015 0.015 0.038 0.022 0.016

AT 0.054 0.029 0.025 0.042 0.016 0.026
+SIWCon 0.050 0.035 0.015 0.036 0.029 0.007

SST2

LSTM

Normal 0.083 0.022 0.061 0.083 0.022 0.061
+SIWCon 0.071 0.017 0.054 0.055 −0.004 0.059

AT 0.099 0.027 0.072 0.075 0.006 0.069
+SIWCon 0.078 0.026 0.052 0.066 0.010 0.056

TextCNN

Normal 0.094 0.028 0.066 0.094 0.028 0.066
+SIWCon 0.078 0.016 0.062 0.087 0.026 0.061

AT 0.031 −0.007 0.038 0.046 −0.006 0.052
+SIWCon 0.040 0.010 0.030 0.303 −0.018 0.048

BERT

Normal 0.042 0.013 0.029 0.042 0.013 0.029
+SIWCon 0.038 0.020 0.018 0.045 0.025 0.020

AT 0.041 0.015 0.026 0.032 0.017 0.015
+SIWCon 0.047 0.031 0.016 0.028 0.020 0.008

IMDB

LSTM

Normal 0.070 0.006 0.064 0.070 0.006 0.064
+SIWCon 0.048 0.041 0.007 0.064 0.045 0.019

AT 0.083 0.024 0.059 0.033 0.002 0.031
+SIWCon 0.012 0.008 0.004 0.113 0.088 0.026

TextCNN

Normal 0.124 0.041 0.083 0.124 0.041 0.083
+SIWCon 0.077 0.023 0.054 0.065 0.018 0.047

AT 0.108 0.040 0.068 0.078 0.024 0.054
+SIWCon 0.112 0.088 0.024 0.114 0.096 0.018

BERT

Normal 0.059 0.023 0.036 0.059 0.023 0.036
+SIWCon 0.042 0.027 0.015 0.057 0.026 0.031

AT 0.084 0.036 0.048 0.048 0.005 0.043
+SIWCon 0.062 0.021 0.041 0.044 0.013 0.031

Table 2: The comparisons on the overall influence of
the information in the words of different importance on
prediction. The bold values of AOPCDiff. indicate the
most similar influence and the best achievement of the
goal of SIWCon. A is short for AOPC.

SIWCon has a slight impact on clean accuracy.
The results of clean accuracy are illustrated in Ta-
ble 1. SIWCon only slightly impacts the clean ac-
curacy when combined with other training methods.
Normal+SIWCon sometimes outperforms Normal
method, and the average accuracy difference be-
tween the two methods is only 0.97%. AT+SIWCon
causes a slight drop in model accuracy compared to
Normal method, with the negative impact mainly
resulting from the integration of adversarial exam-
ples rather than the usage of SIWCon. The average
accuracy difference between AT and AT+SIWCon
is only 0.36%, and 1.53% between Normal and AT.

SIWCon improves model robustness. The re-
sults of robustness are illustrated in Table 1. SIW-

Con is a self-supervised regularization method that
relies solely on the training data (not including la-
bels) and their augmentations generated by remov-
ing words, without learning from any adversarial
perturbations. Nevertheless, SIWCon is effective in
improving model robustness. Under the unforeseen
scenario, the average AUA. of Normal+SIWCon is
10.60% higher than Normal method (17.45% vs.
6.85%). Under the foreseen scenario, SIWCon can
further improve the robustness of models, with the
average AUA. of AT+SIWCon being 7.35% higher
than that of AT (40.98% vs. 33.63%). These re-
sults demonstrate the effectiveness of SIWCon and
its potential to be combined with more training
methods, using as a plug-and-play regularization.

SIWCon makes words of different importance
have a similar influence. The results of word
influence are illustrated in Table 2. SIWCon sim-
ilarizes the influence of information in words of
different importance, as evidenced by the average
AOPCDiff. of Normal+SIWCon being 0.017 lower
than that of Normal, and of AT+SIWCon being
0.016 lower than that of AT. Recall the question
we raised in section §1, the increased AUA. and de-
creased AOPCDiff. when using SIWCon in training
empirically give an affirmative answer.

4.4 Further Analysis on SIWCon

In this section, we conduct further analysis and
ablation study on BERT and MR dataset.

Hyperparameter α. The influence of α is illus-
trated in Figure 3(a). We find that when α is set
to different values, the robustness of BERT can
always be effectively improved, as the AUA. of
Normal+SIWCon is always higher than that of Nor-
mal. When α is small, BERT tends to be more
robust. Different values of α also have a slight
impact on the clean accuracy, as the ACC. of Nor-
mal+SIWCon is always close to that of Normal.

Temperature τ . The influence of τ is shown in
Figure 3(b). Similar to α, when τ is set to various
values, the robustness of the model is consistently
improved, while the ACC. fluctuates around that
of the normally trained BERT. However, τ has a
greater impact on the clean accuracy than α.

Batch Size. The influence of batch size is shown
in Figure 3(c). SIWCon is benefit from larger batch
size. As the batch size increases, the gap in clean
accuracy (ACC.) between the models trained with
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(c) Batch size(a) Hyperparameter (b) Temperature

Figure 3: Influence of the hyperparameter α, temperature τ , and batch size.

Figure 4: The comparisons of ACC. and AUA. under
different adversarial training setting. 0% denotes no ad-
versarial examples are generated, and AT downgrades
to Normal, which is the unforeseen scenario. Other ra-
tios indicate the number of adversarial examples incor-
porated in training, which is the foreseen scenario.

and without SIWCon decreases, while the gap in
robustness (AUA.) tends to increase. We conjecture
that this is due to the contrastive nature of SIW-
Con regularization, as larger batch sizes provide
more negative examples, thereby facilitating the
regularizing (Chen et al., 2020a).

Attack Methods and Examples Ratio. We test
the performance of SIWCon with more attack meth-
ods under different adversarial training settings,
and the results are shown in Figure 4. We observe
that SIWCon consistently outperforms the basic
training method in terms of model robustness when
using different attack methods. Additionally, we
find that when a higher proportion of adversarial
examples are incorporated into adversarial training,
robustness may sometimes be reduced. However,
SIWCon effectively mitigates this negative impact.

Ablation Study. We replace the data augmenta-
tion operations timp(·) and tump(·) in SIWCon with
new augmentation operations that randomly drop
out words in sentences to perform ablation study.
The results in Table 3 show that the influence-based
data augmentation operations used in SIWCon help
the model (i) improve robustness, as AUA. of SIW-
Con are higher than the random methods, and (ii)

ACC. ↑ AUA. ↑ AOPCComp. AOPCSuff. AOPCDiff. ↓

DeepWordBug

SIWCon 85.46 60.33 0.030 0.015 0.015
w/ random 86.49 38.67 0.035 0.014 0.021

TextFooler

SIWCon 84.31 30.67 0.038 0.022 0.016
w/ random 85.45 22.34 0.044 0.020 0.024

Table 3: Ablation study on BERT and MR. w/ random
means the augmentations of each sentence are sampled
randomly rather than based on attributions.

similarize the influence of the words of different
importance on prediction, as AOPCDiff. of SIWCon
are lower than the random methods.

4.5 Further Analysis on Model Behavior

Loss Landscape. Following the filter normaliza-
tion scheme proposed by Li et al. (2018), we fine-
tune BERT on the MR training set, and plot the
loss landscape of BERT on the MR testing set, as
shown in Figure 5. It is shown that the loss land-
scape of Normal+SIWCon (b) is visibly smoother
and changes more slowly than the normally trained
BERT (a). Furthermore, adversarial training (c)
makes the loss landscape smoother than the Normal
method (a), while when it is combined with SIW-
Con (d), the loss landscape is further smoothened.
According to the finding of Mok et al. (2021) that a
robust model should have a smooth loss landscape,
the visualization results demonstrate that SIWCon
is effective for improving model robustness.

Sentence Representation. We fine-tune BERT
on MR and then, for a normal sentence, we gen-
erate two groups of sentences by cumulatively re-
moving the 40% most and least important words
in the sentence (e.g., abcd→ abcd→ abcd), fol-
lowing the gradient attribution (3). We also utilize
PWWS (Ren et al., 2019) to generate adversar-
ial examples from the normal sentence. The sen-
tence representations visualized by t-SNE (van der
Maaten and Hinton, 2008) and the reduction
paths (Feng et al., 2018) are shown in Figure 6.
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(a) Normal (b) Normal + SIWCon (c) AT (d) AT + SIWCon

Figure 5: The loss landscape of BERT tuned with different methods.

# Reduced words

(a) Normal (b) Normal+SIWCon

original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

Figure 6: The visualization of sentence representations
and reduction paths. The results are obtained from
the MR instance “A sports movie with action that’s
exciting on the field and a story you care about off
it.” Darker examples indicate more words are removed.
Black and orange arrows respectively illustrate the re-
duction path of unimportant and important words. Blue
arrow highlights the reduction that drastically biases
the prediction. Representations in pink area belong to
the neighborhood of the adversarial example.

More results can be found in Appendix B.1.
The representation of the normal sentence (•)

can be seen as a point with complete information
for supporting the prediction contained, the bias of
incomplete sentences (4 and �) from the normal
sentence (•) can be seen as the information loss
caused by word removal, and the location of the ad-
versarial example indicates when how much infor-
mation is lost, the example can no longer maintain
the original prediction. When unimportant words
are removed (�), the representations for both mod-
els are steadily biased from the normal sentence,
and removal will not drastically bias the represen-
tations towards the adversarial example, indicating
that the information in unimportant words is not
influential on prediction. However, the two mod-
els behave differently when important words are
removed (4). For Normal method, the representa-
tions are biased towards the adversarial example,
and the prediction will be drastically biased when a
few important words are removed (indicated by the
blue arrow). For SIWCon, the representations are

Normal

Normal + SIWCon

# Reduced words

Figure 7: The change in model confidence with the
removal of words until label shift. The results are
obtained on the MR instance “A high-spirited buddy
movie about the reunion of Berlin anarchists who face
arrest 15 years after their crime.”

steadily biased in a similar manner as when unim-
portant words are removed, and the representations
do not fall into the neighborhood of the adversarial
example, indicating that important words are less
influential on prediction and it is more difficult for
attack methods to find adversarial examples.

Confidence Changing. We illustrate the change
in model confidence with the removal of words
on case instance in Figure 7. More results can be
found in Appendix B.2. We cumulatively remove
the most or least important words in a sentence,
and the change in confidence can be seen as the
influence of the information in the removed words.
SIWCon reduces the influence of the information
in important words, as more important words need
to be removed to shift the model’s prediction.

5 Conclusion

This paper presents SIWCon, a self-supervised reg-
ularization method based on contrastive learning.
SIWCon improves the robustness of language mod-
els by encouraging the words of different impor-
tance to have more similar influence on predic-
tion. Experiments show that SIWCon effectively
improves model robustness without depending on
adversarial perturbation. We hope the insights pro-
vided in this paper will inspire further research.
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Limitations

The loss objective of the proposed SIWCon regular-
ization is computed on augmented data, which in-
creases the time required for the model to complete
training. We evaluate SIWCon on classification
tasks, but it may be applied to various other tasks,
such as reading comprehension and textual entail-
ment. More evaluations are expected to be done
in future works. The proposed SIWCon regular-
ization is effective in defending against word-level
adversarial attacks, as the basic elements of the
augmentation methods are words. However, simi-
lar regularization techniques can also be applied to
characters and sentences, and we leave evaluating
the effectiveness of such variants in future works.

Ethics Statement

In this paper, we propose a self-supervised regular-
ization method for improving the model robustness,
which does not need to learn from any adversar-
ial examples. Since adversarial examples are al-
ways difficult to generate for language models, our
method can thus reduce the financial and environ-
mental cost of robustness improvement. Further-
more, our method forces models consider different
words to have a similar degree of influence on pre-
diction, potentially reducing the model’s bias. All
the datasets we use are publicly available, and we
do not violate their licenses.
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A Additional Experimental Details

A.1 Details on Dataset

MR contains movie reviews from Rotten Tomatoes,
and the examples are labeled as positive or nega-
tive, with 8,530 for training and 1,066 for testing.
SST2 contains sentences labeled as positive or neg-
ative, with 67,349 for training and 1,821 for testing.
IMDB contains binary polar movie reviews from
Internet Movie Database, which are also labeled as
positive or negative, with 25,000 for training and
25,000 for testing.

A.2 Details on Model

The experiments are conducted on three models
with different architectures. The LSTM (Hochre-
iter and Schmidhuber, 1997) consists of a 300-
dimensional GloVe embedding layer (Pennington
et al., 2014), a Bi-LSTM layer with 150 hidden
units, and a dense layer. The TextCNN is similar
to the architecture in (Kim, 2014), while the em-
bedding is also replaced with the 300-dimensional
GloVe embedding. The BERT (Devlin et al., 2019)
used in our experiment is the base uncased version.

A.3 Details on Baseline

When SIWCon is combined with adversarial train-
ing, the overall objective is formulated as:

minθ Lce(X, Y ) + Lce(Xadv, Y ) + α LSIWCon(X). (11)

This joint training objective helps the model to
learn both the normal and adversarial examples dis-
tribution and simultaneously regularizes the model
on the word influence.

B Additional Experimental Results

B.1 Analysis on Sentence Representation

We give more visualizations of sentence represen-
tations and reduction paths in Figure 8-13. The
instance sentences are randomly picked from MR
dataset, the sentence representations are obtained
on BERT, and the adversarial examples are gener-
ated by PWWS. Similar as the results in main text,
darker examples indicate more words are removed.
Black and orange arrows respectively illustrate the
reduction path of unimportant and important words.
Blue arrow highlights the reduction that drastically
biases the prediction. Representations in pink area
belong to the neighborhood of the adversarial ex-
ample.

B.2 Analysis on Confidence Changing
We provide more results on the change in model
confidence with the removal of words in 14-17.
The instance sentences are randomly picked from
MR dataset, and the results are obtained on BERT.

(a) Normal (b) Normal + SIWCon

original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

# Reduced words

Figure 8: The visualization of sentence representations
and reduction paths. The results are obtained on the
BERT sentences representation of the MR instance “I
enjoyed time of favor while I was watching it, but I was
surprised at how quickly it faded from my memory.”

original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

# Reduced words

(a) Normal (b) Normal + SIWCon

Figure 9: The visualization of sentence representations
and reduction paths. The results are obtained on the
BERT sentences representation of the MR instance “If
nothing else, this movie introduces a promising, un-
usual kind of psychological horror.”
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original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

(a) Normal (b) Normal + SIWCon

# Reduced words

Figure 10: The visualization of sentence representa-
tions and reduction paths. The results are obtained on
the BERT sentences representation of the MR instance

“Everytime you think undercover brother has run out of
steam, it finds a new way to surprise and amuse.”

(a) Normal (b) Normal + SIWCon

original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

# Reduced words

Figure 11: The visualization of sentence representa-
tions and reduction paths. The results are obtained on
the BERT sentences representation of the MR instance

“A real movie, about real people, that gives us a rare
glimpse into a culture most of us don’t know.”

original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

(a) Normal (b) Normal + SIWCon

# Reduced words

Figure 12: The visualization of sentence representa-
tions and reduction paths. The results are obtained on
the BERT sentences representation of the MR instance

“There’s a lot of tooth in roger dodger. but what’s nice
is that there’s a casual intelligence that permeates the
script.”

original sentence

adversarial example

sentence with 
important words removed

sentence with 
unimportant words removed

(a) Normal (b) Normal + SIWCon

# Reduced words

Figure 13: The visualization of sentence representa-
tions and reduction paths. The results are obtained on
the BERT sentences representation of the MR instance

“This is the best American movie about troubled teens
since 1998’s whatever.”

Normal

Normal + SIWCon

# Reduced words

Figure 14: The change in model confidence with the
removal of words until label shift. The results are ob-
tained on the MR instance “The entire movie has a
truncated feeling, but what’s available is lovely and lov-
able.”

Normal

Normal + SIWCon

# Reduced words

Figure 15: The change in model confidence with the
removal of words until label shift. The results are ob-
tained on the MR instance “I enjoyed time of favor
while i was watching it, but I was surprised at how
quickly it faded from my memory.”

Normal

Normal + SIWCon

# Reduced words

Figure 16: The change in model confidence with the
removal of words until label shift. The results are ob-
tained on the MR instance “Some actors have so much
charisma that you’d be happy to listen to them reading
the phone book. Hugh grant and Sandra bullock are
two such likeable actors.”

Normal

Normal + SIWCon

# Reduced words

Figure 17: The change in model confidence with the
removal of words until label shift. The results are ob-
tained on the MR instance “An engaging overview of
Johnson’s eccentric career.”
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