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Abstract

Large language models are very resource in-
tensive, both financially and environmentally,
and require an amount of training data which
is simply unobtainable for the majority of NLP
practitioners. Previous work has researched the
scaling laws of such models, but optimal ratios
of model parameters, dataset size, and com-
putation costs focused on the large scale. In
contrast, we analyze the effect those variables
have on the performance of language mod-
els in constrained settings, by building three
lightweight BERT models (16M/51M/124M
parameters) trained over a set of small corpora
(5M/25M/125M words). We experiment on
four languages of different linguistic character-
istics (Basque, Spanish, Swahili and Finnish),
and evaluate the models on MLM and sev-
eral NLU tasks. We conclude that the power
laws for parameters, data and compute for low-
resource settings differ from the optimal scaling
laws previously inferred, and data requirements
should be higher. Our insights are consistent
across all the languages we study, as well as
across the MLM and downstream tasks. Fur-
thermore, we experimentally establish when
the cost of using a Transformer-based approach
is worth taking, instead of favouring other com-
putationally lighter solutions.

1 Introduction

Pre-trained neural language models based on the
Transformer architecture have shown impressive
results on many NLP tasks to the point that their
use has become standard practice. The capabil-
ities of these models improve as the complexity
(in terms of parameters) of their architecture (Wei

et al., 2022a) and the size of the corpora on which
the pre-training is performed increase (Zhang et al.,
2021). For this reason, there is now a tendency to
build ever-larger models trained on ever-growing
corpora. This trend has resulted in a never-ending
increase of the computational requirements to per-
form model pre-training, but also for the subse-
quent fine-tuning and inference processes at pro-
duction time. Moreover, building very large models
require huge training corpora, which is only avail-
able for a handful of rich-resource languages.

Kaplan et al. (2020) and Hoffmann et al. (2022)
propose power-law formulas that relate model size,
corpora size and computation power, and help find
the optimal settings in advance given a fixed bud-
get. However, their analysis is focused on autore-
gressive models of relatively big sizes, that require
large corpora to train. In this paper, we analyze
whether the conclusions drawn in these works also
apply to discriminative (encoder-only) models in
low-resource settings, where both the data size and
budget are constrained. We analyze the perfor-
mance of several combinations of model and data
sizes using a simulated low-resource scenario in
four linguistically diverse languages from different
families (Basque, Spanish, Swahili and Finnish).

Our study reveals that the data size and model
size power law values provided by Kaplan et al.
(2020) and Hoffmann et al. (2022) are not optimal
in these scenarios. Instead, our experiments show
that data size should be relatively bigger than what
those scaling laws estimated when training small
models (16-124M parameters) for optimal perfor-
mance. Furthermore, given a fixed computational
budget, it is better to train big models instead of
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computing more model updates in smaller models.
Additionally, we establish the minimally re-

quired combinations of compute, model and dataset
sizes of Transformer-based approaches that outper-
form other lighter neural baselines, taking CO2

emissions into consideration.

2 Related Work

Since the emergence of the attention-based Trans-
former (Vaswani et al., 2017) architecture and the
masking pre-training strategies introduced since
BERT (Devlin et al., 2019), different pre-training
strategies have been published. But aside from
the improvements to the architecture or training
procedures, the qualitative improvement in results
is mainly the result of increasing the model size,
alongside the amount of text corpora used to train
them: Chinchilla (70B parameters) (Hoffmann
et al., 2022), LaMDA (137B) (Thoppilan et al.,
2022), GPT-3 (175B) (Brown et al., 2020), Go-
pher (280B) (Rae et al., 2021) and PaLM (540B)
(Chowdhery et al., 2022). This fast-growing in-
crease in model sizes and data is proven to surface
new abilities in larger models, but not present in
smaller models (Wei et al., 2022a).

The relationship between the size of the pre-
training corpus and the performance of the lan-
guage model in NLU tasks has been addressed in
the literature before. The performance improves
when the amount of data is increased (Zhang et al.,
2021; Hu et al., 2020; Micheli et al., 2020; Raffel
et al., 2020), although, at a certain point, the in-
crease in performance slows down when the model
size is kept fixed (Inoue et al., 2021; Martin et al.,
2020; Micheli et al., 2020; Raffel et al., 2020; Liu
et al., 2021). Furthermore, it is more convenient to
improve the diversity of training datasets, than to
add more text from the same domains (Inoue et al.,
2021; Martin et al., 2020; Liu et al., 2021).

The correlation between model size and model
performance on NLU tasks has also been analyzed.
The performance of the model improves when scal-
ing the model size (and FLOPs) (Turc et al., 2019;
Raffel et al., 2020; Xia et al., 2022; Clark et al.,
2022). However, all these works used very large
pre-training datasets. They do not analyze if the
increase in performance slows down bottlenecked
by the pre-training dataset size and thus, the con-
clusion of scaling being always beneficial cannot
be extended to low-data scenarios.

The works of Kaplan et al. (2020) and Hoffmann

et al. (2022), whose aim is aligned with this work,
empirically study the optimal ratios of the training
tokens, model parameters, and computation to train
dense language models and infer scaling laws.

Kaplan et al. (2020) train models of a size rang-
ing from 768 to 1.5 billion parameters with datasets
ranging from 22 million to 23 billion tokens and
conclude that LM performance improves smoothly
as we increase the model size, dataset size, and
amount of computation. They show that all three
factors must be scaled up in tandem, to avoid bot-
tleneck issues. Furthermore, they note that larger
models are more sample-efficient, and that conver-
gence is inefficient, suggesting that it’s better to
under-train a bigger model than converge a smaller
one on the same computing budget.

Hoffmann et al. (2022) find the optimal model
size and the number of training tokens for given a
fixed FLOPs budget. For this purpose, they draw
their own scaling laws, based on the losses of over
400 models, ranging from 70M to 16B parame-
ters, and trained on 5B to 400B tokens. They state
that model size and the number of training tokens
should scale equally, based on three alternative ap-
proaches, while Kaplan et al. (2020) extrapolates
that every time the model size is increased by 8,
the data only needs to be increased by 5. Thus,
after concluding that the performance of most of
the current large language models is bottlenecked
by the undersized corpora, they train Chinchilla.

However, the scaling laws of Kaplan et al. (2020)
and Hoffmann et al. (2022) are not useful for the
low-resource settings we want to focus on. Accord-
ing to Kaplan et al. (2020) we need very small train-
ing corpora (e.g. 744K tokens for a BERTBASE ,
which is clearly not enough or optimal).

Hoffmann et al. (2022) infers significantly bigger
training corpora: e.g. 3M tokens for a BERTMINI

or 86M tokens for a BERTBASE . Current models
for low-resource languages are trained with corpora
around that range (Joshi et al., 2020): 161M for
Irish (Barry et al., 2021), 130M for Luxembourgish
(Lothritz et al., 2022), 45M for Galician (Vilares
et al., 2021), 16M for Swahili (Martin et al., 2022b)
and 4.4M for Quechua (Zevallos et al., 2022). How-
ever, increasing pre-training data several orders of
magnitude has been proved beneficial for base size
models (Liu et al., 2019).

Finally, those optimal scaling laws have been
deduced from models trained over one epoch, while
in low/medium-resource settings models are often
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trained over several epochs (Martin et al., 2020;
Lothritz et al., 2022; Zevallos et al., 2022).

Nonetheless, for certain NLU tasks (e.g. NeQA
and Quote Repetition) scaling language models is
detrimental (Perez and McKenzie, 2022), creating
inverse scaling laws. However, Wei et al. (2022b)
implies U-shaped scaling laws where even larger
models might be able to solve those tasks that com-
prise a true and a distractor task.

3 Experimental Setup

We aim to find the optimal combination of model-
size, dataset-size and computing in low-resource
environments and assess whether they follow the
scaling laws established in the literature. In addi-
tion, we seek to find the minimum requirements to
overcome computationally lighter neural baselines.
Therefore, we carry out experiments for 3 corpus
sizes and 3 model sizes, in 4 languages, training a
total of 36 different models.

3.1 Language Selection

We conduct the experiments in four languages from
different language families, selected among those
that have enough monolingual data to train LMs,
as well as enough available evaluation datasets
for NLU tasks. Hence, the low-resource setting
has been simulated in some cases. Among other
languages that fulfil those criteria, we opted for
Basque (eu), Spanish (es), Swahili (sw) and Finnish
(fi). In addition to being part of disjoint language
families, these languages are linguistically diverse
with different complexities across morphology, syn-
tax, verb system and vocabulary (Coloma, 2015)
(see Appendix A).

3.2 Corpora

For each language, we created three corpora com-
prising 125M, 25M and 5M words, respectively.
We limited the number of corpora sizes to three in
order to control the number of experiments, and
thus the computational resources needed.

Preliminary experiments showed a big fall in the
results when reducing pre-training data to just 1M
words, in consistency with Zhang et al. (2021).
Since obtaining corpora of about 5M words is
achievable by most languages that have annotated
datasets (Joshi et al., 2020), we set the lower bound
at 5M words. Zhang et al. (2021) shows that 10M
to 100M words of pretraining data are enough for a
language model to acquire the linguistic capacities

L HH INT H NEP Param.
BERT124M 12 768 3072 12 86M 124M
BERT51M 8 512 2048 8 25M 51M
BERT16M 4 256 1024 4 3M 16M

Table 1: Model sizes in our experiments. L: layers. HH:
hidden dimensions. INT: intermediate layer dimensions.
H: attention heads. NEP: non-embedding parameters.

of syntax and semantics. Thus, we set the other two
corpora sizes at 25M and 125M words, keeping a
constant increase rate among them.

Regarding the nature of the texts, corpora for
Basque and Spanish are a mix of 75% news and
25% text from Wikipedia. We selected the news-
paper Berria1 for Basque, and El Pais2 for Span-
ish. Corpora for Swahili and Finnish were built by
randomly selecting documents (longer than 10 sen-
tences) from the web-crawled cc100 corpus (Con-
neau et al., 2020; Wenzek et al., 2020).

3.3 Models

In a similar fashion to (Turc et al., 2019), we em-
ploy three different variants of the BERT model,
dubbed BERT124M

3, BERT51M and BERT16M .
These models have 12, 8 and 4 layers respectively,
also shrinking other parameters proportionally (hid-
den dimension, number of attention heads, etc.),
since model shape does not affect performance sig-
nificantly (Kaplan et al., 2020). Table 1 shows
a detailed view of the parameters in each model.
We also increased the vocabulary sizes from the
original 30K subword tokens to 50K because it is
beneficial for agglutinative languages (Agerri et al.,
2020). We trained each model up to 500K steps
with a batch of 256 and a sequence length of 512.
For more pre-training details see Appendix B.

4 Evaluation Settings

We evaluate all models intrinsically and extrin-
sically. For the intrinsic evaluation, we tested
the models on masked language modeling; for
the extrinsic evaluation, we selected four NLU
downstream tasks with available datasets in all
the selected languages: Name Entity Recognition
and Classification (NERC), Topic Classification
(Topic), Sentiment Analysis (SA) and Question-
answering NLI (QNLI). Our selection of tasks in-

1https://www.berria.eus
2https://elpais.com
3This corresponds to BERTbase in Devlin et al. (2019)
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EU ES SW FI
Task train dev test train dev test train dev test train dev test M.
NERC 52K 13K 36K 265K 53K 52K 175K 25K 51K 180K 14K 46K F1
Topic 9K 2K 2K 9K 1K 4K 10K 3K 7K 10K 10K 10K F1
SA 6K 1K 1K 5K 2K 1K 6K 782 1K 4K 633 1K F1
QNLI 2K 230 238 30K 4K 4K 4K 624 1K 7K 1K 1K acc
MLM 1M 1M 1M 1M acc

Table 2: Datasets used in the evaluation. The size for NERC and MLM are not reported in examples but in tokens.
F1 refers to the micro-average F1-score, while acc refers to accuracy.

cludes one sequence labeling task and three se-
quence classification tasks including sentiment
analysis and QNLI, which are tasks that require
a deeper NLU than the shallow linguistic tasks
of NERC and Topic Classification (Zhang et al.,
2021). Table 2 shows the details of each dataset.

4.1 MLM
Masked Language Modeling (MLM) is one of the
default pre-training objective functions of BERT.
We report both the loss and accuracy of MLM.

For this purpose, we created test datasets, from
news sources not used for pre-training the models.
For Basque we gathered texts from Argia4 news
magazine. For Spanish, we opted for texts from
the newspaper El Mundo 5. For Swahili, as a data
source not used in the pre-training, we randomly
selected a sub-corpus from the pre-train data for
SwahBERT model (Martin et al., 2022a), which is
mostly made up of news (%80). For Finnish we
opted for a subset of cc100 not used in the pre-
training, due to the lack of document-level news
corpora available with an open license.

4.2 NERC
Named Entity Recognition and Classification
(NERC) is a token classification task. For Basque,
we used the in-domain NERC dataset from the
BasqueGLUE benchmark (Urbizu et al., 2022). For
Spanish, we opted for the Conll2002 dataset (Sang,
2002). For Swahili, we selected Masakhaner (Ade-
lani et al., 2021). And lastly, for Finnish, we used
FiNER (Ruokolainen et al., 2019). Each dataset
has 4 categories, and we use the F-score as the
performance metric.

4.3 Topic Classification
Topic classification is a sequence classification
multi-class task. For Basque, we chose the

4www.argia.eus
5www.elmundo.es

BHTCv2 dataset including 12 thematic classes (Ur-
bizu et al., 2022). The Spanish counterpart is ML-
doc (Schwenk and Li, 2018) which has 4 classes.
For Swahili, we employed Swahili: News Classi-
fication Dataset (David, 2020) which has 4 the-
matic classes. Since a development dataset split
was missing, we randomly selected the 20% of
the training split to create it. Furthermore, since
the fine-tuning dataset is bigger than the smallest
of the pre-training dataset (5M), we downsampled
this training to 10K examples. And for Finnish,
we selected the 10% version of the Yle corpus6,
which contains 10 thematic classes. Performance
is measured with the F-score score.

4.4 SA
Sentiment Analysis (SA) is a sequence classifica-
tion task. For Basque, we employed the dataset
BEC2016eu (Urbizu et al., 2022), which has pos-
itive, negative and neutral classes. InterTass2020
(Cumbreras et al., 2016) is the Spanish dataset se-
lected for SA, which also has positive, negative and
neutral classes. For Swahili, we utilized the dataset
presented by Martin et al. (2022b). The dataset was
mapped to polarity annotation following guidelines
from the article: joy ([1]) = positive, disgust ([4]) =
negative, neutral ([0]) and surprise ([5]) = neutral.
Only examples with a single label were mapped.
Original train/dev/test splits were maintained. And
lastly, for Finnish, we chose Finnish sentiment7

which only contains positive and negative labels.
We use F-score as the performance metric.

4.5 QNLI
Question-answering NLI (QNLI) is a sequence
classification task. For Basque, we employed
QNLIeu (Urbizu et al., 2022). And for Spanish,
Swahili and Finnish, we adapted already available

6www.github.com/spyysalo/yle-corpus
7www.huggingface.co/datasets/sepidmnorozy/

Finnish_sentiment
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Figure 1: MLM loss and FLOPs for models for Basque.

Figure 2: MLM loss and FLOPs for models for Spanish.

conversational Question Answering (QA) datasets,
into a sequence-pair binary classification task fol-
lowing the design of QNLI for English (Wang et al.,
2019). The QA dataset selected were SQADes (Car-
rino et al., 2020), Tydiqasw and Tydiqafi (Clark
et al., 2020). Each QNLI dataset has a Question-
Sequence pair for entailment8. Tydiqa only pro-
vides splits for train and development. Thus, we
used that development split as our test split, and
randomly select some examples from the training
set to create our development set. We follow the
English QNLI design and use accuracy as the eval-
uation metric.

4.6 Systems and Baselines

For the extrinsic evaluation, we fine-tuned each of
the 36 BERT models making use of the Transform-
ers library (Wolf et al., 2020), with a lr of 3e−5,
an effective batch size of 32 and training up to 10

8In the case of Basque and Spanish, those sequences are a
single sentence, while the sequences for Finnish and Swahili
are short paragraphs, because the QA datasets were annotated
following different methodologies.

Figure 3: MLM loss and FLOPs for models for Swahili.

Figure 4: MLM loss and FLOPs for models for Finnish.

epochs9, which are considered default values (De-
vlin et al., 2019; Mosbach et al., 2020). For each
task and language, we report an average of 5 runs.

In order to compare the performance of our mod-
els to other lighter approaches, we implement a
competitive neural baseline based on contextual
embeddings using Flair (Akbik et al., 2019). For
sequence labeling tasks, embeddings are passed
into a BiLSTM-CRF system based on the archi-
tecture proposed by (Huang et al., 2015). For text
classification tasks, the computed Flair embeddings
are fed into a BILSTM to produce a document-level
embedding which is then used in a linear layer to
make the class prediction.

We pre-train our own contextual Flair embed-
dings using the 125M corpora for each language
with the following hyperparameters: Hidden size
of 2048, sequence length of 250, a mini-batch size
of 100 and 10 epochs. The rest of the training
parameters are left in their default setting10.

In addition to LSTM-based neural baselines, we
also include in the comparison a multilingual BERT

9Selecting the best-performing epoch on the development
set.

10Each model took 80h to train on an Nvidia TitanV GPU.
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model, namely mBERTbase (Devlin et al., 2019).
We assume that this kind of multilingual language
models will always be available and that they can
somehow be an alternative in some low-resource
settings, namely when limited resources refer to the
computational capacity for pre-training and to the
availability of enough text in the target language.
In that line, we perform this comparison only for
the Basque and Swahili languages which approx-
imately include a training corpus size in mBERT
no larger than those of the corpora used in our ex-
periments (roughly 35M for eu and 11M for sw).

5 Results

5.1 Down-Scaling Laws

Figures 1-411 show the relation between the FLOPs
and the MLM loss in the development dataset for
the models in the four languages. Different colours
stand for different model sizes (16M/51M/125M),
and different symbols represent the pre-training
data (5M/25M/125M). Each line is formed by 5
checkpoints (every 100K steps).

We can appreciate how the lowest loss is
achieved by the biggest model with the most
pre-training data, as expected from scaling laws,
which dictate an improvement in performance
when model-size, dataset-size and compute bud-
get are increased simultaneously. Furthermore,
the plot shows that increasing pre-training data is
more beneficial than increasing the model size or
amount of compute in this low-resource scenario;
the gap between the loss obtained from increas-
ing pre-training data is much bigger than the im-
provements obtained when increasing model-size
or training steps.

The figures also show that models trained with
small datasets yield larger MLM losses in devel-
opment with further training (× curves), which
we attribute to overfitting, as the training MLM
loss does shrink as training advances. Big mod-
els with medium datasets (red and black ⋄ curves)
also show the same tendency, although to a lesser
extent. According to the figures, unless we use a
dataset of at least 125M in the case of BERT51M

and BERT124M , or a dataset of at least 25M in the
case of the smallest BERT16, we should consider
applying early stopping to our models to avoid over-
fitting, which corresponds with the first checkpoint
of 100K steps we plotted in most cases.

11Zoomed in for BERT16M in the Appendix G.

Nevertheless, over-fitting issues during pre-
training, do not have a direct impact neither on
MLM accuracy nor on downstream tasks (see Ap-
pendix D). Thus, for the evaluation of the models
regarding MLM accuracy (analysis available in Ap-
pendix C) and NLU downstream tasks (Section
5.2), we employed the final checkpoints at 500K
steps.

Regarding languages, a comparison of the four
figures (Figures 1-4) shows that the correlation be-
tween MLM loss and combinations of model-size,
dataset-size and FLOPs is consistent across lan-
guages. MLM accuracies are also consistent across
languages (Appendix C).

Hoffmann et al. (2022) estimates that 3M, 25M
and 86M tokens are optimal to train BERT16M

BERT51 and BERT124 respectively, while Kaplan
et al. (2020) estimates much lower values. Our
results show that the amount of data needed to train
an LM optimally is no less than 25M words for
BERT16M and 125M for BERT51 and BERT124.
We carry out an in-depth comparison of these re-
sults with additional data in Appendix H.

5.2 Evaluation on NLU tasks

This section analyses the performance of our mod-
els on the NLU tasks listed in section 4, to measure
the effect of model-size and pre-training data-size
once finetuned on the downstream tasks.

The results for the NERC task are shown in Table
3. As expected, there is a clear positive correlation
between the evaluation metric and the model and
corpora size, but corpora size has slightly more
impact on the performance. The results for topic
classification at Table 4 follow the same trends, al-
beit with smoother differences. Table 5 presents
the results for SA, again repeating the trends, but
with a few outliers. Lastly, for QNLI (see Table 6),
we observe there is a general trend of improving
results while increasing dataset and model sizes.
However, many results present large standard devi-
ations, leading to several outliers12 that stand out
from the general trend.

The models trained obtain competitive results, as
shown by the results for NERC, topic classification
and SA for Swahili, which are new SotA for those
datasets to the best of our knowledge. Besides,
some of the results obtained with the BERT124M

and 125M words are comparable with SotA models
trained over huge datasets (See appendix F).

12outliers marked in red
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NERCeu 5M 25M 125M
BERT16M 63.90±0.5 72.23±0.6 74.12±0.3

BERT51M 70.14±0.4 79.07±0.4 82.98±0.1

BERT124M 73.14±0.5 79.09±0.8 84.58±0.2

NERCes 5M 25M 125M
BERT16M 76.57±0.3 81.56±0.5 81.70±0.5

BERT51M 80.43±0.4 85.11±0.8 86.34±0.7

BERT124M 81.75±0.4 84.99±0.8 87.28±0.3

NERCsw 5M 25M 125M
BERT16M 86.36±0.2 88.62±0.2 88.63±0.4

BERT51M 88.74±0.2 90.68±0.2 91.63±0.1

BERT124M 88.93±0.4 90.97±0.2 92.09±0.2

NERCfi 5M 25M 125M
BERT16M 76.82±0.3 81.48±0.4 81.83±0.3

BERT51M 79.73±0.2 85.27±0.4 87.02±0.2

BERT124M 80.56±0.7 85.77±0.3 88.99±0.2

Table 3: Results for the 9 models on NERC (F1) for
Basque, Spanish, Swahili and Finnish.

Topiceu 5M 25M 125M
BERT16M 68.00±0.6 71.81±0.3 72.49±0.4

BERT51M 69.98±0.6 73.16±0.6 74.87±0.4

BERT124M 71.70±0.7 74.61±0.3 76.06±0.4

Topices 5M 25M 125M
BERT16M 94.54±0.3 95.86±0.3 95.42±0.4

BERT51M 94.89±0.3 95.45±0.2 95.91±0.4

BERT124M 95.32±0.4 95.82±0.3 96.27±0.3

Topicsw 5M 25M 125M
BERT16M 91.64±0.3 91.96±0.3 92.45±0.2

BERT51M 92.12±0.2 92.39±0.1 92.88±0.2

BERT124M 91.95±0.4 92.69±0.1 93.07±0.2

Topicfi 5M 25M 125M
BERT16M 88.15±0.1 88.94±0.2 89.16±0.2

BERT51M 88.53±0.3 89.40±0.3 89.61±0.3

BERT124M 88.41±0.2 89.72±0.2 90.14±0.1

Table 4: Results for the 9 models on topic classification
(F1) for Basque, Spanish, Swahili and Finnish.

5.2.1 Evaluation vs Baseline Systems

Table 7 contains the results for the models trained
with the corpora of 125M words, compared to the
BiLSTM-CRF Flair baseline (trained with the same
125M corpora) and mBERT (for the languages with
a comparable target-language pre-training corpus
size). BERT models outperform the Flair neural
baseline, but, depending on the evaluation dataset
(task and language), the baseline is outperformed
only by the BASE124M model or by all three model
sizes. Furthermore, for some datasets, even the

SAeu 5M 25M 125M
BERT16M 67.80±0.5 68.63±1.0 67.59±0.5

BERT51M 67.00±1.0 68.54±0.5 69.40±0.9

BERT124M 67.22±0.7 68.79±0.7 68.91±0.5

SAes 5M 25M 125M
BERT16M 37.67±1.5 37.62±0.7 37.51±1.4

BERT51M 36.05±2.1 37.57±0.5 39.89±0.0

BERT124M 36.37±2.2 37.17±1.1 43.27±1.1

SAsw 5M 25M 125M
BERT16M 71.52±0.6 75.56±0.3 74.84±0.6

BERT51M 70.49±0.7 75.39±1.4 77.07±0.0

BERT124M 69.60±1.3 75.54±0.9 79.04±0.7

SAfi 5M 25M 125M
BERT16M 89.69±0.2 90.96±0.2 91.14±0.4

BERT51M 89.61±0.6 91.86±0.3 92.58±0.0

BERT124M 90.32±0.5 91.55±0.3 94.38±0.3

Table 5: Results for the 9 models on sentiment analysis
(F1) for Basque, Spanish, Swahili and Finnish.

QNLIeu 5M 25M 125M
BERT16M 68.19±2.3 68.95±2.0 71.22±5.0

BERT51M 65.06±0.8 76.37±2.5 74.18±1.6

BERT124M 67.43±2.7 72.66±2.0 74.09±1.7

QNLIes 5M 25M 125M
BERT16M 65.01±0.6 70.89±1.4 72.72±0.7

BERT51M 67.00±1.8 74.11±1.1 78.00±0.0

BERT124M 67.39±0.5 73.07±1.3 81.10±0.7

QNLIsw 5M 25M 125M
BERT16M 62.80±1.1 62.45±1.2 63.42±1.0

BERT51M 62.27±1.7 63.83±1.4 63.87±1.5

BERT124M 64.08±1.1 62.68±1.2 63.34±1.4

QNLIfi 5M 25M 125M
BERT16M 51.49±0.9 50.96±0.7 58.89±3.7

BERT51M 54.28±2.5 54.58±3.2 57.30±4.3

BERT124M 54.07±2.6 59.89±4.5 58.56±1.1

Table 6: Results for the 9 models on QNLI (acc) for
Basque, Spanish, Swahili and Finnish.

BERT16M models trained with the smallest cor-
pus (5M), not included in this table, outperform
the Flair baseline (trained over a corpus of 125M
words). Finally, computational costs (analysed in
Section 5.3) ought to be a factor to consider and de-
cide if the gain in performance is worth the increase
in computational requirements.

The boost in performance when increasing the
model size is larger in downstream tasks than in
the MLM intrinsic task, particularly when shifting
from the smallest BERT16M to the intermediate
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BERT16M BERT51M BERT124M Flair mBERT
eu NERC 74.12±0.3 82.98±0.1 84.58±0.2 82.13±0.4 79.39±1.0

Topic 72.49±0.4 74.87±0.4 76.06±0.4 67.89±0.3 70.57±0.5

SA 67.59±0.5 69.40±0.9 68.91±0.5 68.17±0.3 67.34±0.7

QNLI 71.22±5.0 74.18±1.6 74.09±1.7 48.66±5.2 78.48±1.9

es NERC 81.70±0.5 86.34±0.7 87.28±0.3 87.09±0.3 —
Topic 95.42±0.4 95.91±0.4 96.27±0.3 94.08±0.4 —

SA 37.51±1.4 39.89±0.0 43.27±1.1 34.73±3.0 —
QNLI 72.72±0.7 78.00±0.0 81.10±0.7 56.42±0.6 —

sw NERC 88.63±0.4 91.63±0.1 92.09±0.2 92.04±0.1 91.17±0.1

Topic 92.45±0.2 92.88±0.2 93.07±0.2 91.83±0.2 91.52±0.2

SA 74.84±0.6 77.07±0.0 79.04±0.7 73.60±0.5 69.17±1.2

QNLI 63.42±1.0 63.87±1.5 63.34±1.4 52.82±2.1 63.48±1.1

fi NERC 81.83±0.3 87.02±0.2 88.99±0.2 84.76±0.4 —
Topic 89.16±0.2 89.61±0.3 90.14±0.1 86.58±0.7 —

SA 91.14±0.4 92.58±0.0 94.38±0.3 89.74±0.5 —
QNLI 58.89±3.7 57.30±4.3 58.56±1.1 51.54±1.2 —

Table 7: Results for BERT and Flair models pre-trained with the biggest dataset (125M words) and mBERT (for the
languages pre-trained with a comparable corpus).

BERT51M . This indicates that a larger model is
better suited for fine-tuning, as the number of train-
able parameters is also higher.

The results and scaling trends across languages
are very consistent. The results and the trends
we obtained are also consistent across different
tasks, with the exception of QNLI, where results
are volatile13 and have many outliers.

5.3 FLOPs and CO2 Emissions
Table 8 shows the computational costs and CO2

emissions for each system for training, finetuning14

and inference. We calculated the FLOPs following
the same method as Hoffmann et al. (2022). For
non-transformer baselines, FLOPs were computed
following (Zhang et al., 2018). CO2 emissions
were estimated with Machine-Learning Impact cal-
culator15 (Lacoste et al., 2019). The neural base-
line based on Bi-LSTMs is lighter FLOP-wise, on
pre-training, fine-tuning and inference time, even
against the smallest BERT16M model. Still, the
Flair baseline has higher CO2 emissions for fine-
tuning, due to its inability to parallelize from the
recurrent nature of the LSTMs.

If we revisit the results on MLM and NLU tasks
(Sections 5.1 and 5.2) with computational costs in
mind, we can say that if we only have a tiny corpus

13with an average standard deviation of 1.8
14Finetuning values are computed for a single run at Spanish

topic classification.
15https://mlco2.github.io/impact#compute

(5M token) available, the results obtained with a
small model (BERT16M ) are on par with its bigger
siblings at MLM, Topic, SA and QNLI, but not
in NERC, where increasing the model size (up to
BERT51M ) is needed to get competent results. In
a scenario with a small dataset (25M), BERT16M

would only obtain comparable results at topic clas-
sification and SA, but a BERT51M model obtains
results as good as, or even better than BERT124M .
Thus, we can opt for the BERT51M and use only
half of the compute. However, if we are work-
ing with a pre-training dataset bigger than 125M,
BERT124M obtains the best results by far, indicat-
ing that it is worth investing the compute needed to
train such a model.

However, here we are comparing models of
different sizes, trained for the same amount of
steps. What would happen if we want the best
model for a fixed computational budget? We an-
swer that in Appendix E, where we compare the
BERT51M and BERT124M , pre-trained on a compa-
rable amount of computation. In line with (Kaplan
et al., 2020), we conclude that it is better to under-
train a BERT124M than overtraining a BERT51M

with the same amount of computation.

6 Conclusions

We present a study of the performance of language
models in constrained settings, to analyze if the
same scaling laws studied for large-language mod-
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Pre-training Fine-tuning Inference
Model FLOPs CO2eq FLOPs CO2eq FLOPs CO2eq
BERT124M 4.9e+19 98 kg 3.4e+16 47 g 1.3e+11 0.18 mg
BERT51M 2.0e+19 41 kg 1.4e+16 23 g 5.3e+10 0.07 mg
BERT16M 6.3e+18 13 kg 4.4e+15 11 g 1.6e+10 0.02 mg
Flair 1.4e+17 4 kg 5.3e+14 334 g 5.3e+09 0.01 mg

Table 8: Computational costs in FLOPs for pre-training, fine-tuning and inference and their estimated CO2 emissions.

els apply to low-resource scenarios. We find out
that the estimated values for optimal balance of
model size and corpora size do not hold in these
scenarios, and that pre-training tokens should be
higher than the amount of model parameters.

From our experiments, we conclude that it is
preferable to train big models on as much data as
possible rather than using the computational power
to further train smaller models. We see a clear
trend where bigger models tend to quickly over-
fit when pre-trained for many epochs with small
corpora. Still, even when they overfit in the pre-
training stage, bigger models consistently outper-
form smaller models in downstream applications
which require fine-tuning.

The experimental results are consistent among
languages. Additionally, we empirically estab-
lish when the computational cost of using a
Transformer-based approach is worth taking.

All the pre-training corpora, models and datasets
created in this work are publicly available16.

Limitations

First of all, our study is limited to languages that
use the Latin script. Still, the 4 languages are from
different language families and are typologically
diverse.

Secondly, the low-resource scenario is simulated.
As mentioned in 3, in order to carry out the experi-
ments the languages involved were required to have
enough monolingual data to train LMs, as well as
available evaluation datasets for NLU tasks.

The source of the pre-training corpora for
Swahili and Finnish (cc100) is not completely com-
parable with the corpora used for Basque and Span-
ish (75% news, 25% Wikipedia), due to the un-
availability of a large curated corpus for Swahili,
and the lack of big news corpora for Finnish with
an open license that allowed us to share freely the
pre-training data.

16https://github.com/orai-nlp/low-scaling-laws

Our study is limited to 3 language model sizes
and 3 pre-training corpora sizes. Including other
model sizes like a BERT-Large or a model between
51M and 16M (where there is a big gap in results),
and adding more pre-training corpora sizes (let’s
say 625M and 1M words) were out of the scope of
this work.

In addition, we use the default hyperparam-
eters that are commonly used for BERT-base
(BERT124M ) for the pre-training and fine-tuning of
the BERT51M and BERT16M models without any
hyperparameter tuning.
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A Linguistic Characteristics of Selected
Languages.

Table 9 shows the linguistic characteristics of the
languages we selected for our experiments, which
are Basque (eu), Spanish (es), Swahili (sw) and
Finnish (fi). On one hand, we have the language
families they belong to, and on the other hand, their
complexity in morphology, syntax, verb system and
vocabulary according to Coloma (2015).

B Pre-Training Details

We use a cased sub-word vocabulary containing
50K tokens trained with the unigram language
model based sub-word segmentation algorithm
proposed by Kudo (2018). The vocabularies are
learned from each training corpus with a charac-
ter coverage of 99.95%, to ignore rare characters.
Thus, we obtain 3 vocabularies for each language,
one for each size of the pre-training corpora (5M,
25M, 125M), which are shared among LMs of dif-
ferent sizes throughout our experiments.

We apply several Maskings to the same sen-
tences, to create different examples from the same
text17, which is a common practice during the pre-
processing of the pre-training data. We applied 10
different random maskings to each text and we em-
ployed whole-word masking, where whole words
are masked instead of the sub-word units. All mod-
els were trained on TPUv3-8 machines using the
same set of default hyperparameters (Devlin et al.,
2019) in all model sizes: a learning rate 1e−4, β1 =
0.9, β2 = 0.999, L2 weight decay of 0.01, a learning
rate warmup of 10K steps, and training the mod-
els for a total of 500K steps with a batch size of
256 and a sequence length of 512. This means that
we will be doing many epochs (500/2500/12500K)
over the same corpus, a common practice, when
there is not an enormous pre-training corpus avail-
able, for instance, in the original publication of
BERT (Devlin et al., 2019), the model is pre-trained
for 40 epochs.

Although the models are trained for the same
amount of steps and batch size, the time needed
for training each of them is different, with larger
models taking more time. We trained all our mod-
els using TPUv3-8 machines; in which we trained
BERT124M models to 500K steps in 76 hours,
BERT51M models in 32 hours and BERT16M mod-
els in 10 hours.

17I love cats: I love [MASK]; I [MASK] cats; [MASK] love
cats

C MLM Evaluation

Table 10 shows the accuracies obtained in the MLM
task for each language (Basque, Spanish, Swahili
and Finnish), for each model size and corpus size
combination. As expected, larger models trained
with the biggest corpora yield the best results, and
a positive correlation exists between model/corpora
size and accuracy in every language we compare.
Moreover, results show that in overall, in these
low-resource settings, it is preferable to increase
the pre-training data over model size. Increasing
pre-training data improve results on MLM for all
languages, with the exception of the BERT16M

model trained with the 125M token dataset. The
gain obtained with the smallest BERT16M models
as we keep adding training data diminishes, which
suggests that performance is reaching a plateau in
these models.

On the other hand, increasing the model size
only helps once we reach a certain amount of
pre-training data. Increasing model size from
BERT16M to BERT51M does not improve MLM
accuracy for a 5M corpus, suggesting that 3M non-
embedding parameters are enough to absorb the
knowledge of such a small dataset. However, in-
creasing model size from BERT51M to BERT124M

for the same 5M corpus does improve the overall
performance for all languages except for Finnish,
This might be due to larger language models being
more sample-efficient (Kaplan et al., 2020).

Surprisingly, BERT51M outperforms BERT124M

consistently across all languages when pre-trained
with a 25M corpus; this goes against the intuition of
larger models being more sample-efficient. Further-
more, the table shows that a slightly smaller model
with more data can outperform a larger model with
smaller corpora; every BERT51M model trained
with 125M token corpora outperforms BERT124M

model trained with 25M tokens.

D Does Overfitting at Pre-training
Propagate to Finetuning at
Downstream Tasks?

The loss curves in Section 5.1 suggested that some
model-dataset size ratios, which have the least data
and more model parameters, have been trained for
too long, to a degree in which the loss starts to
increase significantly.

To analyze if those overfitting issues from when
we keep pre-training over and over again on the
same training data propagates to the downstream
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Language Language family Morphology Syntax Verb System Vocabulary
Basque Language isolate 0.73 0.58 0.77 0.62
Spanish Romance (Indo-European) 0.64 0.42 0.62 0.69
Swahili Bantu (Niger-Congo) 0.64 0.42 0.54 0.31
Finnish Uralic 0.82 0.42 0.46 0.31

Table 9: The four selected languages and their complexity in morphology, syntax, verb system and vocabulary.

MLMeu 5M 25M 125M
BERT16M 32.08 38.68 41.56
BERT51M 32.42 44.29 50.07
BERT124M 34.50 43.46 53.19
MLMes 5M 25M 125M
BERT16M 39.09 49.06 48.31
BERT51M 39.24 53.49 59.04
BERT124M 42.45 52.58 62.00
MLMsw 5M 25M 125M
BERT16M 38.03 45.71 44.98
BERT51M 38.08 50.12 55.27
BERT124M 40.43 49.06 58.82
MLMfi 5M 25M 125M
BERT16M 29.43 37.03 37.73
BERT51M 28.18 42.07 45.86
BERT124M 29.30 41.75 49.88

Table 10: Accuracies on MLM for the 4 languages and
averages for each model-dataset size. Rows correspond
to different Language Model sizes; columns correspond
to different corpus sizes employed during pre-training.

tasks once finetuned, here we compare the check-
points of the models at 100K steps, with the last
checkpoint of our models at 500K steps. We
did this comparison with 2 models, BERT16 and
BERT51, both of them trained on the smallest cor-
pora (5M words), which are among those with the
most pronounced increasing loss curves.

The results for each checkpoint for both models
after finetuning on the tasks are shown in Table 12.
All in all, the 500K step checkpoints are on a par
with the 100K step counterparts, without a clear
winner, but definitely equalizing the gap that there
is at MLM loss.

Thus, since the decline in loss when kept pre-
training does not spread to the downstream tasks,
we decide to employ the last checkpoints (500K
steps), to evaluate and compare the models at Ap-
pendix C and Section 5.2, to avoid adding another
variable to the evaluation.

E Optimizing for a Fixed Budget

We have shown that increasing the amount of pre-
training data and model size improves their per-
formance. Thus, the conclusion regarding data in
low-resourced settings is to use all the data there is
available, independently of the model size.

With respect to the model size, however, even if
the available corpus size suggests that increasing it
improves the performance, there is usually a lim-
ited computational budget constraining this. Thus,
we need to choose the best model size within our
budget. Kaplan et al. (2020) concludes that con-
vergence is inefficient, which means that we obtain
optimal performance by training larger models and
stopping significantly short of convergence when
working with a fixed compute budget.

For this purpose, we compare the BERT51 and
BERT124, pre-trained on a comparable amount of
compute. We employed the pre-training corpus of
125M words, and pre-trained BERT51 for 500K
steps, and BERT124 for 200K steps.

The results obtained are shown in Table 11.
BERT124M , the model with the most parameters
outperforms BERT51M in most of the tasks: 4/4
for Spanish, 3/4 for Swahili, 2/4 for Basque and
2/4 for Finnish. These results agree with the claim
of Kaplan et al. (2020) that convergence being in-
efficient. However, since there is not a big gap in
the results, other factors might be also considered.
For example, an undertrained BERT124M model
has more room for improvement with further pre-
training, while BERT51M is cheaper and faster to
finetune and deploy.

F Comparison with SotA on Downstream
Tasks

In Table 13 we compare the results of our
BERT124M trained over the corpora of 125M
words, the baselines of Flair, and mBERT with
the current state-of-the-art results on each language
and task. We improve SotA results for NERC, topic
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BERT51M BERT124M

Steps 500K 200K
FLOPs 1.002E+19 1.347E+19

eu NERC 82.98±0.1 83.67±0.3

Topic 74.87±0.4 75.49±0.3

SA 69.40±0.9 68.43±0.8

QNLI 74.18±1.6 72.49±2.9

es NERC 86.34±0.7 86.47±0.7

Topic 95.91±0.4 95.95±0.1

SA 39.89±0.0 42.79±1.1

QNLI 78.00±0.6 79.65±0.4

sw NERC 91.63±0.1 91.66±0.2

Topic 92.88±0.2 93.07±0.1

SA 77.07±0.0 77.60±1.1

QNLI 63.87±1.5 63.63±0.9

fi NERC 87.02±0.2 86.86±0.7

Topic 89.61±0.3 89.63±0.2

SA 92.58±0.0 92.63±0.5

QNLI 57.30±4.3 56.35±7.6

Table 11: Results of BERT51M and BERT124M models
trained with comparable computational budget (1E+19
FLOPs), for 500K and 200K steps respectively.

classification18 and sentiment analysis for Swahili,
and obtain similar results for topic classification
for Finnish.

G MLM Loss Plots Zoomed in for
BERT16M

Figure 5: MLM loss and FLOPs for BERT16M models
for Basque, zoomed in from Figure 1.

Since the loss curve lines for BERT16M for the
corpora of 25M and 125M tokens are hard to see
in Figures 1, 2, 3 and 4, we zoomed in on them in
the figures 5, 6, 7 and 8 respectively.

18Our model is finetuned with a subset of the dataset

Figure 6: MLM loss and FLOPs for BERT16M models
for Spanish, zoomed in from Figure 2.

Figure 7: MLM loss and FLOPs for BERT16M models
for Swahili, zoomed in from Figure 3.

Figure 8: MLM loss and FLOPs for BERT16M models
for Finnish, zoomed in from Figure 4.

H Takeaways from Scaling Laws for
Low-Resource Settings

In Tables 14-17 we compare our results to the pre-
dictions of previous scaling laws from Kaplan et al.
(2020)19 and Hoffmann et al. (2022)20.

Tables 14-17 show the estimates of Kaplan et al.
(2020) do not hold in this low-resource setting, by
several magnitudes of order. Table 15 shows how

19a = 0.73 and b = 0.27
20a = 0.5 and b = 0.5
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BERT16M BERT51M

Lang Task 100K step 500K step 100K step 500K step
eu MLM loss 4.6724 5.0323 5.9511 8.4830

MLM acc 31.56 32.08 33.60 32.42
NERC 64.75±0.6 63.90±0.5 70.13±0.4 70.14±0.4

Topic 68.56±0.4 68.00±0.6 70.18±0.6 69.98±0.6

SA 67.16±0.5 67.80±0.5 67.32±0.4 67.00±1.0

QNLI 68.20±1.2 68.10±2.3 64.64±1.6 65.06±0.8

es MLM loss 3.9658 4.3367 5.8144 8.2425
MLM acc 40.15 39.91 39.27 38.93
NERC 75.84±0.4 76.57±0.3 81.11±0.3 80.43±0.4

Topic 94.69±0.4 94.54±0.3 94.89±0.3 94.89±0.3

SA 37.26±0.8 37.67±1.5 35.68±3.9 36.05±2.1

QNLI 65.38±1.0 65.01±0.6 66.34±1.6 67.00±1.8

sw MLM loss 4.2363 4.5952 5.9836 8.4719
MLM acc 37.64 38.03 38.70 38.08
NERC 85.92±0.5 86.36±0.2 89.05±0.2 88.74±0.2

Topic 91.28±0.3 91.64±0.3 91.85±0.4 92.12±0.2

SA 71.31±0.5 71.52±0.6 71.01±0.6 70.49±0.7

QNLI 60.29±0.9 62.80±1.1 62.88±0.9 62.27±1.7

fi MLM loss 5.2866 5.5322 6.5559 8.9016
MLM acc 28.76 29.43 29.52 28.18
NERC 76.47±0.3 76.82±0.3 80.19±0.2 79.73±0.2

Topic 88.53±0.1 88.15±0.1 88.45±0.1 88.53±0.3

SA 89.95±0.1 89.69±0.2 90.50±0.2 89.61±0.6

QNLI 51.51±1.1 51.49±0.9 52.37±0.7 54.28±2.5

Table 12: Comparison on downstream tasks of different checkpoints (100-500K step) of the models that showed
over-fitting issues during pre-training due to over-parametrizing.

BERT124M Flair mBERT SotA
eu NERC 84.58±0.2 82.13±0.4 79.39±1.0 86.98±0.4 roberta-euscrawl-l(Artetxe et al., 2022)

Topic 76.06±0.4 67.89±0.3 70.57±0.5 86.51±0.4 ElhBERTeu (Urbizu et al., 2022)
SA 68.91±0.5 68.17±0.3 67.34±0.7 70.87±0.5 Berteus (Agerri et al., 2020)

QNLI 74.09±1.7 48.66±5.2 78.48±1.9 76.04±1.5 ElhBERTeu (Urbizu et al., 2022)
es NERC 87.28±0.3 87.09±0.3 87.21±0.4 88.51 roBerta-b(Gutiérrez Fandiño et al., 2022)

Topic 96.27±0.3 94.08±0.4 95.92±0.6 97.14 BETO(Gutiérrez Fandiño et al., 2022)
SA 43.27±1.1 34.73±3.0 39.21±1.8 49.80 Vega et al. (2020)

QNLI 81.10±0.7 56.42±0.6 83.92±0.2 82.02 roberta-l(Gutiérrez Fandiño et al., 2022)
sw NERC 92.09±0.2 92.04±0.1 91.17±0.1 88.60 swahBERT (Martin et al., 2022b)

Topic 93.07±0.2 91.83±0.2 91.52±0.2 90.90 swahBERT (Martin et al., 2022b)
SA 79.04±0.7 73.60±0.5 69.17±1.2 71.12 swahBERT (Martin et al., 2022b)

QNLI 63.34±1.4 52.82±2.1 63.48±1.1 64.72±0.4 swahBERT(our evaluation)
fi NERC 88.99±0.2 84.76±0.4 88.87±0.4 92.40±0.1 finBERT(Virtanen et al., 2019)

Topic 90.14±0.1 86.58±0.7 88.16±0.3 90.57±0.2 finBERT(Virtanen et al., 2019)
SA 94.38±0.3 89.74±0.5 88.05±0.7 95.61±0.3 finBERT(our evaluation)

QNLI 58.56±1.1 51.54±1.2 52.79±3.0 57.18±2.6 finBERT(our evaluation)

Table 13: Results of BERT124 model pre-trained with the biggest dataset (125M words), the Flair baseline pre-
trained with the same corpora, mBERT and current SOTA.
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Optimal FLOPs
Dataset Kaplan Hoffman Ours

125M 9.74E+29 1.56E+16 3.37E+19
25M 2.51E+27 6.25E+14 5.39E+18
5M 6.47E+24 2.50E+13 1.35E+18

Table 14: Optimal FLOPs for each dataset size.

Optimal model size
Datasets Kaplan Hoffman Ours

125M 7.79E+21 1.25E+08 >8.56E+07
25M 1.00E+20 2.50E+07 >8.56E+07

5M 1.29E+18 5.00E+06 8.56E+07

Table 15: Optimal model size in parameters for each
dataset.

Optimal FLOPs
Model Kaplan Hoffman Ours

BERT124M 7.36E+10 7.33E+15 3.37E+19
BERT51M 1.40E+10 6.49E+14 1.00E+19
BERT16M 8.47E+08 1.08E+13 1.29E+18

Table 16: Optimal FLOPs for each model size.

Optimal dataset size
Model Kaplan Hoffman Ours
BERT124M 8.59E+02 8.56E+07 >1.25E+08
BERT51M 5.48E+02 2.55E+07 >1.25E+08
BERT16M 2.57E+02 3.29E+06 1.25E+08

Table 17: Optimal dataset size in tokens for each model
size.

Hoffmann estimations for optimal model size are
not that far from our results, but Table 17 suggests
that the optimal dataset size required to train small
language models is around an order of magnitude
higger than what the scaling laws of Hoffmann et al.
predict. Furthermore, Tables 14 and 16 show that
the optimal FLOPs needed for those models are a
few orders of magnitude higger than predicted by
Hoffmann et al., where models are trained for a
single epoch, which is clearly not optimal in low-
resource settings.

All in all, we can underline the following take-
aways for NLP practitioners working on LMs in
low-resource settings:

• Use as much text as available.

• Pretraining for several (100s) epochs is clearly
beneficial.

• Given a fixed computational budget, it is bet-
ter to train big models instead of using the
computational power to compute more model
updates in smaller models.

• For a dataset of 125M words: BERT124M ,
trained for at least 3.37E+19 FLOPs21 is rec-
ommended.

• For a 25M dataset: BERT124M , trained for
5.39E+18 FLOPs22 is recommended, but
a BERT51M model trained for 3.01E+18
FLOPs23, obtains similar results, and it is
lighter for finetuning and inference.

• For a 5M dataset: BERT124M , trained for
1.35E+18 FLOPs24 or less is recommended,
but a BERT51M model trained for 7.01E+17
FLOPs25, obtains similar results, which is
lighter for finetuning and inference.

21500K steps with batch=256 and sequence-length=512
2280K steps with batch=256 and sequence-length=512
23150K steps with batch=256 and sequence-length=512
2420K steps with batch=256 and sequence-length=512
2535K steps with batch=256 and sequence-length=512
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