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Abstract

The study of emergent communication has long
been devoted to coax neural network agents
to learn a language sharing similar properties
with human language. In this paper, we try
to find a ‘natural’ way to help agents learn a
compositional and symmetric language in com-
plex settings like dialog games. Inspired by
the theory that human language was originated
from simple interactions, we hypothesize that
language may evolve from simple tasks to dif-
ficult tasks. We propose a curriculum learn-
ing method called task transfer, and propose
a novel architecture called symbolic mapping.
We find that task transfer distinctly helps lan-
guage learning in difficult tasks, and symbolic
mapping promotes the effect. Further, we ex-
plore vocabulary expansion, and show that with
the help of symbolic mapping, agents can easily
learn to use new symbols when the environment
becomes more complex. All in all, we find
that a process from simplicity to complexity
can serve as a natural way to help multi-agent
language learning, and the proposed symbolic
mapping is effective for this process.

1 Introduction

Agent communication has been a popular research
field in the context of multi-agent reinforcement
learning (Foerster et al., 2016; Sukhbaatar et al.,
2016; Jiang and Lu, 2018; Eccles et al., 2019).
Recent work has focused on the emergence of
language in cooperative tasks where neural net-
work agents learn a communication protocol from
scratch to solve problems together (Lazaridou et al.,
2017; Das et al., 2017; Havrylov and Titov, 2017;
Kottur et al., 2017; Li and Bowling, 2019; Ren
et al., 2020). An array of work has empirically
shown that agents can make use of their devel-
oped language to successfully complete the tasks.
Beyond that, some work probed into the process
of language emergence, and tried to figure out
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whether the learned language could share similar
properties with human language like composition-
ality (Mordatch and Abbeel, 2018; Resnick et al.,
2020; Chaabouni et al., 2020; Choi et al., 2018)
and symmetry (Graesser et al., 2019; Dubova and
Moskvichev, 2020; Dubova et al., 2020).

Most of these studies on emergent communica-
tion are based on referential games (Lewis, 1969)
and have shown that compositionality can be in-
duced with suitable environmental pressures. Some
have explored the influential factors on the symme-
try of protocols among a group of agents. However,
tasks in these studies are often simple, and some
of these methods are hard to implement in com-
plex settings like dialog games. Kottur et al. (2017)
found that in a two-agent multi-round dialog game,
language with compositionality does not naturally
emerge, unless strict conditions are imposed to
agents, such as deprivation of memory.

Language emergence only in simple games is
obviously not satisfactory. In this paper, we tend
to find a new way to make compositional and sym-
metric language emerge ‘naturally’ in complex set-
tings. Psychological studies suggest that human
language was originated from simple gestures like
pointing and pantomiming (Tomasello, 2010). This
may explain why referential games are suitable
for emergent language studies: these games are
similar to ‘pointing’ in pragmatic process. How-
ever, from another perspective, the theory may also
imply that communication protocols like human
language cannot be formed directly from complex
interactions. Instead, a natural process is probably
that a language is first formed in simple tasks, and
then applied in more complex tasks, meanwhile
it evolves to become more complicated and com-
plete, similar to the concept of curriculum learning
(Bengio et al., 2009). Hence, we propose a method
called task transfer to implement this process on
emergent communication between neural network
agents, and explore whether the process could help
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language learning in complex settings through em-
pirical experiments. We also design two tasks for
the experiment, including a two-player referential
game and a multi-round dialog game involving a
group of agents.

Straightforward task transfer may not work well,
since agents, even if using a same language all the
time, can have different speaking policies across
tasks. So instead of transferring the policies di-
rectly, we tend to make agents learn a common
function for communication. We propose a novel
architecture called symbolic mapping, which maps
the input to related symbols, as a basic component
of communication system of agent. The intuition
is that when presented with the same input, we al-
ways associate it with the same pile of words and
concepts, and this kind of association is consistent
across tasks, so can be transferred. Our experi-
ments show that agents with symbolic mapping
perform better in task transfer.

As we explore the learning process of agents
from simple tasks to difficult tasks, we are also
curious about how the language evolves if old
conventions are not enough in new environments.
Language learning should not be accomplished
overnight. In a more natural scene, agents should
first learn a simple language in a initial environ-
ment, and after entering a more complicated envi-
ronment, they will learn something new and the
language develops. We conduct the experiment
about vocabulary expansion, also in a curriculum
learning manner. We find that through vocabulary
expansion, agents can accomplish tasks in com-
plex environments where they would fail if they
are asked to learn a language directly. This result
reveals again that a process from simplicity to com-
plexity is crucial for multi-agent language learning.
And we also find that symbolic mapping agents
perform better in vocabulary expansion.

2 Related work

Cooperative games. Different kinds of coopera-
tive games have been proposed in emergent com-
munication literature. A popular one is referential
game (Lewis, 1969), where one agent, often noted
as the speaker, has to send a message describing a
target (e.g., an image) which it has just observed to
the other agent. Then the other agent, often noted
as the listener, must select the target from several
candidates containing the target and some distrac-
tors, after receiving the message (Lazaridou et al.,

2017; Havrylov and Titov, 2017). We use a variant
of referential game to serve as the simple task in
our experiments, similar to the game in Chaabouni
et al. (2020) where the listener should reconstruct
the target. The difference is that we train the lis-
tener model by reinforcement learning, while they
use the cross-entropy loss.

Our difficult task is inspired by the Task & Talk
game proposed by Kottur et al. (2017), which is a
multi-round dialog game. In the Task & Talk game,
there are two agents, one always asks questions
while the other answers these questions. However,
our task involves a group of homogeneous agents
who do not play specific roles.Besides, our task
has unfixed number of rounds, making the game
more realistic while more complex. Other studies
(Mordatch and Abbeel, 2018; Graesser et al., 2019;
Fitzgerald, 2019) also concern emergent language
in a group of agents, and Evtimova et al. (2018)
proposed a multi-step referential game.

Properties of communication protocols. A
mainstream research direction in emergent com-
munication is to find out whether neural net-
work agents can produce communication protocols
which exhibit some properties of human language.
The most extensively studied property is compo-
sitionality. Many studies (Lazaridou et al., 2018;
Li and Bowling, 2019; Ren et al., 2020; Resnick
et al., 2020) have found that in referential games,
once given appropriate environmental pressures,
like changing learning environments, communica-
tion capacities or agents’ model capacities, compo-
sitionality could be improved. Kottur et al. (2017)
found that compositionality does not emerge natu-
rally in dialog games, which is also verified by our
experiments. In the studies where a group of agents
learn their languages together, another important
property is symmetry. That means an agent com-
munity should converge on a shared communica-
tion protocol. Dubova et al. (2020) investigated the
impact of different social network structures on lan-
guage symmetry, while Dubova and Moskvichev
(2020) explored some other factors including super-
vision, population size and self-play. In this paper,
we focus on improving the two properties through
a process from simplicity to complexity.

Evolution of communication. Recent studies,
inspired by linguistic theories, have brought evolu-
tion into the research of emergent communication.
Cogswell et al. (2019) investigated the benefit from
cultural transmission, while Dagan et al. (2021)
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integrated both cultural evolution and genetic evo-
lution. Ren et al. (2020) proposed a neural iterated
learning algorithm, where agents in a new genera-
tion are partially exposed to the language emerged
from the previous one. Li and Bowling (2019) let
the speaker interact with new listeners periodically,
while Graesser et al. (2019) analyzed how the lan-
guage evolves when different linguistic communi-
ties come in contact with each other. Most similar
to our approach, Korbak et al. (2019) explored lan-
guage learning across games of varying complexity
by template transfer. Different from their work
where a hard task is decomposed into several parts
and the transferred agent is the listener, we explore
language transfer from simple interactions to differ-
ent tasks involving more complex communication
forms, and the speaker is not reinitialized so that
the language evolution is consistent. And we also
explore the expansion of vocabulary.

Symbolic representation. Previous studies have
explored symbolic representation in the deep rein-
forcement learning (RL) framework (Garnelo et al.,
2016; Garnelo and Shanahan, 2019), and found
that a compositionally structured representation
could help address several shortcomings inherent
in the deep RL systems. Symbolic mapping can
be seen as a kind of symbolic representation in
its function. However, unlike prior work, sym-
bolic mapping is learned and constructed through
emergent communication instead of representation
learning techniques and is trained end-to-end by
RL. That means agents form the symbolic repre-
sentation when learning to communicate.

3 Method

3.1 Task transfer

Our main hypothesis is that multi agent language
learning should benefit from a process from sim-
plicity to complexity, which brings us to curricu-
lum learning. So to prove this, we propose to make
agents learn language in a simple task first, and
then continue learning in the difficult task, which
is a two-stage curriculum. We call this method task
transfer, since we hope the learned language can
be transferred across tasks.

We focus on multi-round dialog games as target
tasks in this paper. One question is how to choose
the starting point for task transfer. From results
in psychological studies, language should first be
originated from simple interactions like pointing
and pantomiming. Then referential game becomes
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Figure 1: The architecture of symbolic mapping.

a reasonable option, since referring to objects is
similar to these interactions in pragmatic process.
We use description game, a variant of referential
game, as the starting point in our experiments.

3.2 Symbolic Mapping

Curriculum learning is usually helpful in machine
learning literature, but language transfer across dif-
ferent tasks is not expected to be a natural outcome.
Actually, we think straightforward task transfer
may not work that well. Curriculum learning helps
policy generalization to similar tasks, but what we
explore is language learning across different kinds
of games where agents need different policies. So
instead of directly transferring the policies, we tend
to design a fundamental component of communica-
tion system in the architecture which can be shared
all the time. Therefore, we propose an architec-
ture called symbolic mapping, which maps input to
related symbols. Before thinking about which sym-
bols to communicate, we first think about which
symbols are relevant, and this kind of association
is consistent across tasks.

The illustration of symbolic mapping is shown in
Figure 1. Concretely, it is realized by a linear layer
followed by a sigmoid function which maps the
input object to a vector with dimension |V |, which
is the vocabulary size, and each element of the
vector corresponds to the degree of relevance be-
tween a symbol and the object. Several symbols are
sampled using the Bernoulli distribution for each
element of the vector according to the probability
given by the output of the sigmoid function, and
then stored as the agent’s word bank. The number
of sampled symbols, namely the size of the word
bank, is not predefined or limited, so the mapping
process is not restricted but learned with freedom.

Then we propose an architecture that implements
symbolic mapping with LSTM based agents so that
agents can communicate making use of it. Now that
the number of symbols in the word bank is unfixed,
we use a speaking network to estimate whether
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each relevant symbol is useful at each time step.
The speaking network is realized by a 2-layer MLP,
and takes the concatenation of each symbol and
the hidden state of LSTM as input, then outputs a
score for each symbol. Note that all symbols in the
word bank get scores by a shared speaking network.
Then we pass all scores through a softmax function
to get a probability distribution over the word bank.
At training time we sample a symbol from it, while
at test time we select symbols using argmax. An
illustration can be found in Figure 2 (left).

3.3 Game Settings

Here we describe the two tasks used in our experi-
ments. Discrimination game is the difficult task, a
multi-round dialog game, illustrated in Figure 3b.
The simple task, description game, is a variant of
referential game, as depicted in Figure 3c.

Discrimination game. Discrimination game
involves two datasets, object dataset D and pair
dataset P . Each object in D comprises n attributes.
For each attribute a ∈ {1, 2, . . . , n}, there are
m(a) possible values. For a given n and a tuple of
value numbers m = (m(1),m(2), . . . ,m(n)), we
note the corresponding object dataset as Dn,m, and
the number of different objects will be |Dn,m| =∏n

a=1m
(a). Given an object dataset D, the pair

dataset P , as illustrated in Figure 3a, is then con-
structed as for each pair (oi, oj) where oi, oj ∈ D,
oi = oj or oi and oj have only one different at-
tribute. If the objects are selected from Dn,m,
we note the pair dataset as Pn,m. Note that dif-
ferent orders of oi and oj mean different pairs,
since oi will be observed by agent i who will
speak first in a game episode. Moreover, each pair
p = (oi, oj) ∈ P has a label lp. If oi = oj , then
lp = 0; otherwise lp = a where a is the different
attribute between oi and oj .

In discrimination game there is a group of homo-
geneous agents which we call a community. Each
game episode involves two agents i and j which
are randomly sampled from the community. A pair

p = (oi, oj) is sampled from P , and the two agents
are presented with object oi and oj respectively.
Then they start the dialog. At each time step t, the
speaking agent should choose a symbol st from a
shared vocabulary V and send it to the other agent.
Any agent, after receiving a symbol, can choose to
continue or terminate the dialog. If the choice is
to continue, then the receiving agent becomes the
speaker at the next time step, and the players take
turns to speak until the dialog is terminated. Sup-
pose agent j chooses to end the dialog, then it must
answer whether oi and oj are the same; if not, then
which attribute is the different one. In other words,
it must pick the true label lp for the pair (oi, oj). If
the answer is correct, then both agents succeed and
get a reward r = 1. Otherwise, they fail and get
no reward (r = 0). If the number of dialog rounds
reaches the upper limit Tmax, the agents also fail.

Description game. Description game proceeds
as follows. First, an agent i observes an input ob-
ject oi from Dn,m. Next, it chooses a fixed-length
(n) sequence of symbols from vocabulary V to
describe oi, and sends it to listener j. Then j con-
sumes all symbols and outputs ôi. If oi = ôi, the
agents succeed. The reward for speaker i is ac-
cording to the game result, namely r = 1 if they
succeed or r = 0 if they fail. The listener j gets
rewards according to its reconstruction of each at-
tribute. In our setting, the listener has separate
reconstruction models for each attribute, and each
of them gets r = 1 if its corresponding attribute is
reconstructed correctly and gets r = 0 otherwise.

4 Experimental setting

For each attribute a, we represent it as a Na-
dimension one-hot vector, where Na = m(a). An
input object o from Dn,m is then represented by the
concatenation of all its attributes. Symbolic map-
ping map(·) chooses symbols for o and gets the
word bank W . The hidden state of the LSTM ht
serves as the memory. When speaking at time step
t, one-hot encodings of symbols in W are concate-
nated to the hidden state ht and passed to speaking
network gsp(·) to get the probability distribution
πsp(·) to produce the symbol.

In discrimination game, we initialize the hidden
state h0 as a zero vector, and each time a symbol
s is transmitted in the dialog, s is fed into LSTM
f(·). Symbols transmitted in the dialog are en-
coded as one-hot embeddings. To differentiate the
speaker of each symbol, we concatenate a flag to
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Figure 3: Dataset and games.

the embeddings. If the speaker is the agent itself,
the flag is zero; otherwise the flag is one. Note that
the agent does not know the identity of its partner.
Whenever receiving a symbol from the partner at
time step t, the concatenation of hidden state ht
and input object o is fed to the decision network
πj
dec(·), realized by a 2-layer MLP followed by a

softmax activation, which outputs an action vt. The
action means continuing the dialog or an answer.

In description game, the speaking process is the
same. We fix the message length to n, correspond-
ing to one symbol per attribute. To do this, after
the speaker produces a symbol st at time step t,
the symbol is fed into its LSTM f(·), and the next
symbol st+1 is sampled at time step t + 1. This
process proceeds until the fixed message length is
reached. The listener is instantiated by n linear lay-
ers, which are called reconstruction networks. The
message sent by the speaker is represented by the
bag-of-words model and consumed by the listener.
Then each of its reconstruction network outputs an
action to predict the value of each attribute.

We use REINFORCE (Williams, 1992) to train
each agent. We apply entropy regularization in the
loss function to encourage exploration, and use the
Adam optimizer with a learning rate of 0.001 in all
settings. We run all our experiments three times
with different random seeds and present the mean
and standard deviation of the results.

5 Metrics

Compositionality. In our setting, the evaluation
criterion of compositionality is whether agents
can communicate different attributes independently.
Note that compositionalty in natural language has
more complicated forms, but we only consider the
juxtaposition of independent symbols to represent
an overall meaning because we hypothesize that
compositionality was rather simple when language
was formed in the early stage and thus the proposed
form is adequate for our research. Inspired by posi-
tional disentanglement in Chaabouni et al. (2020),

we propose a metric called referential disentangle-
ment (refdis), which measures whether a specific
symbol refers to a specific attribute. We ignore the
positional information because we need a language
suitable for different kinds of interactions, and if
symbols’ positions are informative, the language is
hard to transfer to dialogs.

For each symbol s, we denote as1 the attribute
that has the lowest conditional entropy given s :
as1 = argminaH(a|s). Similarly, we denote as2 =
argmina̸=as1

H(a|s). Then we define refdis as:

refdis =
∑

s

(H(as2|s)
H(as2)

− H(as1|s)
H(as1)

)
· k(s),

where k(s) is the frequency of occurrence of sym-
bol s. The intuition of refdis is that each symbol
should only be informative about one attribute. The
best case is when one attribute is determined but
all other attributes are totally uncertain given any
specific symbol, with refdis being 1, and in the
worst case the refdis is 0. Context-independence
(CI) proposed in Bogin et al. (2018) shares similar
concept with refdis, but refdis evaluates composi-
tionality according to symbols while CI focuses on
the alignment between symbols and concepts.

Symmetry. We evaluate the symmetry of
the learned language by computing the Jensen-
Shannon divergence between pairs of agents’ dis-
tributions of different values of attributes, given a
specific symbol. For a pair of agents i and j, we
define referential divergence (refdiv) as:

refdiv =

1

|V | · n
∑

s

∑

a

JSD
(
p(ma

i |a, s)∥p(ma
j |a, s)

)
,

where p(ma
i |a, s) is the value distribution of at-

tribute a of agent i given symbol s. The value of
refdiv is also between 0 and 1, and a perfectly sym-
metric communication protocol will get refdiv = 0.
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Training (%) Testing (%) refdis ↑ refdiv ↓
LSTM 47.62(2.54) 8.42(1.27) 0.07(0.03) 0.87(0.11)

IL 45.67(0.66) 13.47(1.27) 0.06(0.01) 0.87(0.02)

Table 1: The performance of the agent community play-
ing discrimination game on P3,(3,3,3). LSTM refers to
vanilla LSTM-based agents, while IL refers to LSTM
agents trained with iterated learning. The first and sec-
ond column shows the success rate in training set and
testing set respectively. Both methods get poor perfor-
mance.

6 Experiments and results

6.1 Language Learning in Discrimination
Game

We first examine the performance of neural net-
work agents learning language in discrimination
game. We test two methods: vanilla LSTM, which
is aimed to show the performance of simple LSTM-
based agents without particular training methods,
and iterated learning (IL), which is a framework
proposed by evolutionary linguists to simulate the
language evolution process, and is believed to
help compositional languages emerge (Kirby et al.,
2014). To apply IL in our setup, we modify the
neural iterated learning algorithm (NIL) proposed
by Ren et al. (2020). The implementation details
of LSTM and IL can be found in appendix. We
use dataset P3,(3,3,3), where objects have three at-
tributes and each attribute has three values, and
split the dataset into the training set and the test-
ing set to explore the generalization ability of the
learned languages to unseen objects, which can
also reflect compositionality. We set agent number
to 3, and the vocabulary size is set to 9. The upper
limit for the number of dialog rounds is Tmax = 3
(each agent has three turns to speak).

Table 1 shows the results, where refdiv is aver-
aged over all pairs of agents. Both two methods
get poor performance. The success rates reveal that
agents encounter difficulties in learning a good pol-
icy to accomplish the game, and their learned com-
munication protocols are overfitting the training
set, which implies that the language is not composi-
tional. The low refdis also verifies this. The results
of refdiv show that the agents do not converge on
symmetric communication protocols. These results
confirm that the multi-round dialog game is chal-
lenging for a good language to emerge. Methods
like iterated learning may also not work well in
complex settings, though the IL agents achieve rel-

atively higher testing success rate.
We conjecture that the difficulty may come from

the following reasons. For compositionality, the
instability of dialogs may push the agents to convey
more information each time (e.g., using one sym-
bol to express both two attributes), ending up in a
non-compositional communication protocol. For
language symmetry, in an agent group, different
partners may decode a same message in different
ways, and as a result the training will be unstable
and hard to converge on a shared communication
protocol. Therefore, learning language directly in
discrimination game is hard.

6.2 From Simple Tasks to Difficult Tasks

In this section, we want to verify our hypothesis
that language can evolve from simple tasks to diffi-
cult tasks, and this process, which we call as task
transfer, helps language learning in difficult tasks.
To do this, we first carry out description game on
the agent community, and then train the learned
speakers to play discrimination game. And we want
to investigate whether our proposed symbolic map-
ping architecture can indeed promote task transfer,
so we use LSTM and IL introduced in the previous
section to serve as our baselines.

6.2.1 Language Learning in Description
Game

To conduct a speaker-listener game in an agent
community, most studies make each agent both
speaker and listener to simulate a human commu-
nity (Dubova and Moskvichev, 2020; Dubova et al.,
2020). However, since neural agents’ speaking
and listening policies are not tied together like hu-
mans, this setting can be seen as multiple speakers
speaking to multiple listeners, making the learning
unstable. The multi-listener problem is inevitable
in dialog games, but can be avoided in referen-
tial games to encourage language symmetry. And
through task transfer, the emerged symmetry may
be maintained, which becomes a natural way to
form symmetric language in dialog games.

Therefore, instead of giving each agent a lis-
tening model to interact with all other agents, we
choose to use a shared listener to simplify and
stabilize the language learning and encourage the
emergence of language symmetry.

We use dataset D3,(3,3,3), and set agent number
in the community to 3 and vocabulary size to 9, the
same as in Section 6.1, and we introduce another
agent to play the shared listener role. The message
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Success Rate (%) refdis ↑ refdiv ↓
LSTM 100.00(0.00) 0.48(0.07) 0.06(0.04)

IL 100.00(0.00) 0.71(0.09) 0.19(0.03)

SM protocol 100.00(0.00)
0.89(0.06) 0.12(0.03)

mapping 0.71(0.20) 0.04(0.04)

Table 2: The performance of the agent community
playing with a shared listener in description game on
D3,(3,3,3). SM refers to agents with the proposed archi-
tecture. The two metrics are calculated on both symbolic
mapping and communication protocol for SM agents.
All methods get perfect success rate, while SM agents
performs the best.

length is set to 3. The results are shown in Table 2.
SM refers to agents with the proposed architecture
in Section 3.2, and for SM agents we calculate the
two metrics on both symbolic mapping (which sym-
bols are stored into word bank) and the actual com-
munication protocol (which words are sent to an-
other agent) to explore their relationship. All meth-
ods can learn to accomplish the game perfectly, and
results of refdiv show that agents can converge on
symmetric languages more easily now. Besides, the
languages that emerge in this game present much
higher compositionality compared with language
learned in discrimination game, confirming that
simple tasks are more suitable for agents to learn
language with good properties.

Among the three methods, LSTM agents achieve
relatively poor compositionality, showing that
agents cannot learn compositionality so well with-
out any environmental pressure, in line with con-
clusions in other studies. IL agents perform much
better in terms of compositionalty, so the method
can indeed help in this simpler game. The relatively
poor symmetry may be caused by the supervised
learning phase in iterated learning, where each new
agent learns language from different agents in the
past generation. Languages learned by SM agents
present best compositionality. This may be because
that the symbolic mapping naturally promotes com-
positionality, since the association between input
and symbols can be easily disentangled. High
refdis and low refdiv calculated on symbolic map-
ping also indicate that after language learning, the
mapping can encode good language properties.

6.2.2 Task transfer

After the agents have successfully learned to ac-
complish description game, we then train the speak-
ers to play discrimination game. For LSTM agents,

Training(%) Testing(%) refdis ↑ refdiv ↓
LSTM 85.80(2.82) 51.01(10.14) 0.34(0.05) 0.28(0.08)

IL 51.13(4.87) 15.66(5.82) 0.05(0.03) 0.75(0.09)

SM protocol 94.17(4.98) 85.35(8.27)
0.62(0.08) 0.18(0.06)

mapping 0.37(0.09) 0.06(0.01)

Table 3: The performance of the agent community play-
ing discrimination game after they have learned to ac-
complish description game. LSTM and IL show the
benefit of task transfer, and SM proves its contribution
to task transfer.

we use the learned model directly in the new task.
For IL agents, we use the learned model to perform
task transfer in the first generation. For SM agents,
we load the learned symbolic mapping to reinitial-
ized models without fixing the symbolic mapping
so that it can continue to evolve. The experiment
settings are the same as in Section 6.1.

The results are shown in Table 3. The perfor-
mance improvement of LSTM and IL compared
with that in Table 1 proves the effectiveness of
task transfer. Further, the best performance of SM
agents confirms the benefit of our proposed archi-
tecture. In different kinds of games, agents need
different speaking policies, so LSTM and IL agents,
who transfer the speaking policies directly, cannot
generalize so well to the new game. IL agents
perform relatively bad in task transfer probably be-
cause in the last few generations when training in
the simple game, they reinforce the successful pol-
icy again and again, and they learn the policy for
the simple game so firmly that the generalization to
a new task becomes more difficult. In contrast, SM
agents learn a new speaking policy from scratch
in the new game, while the symbolic mapping pro-
vides knowledge about the learned language implic-
itly. The results show that this architecture greatly
promotes the effect of task transfer.

6.3 Vocabulary Expansion

We have empirically shown that agents’ language
can evolve in task transfer, and in this section we
explore a curriculum on another dimension. In
natural language, it is common that vocabulary
changes continually over time and new words are
created endlessly, so we hope language emerged by
agents can also develop. Besides, the emergence of
language should not be achieved overnight, and a
natural process is to form the language step by step.
So we explore the curriculum where the number of
objects’ attributes increases in a same task. And
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Success Rate (%) refdis ↑ refdiv ↓
LSTM 1.56(0.00) 0.00(0.00) 1.00(0.00)

SM protocol 2.77(0.60)
0.09(0.06) 0.75(0.07)

mapping 0.03(0.01) 0.18(0.07)

Table 4: The performance of the agent community
playing with a shared listener in description game on
D3,(4,4,4).

Success Rate (%) refdis ↑ refdiv ↓
LSTM 100.00(0.00) 0.64(0.12) 0.11(0.06)

SM protocol 100.00(0.00)
0.84(0.06) 0.12(0.02)

mapping 0.59(0.18) 0.05(0.01)

Table 5: The performance of the agent community
playing with a shared listener in description game on
D2,(4,4).

through this experiment we also want to find out
whether symbolic mapping is still useful when the
task is the same but the difficulty changes.

We conduct the experiment called vocabulary
expansion. We first carry out description game
using LSTM and SM agents on dataset D3,(4,4,4)

which contains 64 objects. We set agent number to
3 and vocabulary size to 12. The results are shown
in Table 4. It is surprising that in this bigger dataset,
both methods fail in the simple task. LSTM agents
learn only to speak a single word all the time, while
the symbolic mappings learned by SM agents are
nearly random. The reason is probably that the
chance to succeed in this environment is very small
at the beginning (1/64 here), so the reward is too
sparse for reinforcement agents.

Now we try to make agents learn the language
from a simpler start. We first train the agents on
a smaller dataset D2,(4,4), and then we introduce a
new attribute into the environment and train them
on D3,(4,4,4) with four new symbols available. We
also try to reinitialize the speaker network and the
LSTM network of SM agents, only retaining the
symbolic mapping, to investigate the effect of sym-
bolic mapping in vocabulary expansion. The details
of the implementation of the experiments can be
found in Appendix B.

Table 5 and Table 6 show the results of the two
experiments. While agents can learn good language
in the small environment, they can also achieve
good performance in the bigger environment now
via vocabulary expansion. This demonstrates that
language can evolve to become more complicated
as the environment develops, and again confirms

Success Rate (%) refdis ↑ refdiv ↓
LSTM 83.85(22.65) 0.47(0.25) 0.14(0.05)

SM protocol 100.00(0.00)
0.91(0.03) 0.11(0.02)

mapping 0.73(0.10) 0.05(0.01)

SM-RE protocol 100.00(0.00)
0.91(0.01) 0.12(0.04)

mapping 0.72(0.04) 0.06(0.02)

Table 6: The performance of the agent community
playing with a shared listener in description game on
D3,(4,4,4) after vocabulary expansion. SM-RE means
the speaker network and the LSTM network of SM
agents are reinitialized. Vocabulary expansion is effec-
tive, and SM agents perform better.

our hypothesis that the process from simplicity to
complexity is crucial for agents to learn language
in complex environments. The results also reveal
that SM agents are better at vocabulary expansion,
as they can not only express new attributes with the
help of new symbols, thus achieving higher success
rate, but also use the symbols more compositionally.
Note that the reinitialized model performs close to
the not reinitialized model, showing that symbolic
mapping plays a deterministic role for SM agents
in vocabulary expansion.

We present an example of the frequencies of
different attribute values observed by LSTM and
SM agents corresponding to four new symbols in
Figure 4. SM agents mainly use the new symbols to
express values of the new attribute, showing good
compositionality. In contrast, LSTM agents fail to
use the new symbols to express accurate meanings
after vocabulary expansion. From this perspective,
in the curriculum where the task is not changed,
the proposed architecture is still helpful.

7 Conclusion

In this paper, we hypothesize that a process from
simplicity to complexity is a natural way to help
multi-agent language learning. We propose a cur-
riculum learning method called task transfer, which
uses referential games as the starting point of lan-
guage learning. We propose symbolic mapping and
implemented it in LSTM-based agents. This archi-
tecture can be applied in different kinds of interac-
tions, so that it can help realize language transfer
across different tasks. We also explore another cur-
riculum vocabulary expansion. Our results show
that learning from simplicity to complexity indeed
helps, while symbolic mapping greatly promotes
the effect of both task transfer and vocabulary ex-
pansion. In summary, we verify our hypothesis
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Figure 4: The frequencies of attribute values observed by LSTM and SM agents corresponding to four new symbols
in the vocabulary expansion experiment. The four colors of bars correspond to four new symbols respectively. The
x label is abbreviations of attribute values, and the last four are values of the new attribute.

from two aspects, language transfer and language
development, and our proposed architecture sym-
bolic mapping shows remarkable effect.

Limitations

In this section, we discuss some limitations of our
work. We conduct preliminary experiments to ver-
ify the influence of task transfer and vocabulary
expansion on language learning in complex forms,
and to explore the effectiveness of our proposed
architecture, symbolic mapping, and we assume
that language was formed through simple interac-
tions in the early stage. Therefore, additional ex-
periments involving more complex games or other
input forms like real images have not been stud-
ied and are left for future work. Besides, more
advanced language properties and syntax are tem-
porarily not studied in this work. As for task
transfer, we verify the effectiveness of a two-stage
curriculum starting from referential games, while
more advanced curriculum are left for future work,
where more cognitive science findings should be
involved.

Ethics Statement

We believe our work has no potential risks or nega-
tive social impacts now.

Acknowledgements

This work was supported in part by NSF China
under grant 62250068. The authors would like to
thank the anonymous reviewers for their valuable
comments.

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
ICML.

Ben Bogin, Mor Geva, and Jonathan Berant. 2018.
Emergence of communication in an interactive
world with consistent speakers. arXiv preprint
arXiv:1809.00549.

Rahma Chaabouni, Eugene Kharitonov, Diane Boucha-
court, Emmanuel Dupoux, and Marco Baroni. 2020.
Compositionality and generalization in emergent lan-
guages. In ACL.

Edward Choi, Angeliki Lazaridou, and Nando de Fre-
itas. 2018. Compositional obverter communication
learning from raw visual input. In ICLR.

Michael Cogswell, Jiasen Lu, Stefan Lee, Devi Parikh,
and Dhruv Batra. 2019. Emergence of compositional
language with deep generational transmission. arXiv
preprint arXiv:1904.09067.

Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. 2021.
Co-evolution of language and agents in referential
games. In EACL.

Abhishek Das, Satwik Kottur, José M. F. Moura, Stefan
Lee, and Dhruv Batra. 2017. Learning cooperative
visual dialog agents with deep reinforcement learning.
In ICCV.

Marina Dubova and Arseny Moskvichev. 2020. Ef-
fects of supervision, population size, and self-play on
multi-agent reinforcement learning to communicate.
In ALIFE.

Marina Dubova, Arseny Moskvichev, and Robert Gold-
stone. 2020. Reinforcement communication learning
in different social network structures. arXiv preprint
arXiv:2007.09820.

Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki
Lazaridou, and Thore Graepel. 2019. Biases for
emergent communication in multi-agent reinforce-
ment learning. In NeurIPS.

Katrina Evtimova, Andrew Drozdov, Douwe Kiela, and
Kyunghyun Cho. 2018. Emergent communication in
a multi-modal, multi-step referential game. In ICLR.

Nicole Fitzgerald. 2019. To populate is to regulate.
arXiv preprint arXiv:1911.04362.

7764

https://doi.org/10.1145/1553374.1553380
http://arxiv.org/abs/1809.00549
http://arxiv.org/abs/1809.00549
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://openreview.net/forum?id=rknt2Be0-
https://openreview.net/forum?id=rknt2Be0-
http://arxiv.org/abs/1904.09067
http://arxiv.org/abs/1904.09067
https://doi.org/10.18653/v1/2021.eacl-main.260
https://doi.org/10.18653/v1/2021.eacl-main.260
https://doi.org/10.1109/ICCV.2017.321
https://doi.org/10.1109/ICCV.2017.321
https://doi.org/10.1162/isal_a_00328
https://doi.org/10.1162/isal_a_00328
https://doi.org/10.1162/isal_a_00328
https://arxiv.org/abs/2007.09820
https://arxiv.org/abs/2007.09820
https://proceedings.neurips.cc/paper/2019/hash/fe5e7cb609bdbe6d62449d61849c38b0-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fe5e7cb609bdbe6d62449d61849c38b0-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fe5e7cb609bdbe6d62449d61849c38b0-Abstract.html
https://openreview.net/forum?id=rJGZq6g0-
https://openreview.net/forum?id=rJGZq6g0-
http://arxiv.org/abs/1911.04362


Jakob Foerster, Ioannis Alexandros Assael, Nando
de Freitas, and Shimon Whiteson. 2016. Learning to
communicate with deep multi-agent reinforcement
learning. In NeurIPS.

Marta Garnelo, Kai Arulkumaran, and Murray Shana-
han. 2016. Towards deep symbolic reinforcement
learning. arXiv preprint arXiv:1609.05518.

Marta Garnelo and Murray Shanahan. 2019. Reconcil-
ing deep learning with symbolic artificial intelligence:
representing objects and relations. Current Opinion
in Behavioral Sciences.

Laura Graesser, Kyunghyun Cho, and Douwe Kiela.
2019. Emergent linguistic phenomena in multi-agent
communication games. In EMNLP.

Serhii Havrylov and Ivan Titov. 2017. Emergence of
language with multi-agent games: Learning to com-
municate with sequences of symbols. In NeurIPS.

Jiechuan Jiang and Zongqing Lu. 2018. Learning at-
tentional communication for multi-agent cooperation.
In NeurIPS.

Simon Kirby, Tom Griffiths, and Kenny Smith. 2014.
Iterated learning and the evolution of language. Cur-
rent opinion in neurobiology, 28:108–114.

Tomasz Korbak, Julian Zubek, Lukasz Kucinski, Piotr
Milos, and Joanna Raczaszek-Leonardi. 2019. Devel-
opmentally motivated emergence of compositional
communication via template transfer. arXiv preprint
arXiv:1910.06079.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Ba-
tra. 2017. Natural language does not emerge ‘natu-
rally’in multi-agent dialog. In EMNLP.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls,
and Stephen Clark. 2018. Emergence of linguistic
communication from referential games with sym-
bolic and pixel input. In ICLR.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2017. Multi-agent cooperation and
the emergence of (natural) language. In ICLR.

David K. Lewis. 1969. Convention: A Philosophical
Study. Wiley-Blackwell.

Fushan Li and Michael Bowling. 2019. Ease-of-
teaching and language structure from emergent com-
munication. In NeurIPS.

Igor Mordatch and Pieter Abbeel. 2018. Emergence
of grounded compositional language in multi-agent
populations. In AAAI.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B. Co-
hen, and Simon Kirby. 2020. Compositional lan-
guages emerge in a neural iterated learning model.
In ICLR.

Cinjon Resnick, Abhinav Gupta, Jakob N. Foerster, An-
drew M. Dai, and Kyunghyun Cho. 2020. Capacity,
bandwidth, and compositionality in emergent lan-
guage learning. In AAMAS.

Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus.
2016. Learning multiagent communication with
backpropagation. In NeurIPS.

Michael Tomasello. 2010. Origins of human communi-
cation. MIT press.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

7765

https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
http://arxiv.org/abs/1609.05518
http://arxiv.org/abs/1609.05518
https://doi.org/https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/10.18653/v1/D19-1384
https://doi.org/10.18653/v1/D19-1384
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a8018b3a00b69c008601b8becae392b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6a8018b3a00b69c008601b8becae392b-Abstract.html
https://doi.org/10.1016/j.conb.2014.07.014
http://arxiv.org/abs/1910.06079
http://arxiv.org/abs/1910.06079
http://arxiv.org/abs/1910.06079
https://doi.org/10.18653/v1/d17-1321
https://doi.org/10.18653/v1/d17-1321
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=Hk8N3Sclg
https://openreview.net/forum?id=Hk8N3Sclg
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://dl.acm.org/doi/abs/10.5555/3398761.3398892
https://dl.acm.org/doi/abs/10.5555/3398761.3398892
https://dl.acm.org/doi/abs/10.5555/3398761.3398892
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696


A Training and implementation details

In all of our experiments, each agent’s LSTM has
a hidden state of size 50, the dimensions of the
hidden layers of all MLPs are the same as their
input size, and the entropy regularization parameter
λH is set to 0.05. We train LSTM and SM agents
for 10000 epochs in description game and 20000
epochs in discrimination game, unless the agents
achieve 100% success rate ahead of time. Our
experiments are done using a single GPU GTX
1080 Ti. Most experiments can be done within
several hours, while training of IL agents may take
more time depending on the number of generations.

The LSTM agents are implemented as LSTM
networks with hidden states of size 50. When an
LSTM agent observes an object, a linear layer maps
the input embedding into the agent’s initial hidden
state h0. When speaking, we map the agent’s hid-
den state into a probability distribution over the
whole vocabulary with an MLP and a softmax func-
tion, and we randomly sample a symbol from the
probability distribution. The generated symbol will
then be fed back into the LSTM. The decision net-
work is the same as SM agents.

We modify the neural iterated learning algorithm
to apply iterated learning in our setup. The IL
agents’ architecture are the same as LSTM agents.
The algorithm runs for several generations, and
there are three phases in each generation: learn-
ing phase, interacting phase and transmitting phase.
At the beginning of each generation, all agents
are randomly initialized. When training descrip-
tion game, in the learning phase, each agent in
the community learns from data collected in the
previous generation with cross-entropy, and the
shared listener is pre-trained with REINFORCE
by interacting with the pre-trained agent commu-
nity. In the interacting phase, the agent community
plays description game with the shared listener and
they are trained the same way as LSTM agents. In
the transmitting phase, all objects are fed to each
speaking agent, and the corresponding messages
generated are stored in a dataset for the next gener-
ation. When training discrimination game, in the
learning phase, two agents are randomly sampled
to learn dialogs with supervised learning from data
collected in the previous generation, and the rest
agent is pre-trained with REINFORCE by inter-
acting with the pre-trained other two agents. In
the interacting phase, the agent community plays
discrimination game and they are trained the same

way as LSTM agents. In the transmitting phase,
two agents are randomly sampled, and the whole
training set is fed to them to collect the generated
dialogs into a dataset for the next generation. In de-
scription game training, we set generation number
to 20, pre-train iteration number to 2000 for super-
vised learning and 3000 for reinforcement learning.
We train agents for 2000 epochs in the interacting
phase. In discrimination game training, we set gen-
eration number to 10, pre-train iteration number
to 40000 for supervised learning and 100000 for
reinforcement learning. We train agents for 4000
epochs in the interacting phase. We tried a set of
hyperparameters and use the ones with the best
performance.

B Implementation details of vocabulary
expansion

When training the description game on D2,(4,4),
we use zero-padding to object representations and
symbol embeddings to encode the new attribute
and new symbols, and we set message length to 2.
The vocabulary size is set to 8 at first. For LSTM
agents, the output number of the speaker network is
set to 12, but we mask 4 of them in the first training.
When training the three attribute game, the message
length is added to 3, and the vocabulary size is
expanded to 12. We use the learned model directly
for LSTM agents. For SM agents, we reinitialize
the agents’ symbolic mapping as a linear layer with
output dimension dim = 12 and set the weights to
be zero. Then we load the parameters of the learned
symbolic mapping into it. We also try to reinitialize
the speaker network and the LSTM network of
SM agents, only retaining the symbolic mapping,
to investigate the effect of symbolic mapping in
vocabulary expansion.

C Examples of the learned symbolic
mapping and communication protocol

To show what symbolic mapping learns and how
it helps task transfer, we conduct the task transfer
experiment on a smaller dataset D2,(3,3) and present
here some examples. We refer to the attributes as
color and shape, and each of them has 3 values
(i.e., red, green, blue, triangle, square, circle). The
vocabulary size is set to 6, the message length is set
to 2 in description game and the upper limit for the
number of dialog rounds in discrimination game is
Tmax = 2.

Examples of the learned symbolic mapping in
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red green blue

triangle 3,4 0,3,4 2,3,4
square 5 0,5 2,5
circle 1 0,1 1,2

red green blue

triangle 3,4 0,3,4 2,3,4
square 5 0,5 2,5
circle 1,4 0,1 1,2

red green blue

triangle 3,4 0,3,4 2,3,4
square 5 0,5 2,5
circle 1 0,1 1,2

Table 7: The learned symbolic mapping of the three
agents in the community when playing with a shared
listener in description game on D2,(3,3).

red green blue

triangle 3,4 0,3,4 2,3,4
square 4,5 0,3,4,5 2,3,5
circle 1,4 0,1,4 1,2

red green blue

triangle 3,4 0,3,4 2,4
square 4,5 0,5 2,5
circle 1,4 0,1,4 1,2

red green blue

triangle 3,4 0,3,4 2,3,4
square 3,4,5 0,3,5 2,3,5
circle 1,3,4 0,1,3 1,2,3

Table 8: The learned symbolic mapping of the three
agents in the community when playing discrimination
game after they have learned to accomplish description
game.

the agent community is shown in Table 7 and Ta-
ble 8. They verify that symbolic mapping is not
changed greatly across two tasks, so the learned
language can be transferred. In both games, all
agents associate symbol ‘0’ with attribute ‘green’,
‘1’ with ‘circle’, ‘2’ with ‘blue’ and 5 with ‘square’,
which presents good compositionality and symme-
try. Symbol ‘3’ and ‘4’ have relatively ambiguous
meanings, which is changed between two tasks, but
they mainly cover the attributes ‘red’ and ‘triangle’
which cannot be expressed by other symbols. So

red green blue

triangle 3,4 0,3 2,3
square 5,5 5,0 5,2
circle 1,1 1,0 1,2

red green blue

triangle 4,4 0,4 4,2
square 5,5 5,0 5,2
circle 1,1 1,0 1,2

red green blue

triangle 4,4 0,4 2,4
square 5,5 5,0 5,2
circle 1,1 1,0 1,2

Table 9: The learned communication protocols of the
three agents in the community when playing with a
shared listener in description game on D2,(3,3).

red green blue

triangle 4 0 2
square 4,5 0 2,5
circle 1 0 1,2

red green blue

triangle 3 0,4 2,4
square 4,5 0,5 2,5
circle 1,4 0,1 1,2

red green blue

triangle 3 0 2
square 3,5 0,5 2,5
circle 1,3 0,1 1,2

Table 10: The learned communication protocols of the
three agents in the community when playing discrimi-
nation game after they have learned to accomplish de-
scription game.

agents can form compositional structure in sym-
bolic mapping through emergent communication,
and the properties like compositionality and sym-
metry shown in symbolic mapping can explain why
symbolic mapping helps language learning through
task transfer and why the learned language proper-
ties in simple tasks can be maintained in complex
tasks by SM agents.

We also present the corresponding communica-
tion protocols learned by the agents in the experi-
ment in Table 9 and Table 10. As discrimination
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game can be terminated at any time, agents may
not have chance to express complete information.
So in Table 10 we only present all symbols that the
agent has spoken in different games after observing
a specific object in discrimination game.

Compared with Table 7 and Table 8, the com-
munication protocols make use of the composi-
tional words in symbolic mapping faithfully in both
games, so the language is indeed transferred across
tasks. Besides, good compositionality and sym-
metry exhibited in description game are also trans-
ferred, which helps success rate in discrimination
game.

It may seem odd that the first agent only speaks
symbol ‘0’ after observing all green objects in
discrimination game. We point out that it results
from its game policy: it always expresses ‘green’
and wait the other agent to communicate about the
shape. That may explain why we think speaking
policy should not be transferred directly like LSTM
agents: policies can be specific to tasks, while only
more basic components like symbolic mapping can
carry general information about a language.

We should also point out that though the third
agent associates symbol ‘3’ with all objects in dis-
crimination game in symbolic mapping, it only
speaks it when presented with red objects. This
may explain why refdis can be higher in protocol
compared with mapping.

D Fixed random mapping

We compare the performance of the learned sym-
bolic mapping with a fixed random mapping to
show whether the benefit is provided by the reduc-
tion of dimensionality. We stop the gradient passed
to the symbolic mapping when training so the map-
ping is randomly initialized and fixed. Since the
symbolic mapping is fixed now, it cannot learn
anything in the simple task, so the task transfer can-
not be performed, and we only keep the mapping
the same in the two tasks. We present the results
of agents playing in the description game and the
discrimination game respectively in Table 11 and
Table 12. We run five seeds for each experiment.

Surprisingly, the performance of the fixed ran-
dom mapping in the simple task is very poor, while
the success rate in the difficult task is higher than
LSTM agents. From the metrics of the mapping we
can find that the random mapping does not show
any good properties as the learned symbolic map-
ping, so it cannot help the policy learning. The

Success Rate (%) refdis ↑ refdiv ↓

SM-fix protocol 47.69(4.92)
0.14(0.03) 0.38(0.04)

mapping 0.03(0.02) 0.24(0.11)

Table 11: The performance of the agent community with
fixed random mapping playing with a shared listener in
description game on D3,(3,3,3).

Training(%) Testing(%) refdis ↑ refdiv ↓

SM-fix protocol 80.73(2.66) 50.10(4.72)
0.17(0.02) 0.53(0.06)

mapping 0.03(0.02) 0.23(0.12)

Table 12: The performance of the agent community with
fixed random mapping playing discrimination game.

poor success rate in description game then shows
that dimensionality reduction does not ensure the
performance improvement, though it really helps
in discrimination game. The reason may be that
a random mapping cannot make agents communi-
cate about all attributes well, harmful to the per-
formance in description game, but agents can find
ways to accomplish discrimination game when the
attributes that can be expressed are limited. How-
ever, from the metrics and the success rate in the
testing set we can find that the learned language
in discrimination game is not compositional, and
agents cannot learn a symmetric language with
fixed random mappings. So the reduction in dimen-
sionality probably merely helps agents to overfit.

So we can conclude that the performance of sym-
bolic mapping does not benefit from the dimension-
ality reduction solely, and the learning process is
crucial for language emergence with good proper-
ties.
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linguistic phenomena, demographic groups represented, etc.?
Not applicable. We describe our data in Section 3.3. It is very simple so there is no need for a
documentation.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 3.3, Section 6

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3.3, Section 6, Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 6, Section 4

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. We do not use existing packages.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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